nanosatellite mission s-net -...

18
IRLS 2018 Canberra NanoSatellite Mission S-NET Zizung Yoon, Walter Frese, Klaus Briess Institute for Aeronautics and Astronautics, Technische Universität Berlin, [email protected] Peiyuan Wang , Hannes Almer, Georg Kirchner, Franz Koidl, Michael Steindorfer Space Research Institute, Austrian Academy of Sciences, [email protected]

Upload: others

Post on 04-Aug-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NanoSatellite Mission S-NET - NASAcddis.nasa.gov/lw21/docs/2018/presentations/Session3_Wang_presentation.pdfMission statement: „Demonstration of inter satellite communication within

IRLS 2018 Canberra

NanoSatellite Mission S-NET

Zizung Yoon, Walter Frese, Klaus Briess

Institute for Aeronautics and Astronautics, Technische Universität Berlin, [email protected]

Peiyuan Wang, Hannes Almer, Georg Kirchner, Franz Koidl, Michael Steindorfer

Space Research Institute, Austrian Academy of Sciences, [email protected]

Page 2: NanoSatellite Mission S-NET - NASAcddis.nasa.gov/lw21/docs/2018/presentations/Session3_Wang_presentation.pdfMission statement: „Demonstration of inter satellite communication within

Objectives

IRLS 2018 Canberra

Mission statement:

„Demonstration of intersatellite communication

within a nanosatellitenetwork“

demonstrate multipoint ISL with S-band transceiver

verify the newly developed / optimized ISL communication protocols

analyze the stability of a nanosatellite formation

demonstrate the feasibility of nanosatellites as a base for demanding communication missions

Page 3: NanoSatellite Mission S-NET - NASAcddis.nasa.gov/lw21/docs/2018/presentations/Session3_Wang_presentation.pdfMission statement: „Demonstration of inter satellite communication within

Mission S-Net

IRLS 2018 Canberra

Satellites 4

Satellite mass 8.7 kg

Satellite size 25 x 25 x 25 cm3

Power (nominal) < 4.5 W

Orbit SSO < 600 km

Launch Soyuz / Fregat via

Dispenser

Payload S-band transceiver,

Laser reflector

Launch 1. Feb. 2018

Design lifetime 1 year

Page 4: NanoSatellite Mission S-NET - NASAcddis.nasa.gov/lw21/docs/2018/presentations/Session3_Wang_presentation.pdfMission statement: „Demonstration of inter satellite communication within

Relative Distances

IRLS 2018 Canberra

20 40 60 80 100 120 140 160 180 200 2200

20

40

60

80

100

120

140

160

Days Since Launch

Rel

ativ

e D

ista

nce

, [k

m]

A - B (prop. delay)

A - C (prop. delay)

A - D (prop. delay)

B - C (prop. delay)

B - D (prop. delay)

C - D (prop. delay)

A - B (orbit propagator)

A - C (orbit propagator)

A - D (orbit propagator)

B - C (orbit propagator)

B - D (orbit propagator)

C - D (orbit propagator)

Figure: Measured (signal propagation) and propagated (space

radar) distances between satellites

A

Snet 4

B

Snet 3

C

Snet 1

D

Snet 2

75.3 km

28.4 km

49.6 km

Figure: Line formation in August 2018

• 4 Snet drift away(~0.1 km/day) from each other after launch due to perturbation

• Required for the inter-satellite distances :

-- 4 months with an assumption of distances less than 100 km

-- 7 months after launch less than 200 km

-- max. 400km for ISL

Page 5: NanoSatellite Mission S-NET - NASAcddis.nasa.gov/lw21/docs/2018/presentations/Session3_Wang_presentation.pdfMission statement: „Demonstration of inter satellite communication within

LASER RANGING

IRLS 2018 Canberra

Page 6: NanoSatellite Mission S-NET - NASAcddis.nasa.gov/lw21/docs/2018/presentations/Session3_Wang_presentation.pdfMission statement: „Demonstration of inter satellite communication within

Attitude determination and control

• Attitude control +/- 20°

• MEMS GYRO and Sun sensor

• Reaction wheel

IRLS 2018 Canberra

Obit determination and control

• Radar (TLE prediction), SLR, distances measurement by SLink

• No , but by controlling initial seperation parameters

Page 7: NanoSatellite Mission S-NET - NASAcddis.nasa.gov/lw21/docs/2018/presentations/Session3_Wang_presentation.pdfMission statement: „Demonstration of inter satellite communication within

Laser Ranging Purpose

• Test quality of ϕ10mm COTS( commercial off-the-shelf) CCR in orbit

• Identify the satellites in early orbit phase, since the satellites are deployed with very low drift

• Calibration of distance measurement of S-Link module (based on RF-signal propagation time)

• Precise distance measurement for drag control experiment to control relative distance of satellites

• Attitude analysis ???

IRLS 2018 Canberra

Page 8: NanoSatellite Mission S-NET - NASAcddis.nasa.gov/lw21/docs/2018/presentations/Session3_Wang_presentation.pdfMission statement: „Demonstration of inter satellite communication within

CCR Selection

IRLS 2018 Canberra

[Test FFDP for CCR ; L. Grundwaldt, GFZ Potsdam]

• Fused silica cubes ϕ10 mm (Hengrun Optoelectronics, China)

• Refractive index of material: 1.461 for 𝜆=0.532

• Tolerance: no offset, +/-3 arcsec accuracy

• Silver coating

• Far Field Diffraction Patterns Measurement by GFZ Potsdam

Page 9: NanoSatellite Mission S-NET - NASAcddis.nasa.gov/lw21/docs/2018/presentations/Session3_Wang_presentation.pdfMission statement: „Demonstration of inter satellite communication within

Laser Ranging Operation

• Nominal mode: nadir pointing:+/- 20 °

• No restrictive attitude or angle

• Normal point bin size (time span): 5 sec

• Generation of CPF by DLR or IWF

• Position measurement by HF signal propagation:

100m accuracy

IRLS 2018 Canberra

estimation

DLR SSA

tracking

ILRS

NORAD

(Radar)

conversion

DLR SSApropagation

SGP4

Orbit

analysis

Slink

(RF)

TLE: Two Line Elements

CPF: Consolidate Prediction Format

NP: Normal Point

ILRS: Int. Laser Ranging Service

mission planning &

operation

ILRS

(Laser)

TLE CPF NPT

Relative

distance

Page 10: NanoSatellite Mission S-NET - NASAcddis.nasa.gov/lw21/docs/2018/presentations/Session3_Wang_presentation.pdfMission statement: „Demonstration of inter satellite communication within

CCR unique configuration

IRLS 2018 Canberra

Snet1 Snet2 Snet3 Snet4 Snet5(backup)

Well done with ready CCR and CPF, identification and attitude analysis???

• #1-5 side of each four satellites are identical and equipped with one reflector.

• #6 of each satellite has different pattern to identify between each other.

Page 11: NanoSatellite Mission S-NET - NASAcddis.nasa.gov/lw21/docs/2018/presentations/Session3_Wang_presentation.pdfMission statement: „Demonstration of inter satellite communication within

IRLS 2018 Canberra

60deg

•Measurements confirm simulation

•Identification of satellites easily possible

•Angle of satellite can be determined by measuring the

distance between top and low peak of amplitude of signal trace

•Spin rate of satellite can be determined by measuring peak-to-

peak time

Page 12: NanoSatellite Mission S-NET - NASAcddis.nasa.gov/lw21/docs/2018/presentations/Session3_Wang_presentation.pdfMission statement: „Demonstration of inter satellite communication within

IRLS 2018 Canberra

Page 13: NanoSatellite Mission S-NET - NASAcddis.nasa.gov/lw21/docs/2018/presentations/Session3_Wang_presentation.pdfMission statement: „Demonstration of inter satellite communication within

IRLS 2018 Canberra

Page 14: NanoSatellite Mission S-NET - NASAcddis.nasa.gov/lw21/docs/2018/presentations/Session3_Wang_presentation.pdfMission statement: „Demonstration of inter satellite communication within

ILRS Observations

0

200

400

600

800

1000

1200

1400

0

20

40

60

80

100

120SNet 1 Passes NPs

Ref. EDC, last update: 2018-10-31 02:01:34

0

200

400

600

800

1000

1200

1400

0

20

40

60

80

100

120 Snet 4 Passes NPs

0

200

400

600

800

1000

1200

1400

0

20

40

60

80

100

120SNet 2 Passes NPs

0

200

400

600

800

1000

1200

1400

0

20

40

60

80

100

120 SNet 3 Passes NPs

Page 15: NanoSatellite Mission S-NET - NASAcddis.nasa.gov/lw21/docs/2018/presentations/Session3_Wang_presentation.pdfMission statement: „Demonstration of inter satellite communication within

IRLS 2018 Canberra Snet1 Snet2 Snet3 Snet4

CCR configuration for identification

Page 16: NanoSatellite Mission S-NET - NASAcddis.nasa.gov/lw21/docs/2018/presentations/Session3_Wang_presentation.pdfMission statement: „Demonstration of inter satellite communication within

IRLS 2018 Canberra Snet1 Snet2 Snet3 Snet4

CCR for attitude analysis or identification

Spinning Per. ~14s

Session6:Wednesday, Nov.7, 09:00~09:15

kHz SLR application on the attitude analysis of Technosat

Page 17: NanoSatellite Mission S-NET - NASAcddis.nasa.gov/lw21/docs/2018/presentations/Session3_Wang_presentation.pdfMission statement: „Demonstration of inter satellite communication within

Summary

• Laser ranging was great support during early orbit phase

➢ Very small drift 0.12 km/day (Snet 1-2) made TLE based orbit determination unprecise

➢ Distance measurement based on RF-signal runtime works > approx. 5km

➢ Precise estimation of cluster drift behaviour could be done via ILRS

• Request ILRS to track more passes

• Prediction

➢ No SLR observation, no accurate Cpf--- dead loop

➢ AAS, DLR rely on observations, or change to TLE

IRLS 2018 Canberra

Page 18: NanoSatellite Mission S-NET - NASAcddis.nasa.gov/lw21/docs/2018/presentations/Session3_Wang_presentation.pdfMission statement: „Demonstration of inter satellite communication within

SNet team kindly appreciate all past contributions from ILRS community

and are expecting more in future

Questions and comments?

To: Zizung Yoon ([email protected])