naoki yamamoto (university of tokyo) 高密度 qcd における カイラル対称性 contents...

26
Naoki Yamamoto (University of Tokyo) 高高高 QCD 高高高高 高高高高高高高 contents Introduction: color superconductivity The role of U(1)A anomaly and chiral symmetry breaking Partition function zeros and chiral symmetry breaking Summary & Outlook (1) T. Hatsuda, M. Tachibana, N.Y. and G. Baym, Phys. Rev. Lett. 97 (2006) 122001. (2) N.Y., JHEP 0812 (2008) 060. (3) N.Y. and T. Kanazawa, Phys. Rev. Lett. 103 (2009) 032001. KEK 理理理理理理理理理 理理理理 理理理理理理理 「・」 2009.8.11.

Upload: oswin-peters

Post on 21-Jan-2016

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Naoki Yamamoto (University of Tokyo)

高密度 QCD におけるカイラル対称性

contents

• Introduction: color superconductivity• The role of U(1)A anomaly and chiral symmetry

breaking• Partition function zeros and chiral symmetry

breaking• Summary & Outlook(1) T. Hatsuda, M. Tachibana, N.Y. and G. Baym, Phys. Rev. Lett. 97 (2006) 122001.(2) N.Y., JHEP 0812 (2008) 060.(3) N.Y. and T. Kanazawa, Phys. Rev. Lett. 103 (2009) 032001.

KEK 理論センター研究会「原子核・ハドロン物理」 2009.8.11.

Page 2: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

QCD phase diagram

T

mB

Quark-Gluon Plasma

Hadrons

RHIC/LHC

CFL

Color superconductivity

quark matter

Neutron star

Page 3: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Color Superconductivity

QCD at high density → asymptotic free Fermi surface

Attractive channel → Cooper instability

[3]C×[3]C=[6]C+[3]C

E

p

μ

q q

3

“diquark condensate”

“Fermi sea”

“Dirac sea”

Page 4: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Color-Flavor Locking (CFL)

ud s

r,g,bu,d,s

Pairing channel • s-wave pairing, spin singlet → Dirac antisymmetric• Attractive channel → color antisymmetric• Pauli principle → flavor antisymmetric• U(1)A anomaly → Lorentz scalar

3-flavor limit: Color-Flavor Locking (CFL) Alford-Rajagopal-Wilczek (NPB1999)

Gauge-invariant order parameter

e.g.)

Symmetry breaking pattern:

Page 5: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

CFL is positive parity

... due to the presence of U(1)A anomaly.

Consider the Kobayashi-Maskawa-’t Hooft (KMT) vertex with quark mass:

VKMT is minimized when

and the positive parity state is energetically favored.

Alford-Rajagopal-Wilczek (NPB1999)

Kobayashi-Maskawa (PTP1970);‘t Hooft (PRD1976)

G G

T. Schafer (PRD2002)

Page 6: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Chiral symmetry breaking in CFL

The chiral condensate:

Exactly calculated thanks to the screening of instantons at high μ:

[Point]

1. Chiral symmetry is broken not only by the diquark condensate but also the chiral condensate in CFL.

2. Nonzero chiral condensate in CFL is model-independent.

3. Chiral-super interplay of the type is inevitable.

Alford-Rajagopal-Wilczek (NPB1999)

T. Schafer (PRD2002); NY (JHEP2008)

Page 7: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Possible phase structure I

Anomaly-induced critical point at high μ. Hatsuda-Tachibana-NY-Baym (PRL2006) A realization of quark-hadron continuity. Schafer-Wilczek (PRL1999) Critical point(s) of other origins. Kitazawa-Koide-Kunihiro-Nemoto

(PTP2002); Zhang-Fukushima-Kunihiro (PRD2009);

Zhang-Kunihiro, arXiv:0904.1062.

T

mB

Quark-Gluon Plasma

HadronsColor

superconductivity

Page 8: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Possible phase structure III

Is there this possibility? [see also Hidaka-san’s talk]

T

mB

Quark-Gluon Plasma

Hadrons CFLquark matter

Page 9: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Phase diagram of “instantons” (Nf=3)

T

mB

“instanton liquid”

“instanton molecule”

“instanton gas“

Chiral phase transition at high μ: instanton-induced crossover. 4-dim. generalization of Kosterlitz-Thouless transition.

NY (JHEP2008)

Page 10: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Another viewpoint: Lee-Yang zeros

The partition function zeros in the complex plane at V<∞ reflects the information of the chiral condensate at V=∞:

Nonzero chiral condensate at V=∞ requires a cut through m=0.

Halasz-Jackson-Verbaarschot (PRD97)

[Lee-Yang zeros at μ=0] Leutwyler-Smilga (PRD92)

Page 11: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Predictions of Random Matrix Theory (RMT)

Halasz-Jackson-Verbaarschot (PRD97); Halasz, et al. (PRD98) RMT predictions:

1. Chiral symmetry restores at μ=μc.

2. The cut will move away from origin as μ increases.

→ Is it consistent with the chiral symmetry breaking at high μ?

[Random Matrix Theory → Ohtani-san’s talk]

Page 12: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Finite-volume QCD at high density

QCD in a large but finite torus:

ε-regime:

Elementary excitations in CFL;• 9 quarks: mass gap~Δ due to the color superconductivity. • 8 gluons: mass gap~Δ due to the Higgs mechanism.• 8+1(+1) Nambu-Goldstone (NG) modes: nearly (or exactly) massless.

In ε-regime,• Non-NG modes negligible since . • Kinetic terms of NG modes negligible.

NY-Kanazawa (PRL2009)

Page 13: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Partition functions in ε-regime

Chiral Lagrangian at high μ (flavor-symmetric): Son-Stephanov (PRD2000)

Exact partition function at high μ:

a novel correspondence between hadronic phase and CFL phase

related to quark-hadron continuity!

Dirac spectrum...

at μ=0.

at high μ.

NY-Kanazawa (PRL2009)

Page 14: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Exact Lee-Yang zeros at high density

Asymptotic partition function and Lee-Yang zeros at μ=∞:

Chiral condensate vanishes at μ=∞. However, many Lee-Yang zeros exist near origin even at high μ

and the chiral condensate can be nonzero for μ<∞.

NY-Kanazawa (PRL2009)

Page 15: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

1. Phases in dense QCD• The U(1)A anomaly (or instanton) plays crucial role.• Non-vanishing chiral condensate even at high μ.• Chiral-super interplay is inevitable.• Possible critical point(s) in dense QCD.

2. Partition function zeros in dense QCD• Exact X-shaped cut in the complex mass plane at μ=∞.• Chiral condensate can be nonzero for μ<∞.

3. Future problems• Phases at lower or intermediate densities?• Anomaly-induced interplay in NJL. Baym-Hatsuda-NY, in progress.

• Confinement-deconfinement transition?• Microscopic understanding based on QCD?

Summary & Outlook

Page 16: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Back up slides

Page 17: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Chiral vs. Diquark condensates

E

p

pF

-pF

Diquark condensate Chiral condensate

Y. Nambu (‘60)

Page 18: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Hadrons (3-flavor)

SU(3)L×SU(3)R

→ SU(3) L+R

Chiral condensate

NG bosons (π etc)

Vector mesons (ρ etc)

Baryons

Color-flavor locking

SU(3)L×SU(3)R×SU(3)C×U(1)B

→ SU(3)L+R+C

Diquark condensate

NG bosons

Gluons

Quarks

Phases

Symmetry breaking

Order parameter

Elementaryexcitations

quark-hadron continuity

Continuity between hadronic matter and quark matter (color-flavor locking)

Conjectured by Schäfer & Wilczek, PRL 1999

Page 19: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Instantons and chiral symmetry breaking

Why instanton? : mechanism for chiral symm. breaking/restoration

T=0 T>Tc

“instanton liquid” (metal) “instanton molecule” (insulator)

Schäfer-Shuryak, Rev. Mod. Phys. (‘97)

See, e.g., Hell-Rößner-Cristoforetti-Weise, arXiv: 0810.1099

nonlocal NJL model

Origin of NJL model:

Then, χSB in dense QCD from instantons?

Page 20: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Dense QCD : U(1)A is asymptotically restored.

Low-energy dynamics in dense QCD

convergent!

Low-energy effective Lagrangian of η’

Manuel-Tytgat, PL(‘00)Son-Stephanov-Zhitnitsky, PRL(‘01)Schäfer, PRD(‘02)

Page 21: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Coulomb gas representation

: topological charge

: 4-dim Coulomb potential

Instanton density, topological susceptibility

Witten-Veneziano relation :

Page 22: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Renormalization group analysis

Fluctuations :

Change of potential after RG :

RG trans. :

RG scale :

kinetic vs. potential

D = 2 : potential irrelevant → vortex molecule phase potential relevant → vortex plasma phase

D 3≧ : potential relevant → plasma phase

Page 23: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Phase transition induced by instantons

Unpaired instanton plasma in dense QCD

→Coexistence phase:    

Actually,

      System        parameter α Topological excitations Order of trans.

2D O(2) spin system vortex 2nd

3D compact QED magnetic monopole crossover

4D dense QCD instanton crossover

D-dim sine-Gordon model :

Note: weak coupling QCD:

Page 24: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Color superconductivity at large Nc

qq scattering

qq scattering

Double-line notation

★ Diquarks are suppressed at large Nc!

Deryagin-Grigoriev-Rubakov (‘92)

Shuster-Son (‘00)

Ohnishi-Oka-Yasui (‘07)

Page 25: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

0 ≾ mu,d<ms ∞ (realistic quark masses)≪

Realistic QCD phase structure?

2nd critical point

Critical pointAsakawa & Yazaki, 89

mu,d,s = 0 (3-flavor limit) mu,d = 0, ms=∞ (2-flavor limit)≿ ≿T

μ

T

μT

μ

Hatsuda, Tachibana, Yamamoto & Baym 06

Page 26: Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry

Possible phase structure II

T

mB

Quark-Gluon Plasma

HadronsColor

superconductivity

Of course, 1st order chiral phase transition at T=0 is still possible.