nc state universityfranzen/public_html/ch433/lecture/non_ideal.pdf · free energy and entropy of...

29
Chemistry 433 Chemistry 433 L t 22 Lecture 22 Nonideal behavior NC State University

Upload: dinhtram

Post on 14-May-2018

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Chemistry 433Chemistry 433

L t 22Lecture 22

Non‐ideal behavior

NC State University

Page 2: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Free energy and entropy of mixingWe can calculate the free energy of mixing for an ideal 

solution based on the chemical potential.  The free 

energy of mixing is

ΔmixG = Gsln(T,P,n1,n2) ‐ G1*(T,P,n1) ‐ G2*(T,P,n2)mix ( , , 1, 2) 1 ( , , 1) 2 ( , , 2)

ΔmixG = n1μ1sln + n2μ2

sln ‐ n1μ1* ‐ n2μ2

*

ΔmixG = nRT(x1lnx1 + x2lnx2)ΔmixG    nRT(x1lnx1  x2lnx2)The free energy of mixing is always negative because x1and x2 are always less than one An ideal solution willand x2 are always less than one.  An ideal solution will 

always form spontaneously.  This is due entirely to the 

entropy of mixing The entropy is given byentropy of mixing.  The entropy is given by

ΔmixS = ‐(∂ΔmixG/∂T) = ‐ nR(x1lnx1 + x2lnx2)

Page 3: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Definition of ideal behaviorDefinition of ideal behavior

This result is exactly the same as the mixing entropy forThis result is exactly the same as the mixing entropy for 

an ideal gas.  For an ideal solution we find further that 

Δ V = (∂Δ G/∂P) = 0ΔmixV = (∂ΔmixG/∂P) = 0and

Δ H = Δ G + T Δ S = 0ΔmixH = ΔmixG + T ΔmixS = 0.The volume change and enthalpy of mixing are zero for 

an ideal solution because the size and shape andan ideal solution because the size and shape and 

intermolecular potential of the two species being 

i d l th th imixed are nearly the same as the pure  species.  

Page 4: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

A model of molecular interactionsA model of molecular interactions

We can express the behavior in real solutions as aWe can express the behavior in real solutions as a 

deviation from Raoult's law.  For example, in the figure 

below we have component 1 with a vapor pressure ofbelow we have component 1 with a vapor pressure of 

50 torr for the pure component.  

That is P * = 50 torr Likewise P * = 100 torrThat is, P1 = 50 torr.  Likewise, P2 = 100 torr.

We can consider two cases Deviations from Raoult'sWe can consider two cases. Deviations from Raoult's 

law can be positive or negative.  Positive deviations (i.e. 

t th id l) th t th likgreater vapor pressure than ideal) mean that the unlike 

molecules have a repulsive interaction.  

Page 5: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Positive deviations from Raoult’s lawPositive deviations from Raoult s law

Page 6: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

A mathematical model for the d f d ldeviations from ideality

To obtain the plots we use the following expressions.p g pP1 = x1P1*

P2 = x2P2*

P1 = x1P1*exp(αx22)P2 = x2P2*exp(αx12)where the term exp(αx22) represents a deviation from ideality (α = 0.5 in the plot above).  Negative deviations f R lt' l l b d h i th l tfrom Raoult's law are also observed as shown in the plot below (α = ‐2 in the plot below).

Page 7: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Negative deviations from Raoult’s lawNegative deviations from Raoult s law

Page 8: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Limiting behaviorLimiting behavior

For either positive or negative deviations from Raoult's law, if we look at component 1 we can see that as x1 → 1 and x2 → 0 we recover Raoult's law, P1 = x1P1*.  In other words when 1 is the 

l t h l id l b h i f b t 1pure solvent we have nearly ideal behavior for substance 1.  However, at the opposite limit as x1 → 0 (and x2 → 1) we have, P1 = x1P1*exp(α).  In this case substance 1 is the solute and it 1 1 1 p( )behaves non‐ideally.  This has been expressed as Henry's law.  Henry's law states that P1 = x1kH,1 as x1 → 0.  Thus, Henry's describes the non‐ideal behavior of a solute in a dilute solution.  Note that for the explicit model above we can equate kH 1 = P1*exp(α)kH,1 = P1 exp(α). 

Page 9: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Explaining activityThroughout the entire range of concentration we can redefine 

activity, a1.  Activity is an effective mole fraction.  That is we can 

define

P1 = a1P1*

for a real solution.  Our simple model above shows that the 

deviation from ideality can be treated by fitting to expressions of 

th f P P * { 2 β 3 }the form P1 = x1P1*exp{αx22 + βx23 + …}The chemical potential for this type of solution is

μ = μ * + RTln x + αRTx 2 + βRTx 3μ1 = μ1 + RTln x1 + αRTx2 + βRTx2We see from the definition of activity as a1 = P1/P1* that we can

express the chemical potential as μ1 = μ1* + RTln a1p p μ1 μ1 1

Thus we can see that a1 = x1exp{αx22 + βx23 + …}.

Page 10: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

The activity coefficientThe activity coefficient

We can define an activity coefficient γ1 such thaty γ1γ1 = a1/x1.Therefore γ1 = exp{αx22 + βx23 + …}.Clearly, a1 → x1 and γ 1 → 1 as x1 → 1.  Thus, the solution approaches ideal behavior as the composition approaches that 

of the pure solution.   This definition is based on a Raoult's law 

standard state.  This is also known as a solvent standard state.  

The activities or chemical potentials are meaningless unless weThe activities or chemical potentials are meaningless unless we 

know the standard state.  The solvent or Raoult's law standard 

state holds for substances that are miscible in all proportions.state holds for substances that are miscible in all proportions.

μ1 = μ1* + RTln a1

Page 11: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Raoult’s law standard stateRaoult s law standard state

Up to now we have implicitly discussed only Raoult's lawp p y y

standard states.

Strictly speaking, we should use the words solute and solvent to 

describe a binary solution only when one component is sparingly 

soluble in the other.  In this case that standard state may be 

based on Henry's law rather than Raoult's law.  Assuming that 

component j is the sparingly soluble component we can write

μ = μ * + RTln (P /P *)μ1 = μ1 + RTln (P1/P1 )We calso think of this as the standard state for an ideal solution.

Page 12: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Henry’s law standard stateHenry s law standard state

For the solute j we use Henry's law Pj → xjkH j as xj → 0 where j y j j H,j j

kH,j is the Henry's law constant for component j.  Thus we have. 

μj = μj* + RTln (xjkH,j/Pj*) = μj

* + RTln (kH,j/Pj*) + RTln (xj)    (xj → 0)We define the activity of component j by

μj = μj* + RTln (kH,j/Pj*) + RTln aj.

Just as above for the Raoult's law standard state 

aj → xj as xj → 0. Thus we define a = P /k The standard state then implies thatThus, we define aj = Pj/kH,j.  The standard state then implies that 

kH,j = Pj*.  This standard state may not exist in practice, so it is 

called a hypothetical standard state.called a hypothetical standard state.

Page 13: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Standard state for activityStandard state for activity

The numerical value of the activity depends on the standard y p

state.  This is best demonstrated using an example.  We consider 

a solution of CS2 and CH3OCH2OCH3.  The Henry's law constants 

for this solution are kH,CS2 = 1130 torr and kH,dimeth = 1500 torr.  

Based on vapor pressure data we can calculate the activity and 

(the activity coefficient based on each standard state (Raoult's 

Law and Henry's Law).

For x CS2 = 0.5393 we have P CS2 = 357.2 and Pdimeth = 342.2 torr.

We also need to know P CS2* = 514.5 and Pdimeth

* = 587.7 torr.We also need to know P CS2  514.5 and Pdimeth  587.7 torr.

Page 14: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Two definitions of standard stateTwo definitions of standard stateRaoult's Law

a CS2 = PCS2/ P CS2* = 357.2/514.5 = 0.694

a dimeth = Pdimeth/ P dimeth* = 342.2/587.7 = 0.582

/ 0 694/0 539 1 287γ CS2 = a CS2/x CS2 = 0.694/0.539 = 1.287

γ dimeth = a dumeth/x dimeth = 0.582/(1‐0.539) = 1.262

Henry's Law

a CS2 = PCS2/ kH CS2 = 357.2/1130 = 0.316CS2 CS2 H,CS2

a dimeth = Pdimeth/ kH,dimeth = 342.2/1500 = 0.228

γ CS2 = a CS2/x CS2 = 0.316/0.539 = 0.586

γ dimeth = a dumeth/x dimeth = 0.228/(1‐0.539) = 0.494

Page 15: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Excess free energyExcess free energy

We can calculate the Gibbs energy of mixing of binary solutions gy g y

in terms of the activity coefficients to obtain a free energy of 

mixing for non‐ideal solutions.  As above for ideal solutions we 

can define

ΔmixG = n1μ1sln + n2μ2

sln ‐ n1μ1* ‐ n2μ2

*

However, in this case we must use the definition of chemical 

potential in terms of activity (rather than mole fraction)

μ = μ * + RTln a = μ * + RTln x + RTln γμj = μj + RTln aj = μj + RTln xj  + RTln γjleading to the expression

ΔmixG = RT(n1ln x1 + n2ln x2 + n1ln γ1 + n2lnγ2)ΔmixG    RT(n1ln x1  n2ln x2  n1ln γ1  n2lnγ2)

Page 16: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

The first two terms represent the Gibbs free energy of mixing of 

an ideal solution To focus on the effect of non ideality wean ideal solution.  To focus on the effect of non‐ideality, we 

define an excess Gibbs energy of mixing ΔGE.

ΔGE = Δ i G ‐ Δ i GidΔG  ΔmixG  ΔmixG

Thus, ΔGE = RT(n1ln γ1 + n2ln γ2)If we divide by the total number of moles n1 + n2, we obtain the1 2

molar excess Gibbs energy of mixing ΔGE.

ΔGE = RT(x1ln γ1 + x2ln γ2)Using the definition of the activity coefficient for the solution 

example above we can calculate the excess free energy for the 

d l l ti bmodel solution above.

γ1 = exp{αx22}andand 

γ2 = exp{αx12}.

Page 17: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

The origin of excess free energy is the enthalpy

S b tit ti th ti it ffi i t i t thSubstituting these activity coefficients into the 

expression for the excess free energy we have

ΔGE = RT(α x x 2 + α x x 2) = α RTx xΔG = RT(α x1x2 + α x2x1 ) = α RTx1x2using the fact that x2 = 1 ‐ x1. 

If components 1 and 2 are distributed randomly throughout the p y g

solution then the entropy of the ideal solution and the non‐ideal 

solution will be the same.  Such a solution is known as a regular 

solution.  In a regular solution ΔHE ≠ 0 and ΔSE = 0.  Thus, the difference in the Gibbs energy is due to an interaction energy 

( b h h l f l )term (a contribution to the enthalpy of solution).

Page 18: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Molecular model for d l lnon‐ideal solutions

We can express the potential energy of the solution in the formp p gy

U = N11e11 + N12e12 + N22e22where Nij is the number of neighboring pairs of molecules of 

type i and j and where eij is the interaction energy of a pair of 

molecules of type i and j when they are next to each other.   We 

assume a coordination number z where z is between 6 and 10.  

There are N1 component 1 molecules in solution so the number 

of 1 1 neighboring pairs is N = zN x /2 where the factor of usedof 1‐1 neighboring pairs is N11 = zN1x1/2 where the factor of used 

to avoid counting each 1‐1 pair twice.  Similarly, for component 2 

we have N22 = zN2x2/2. The same value of z is used because wewe have N22  zN2x2/2.  The same value of z is used because we 

assume that molecular sizes are about the same.  

Page 19: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Aspects of the microscopic model

e11Interaction energies

self interaction

e22 self interaction

e12 cross term

z is the solvation number (here it is 6)

Page 20: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Molecular model for d l lnon‐ideal solutions

The number of 1‐2 neighboring pairs is given by g g p g y

N12 = zN1x2 = zN2x1.  

The total interaction energy in the solution is

U = zN1x1e11/2 + zN2x2e22/2 + zN1x2e12Using the definitions x1 = N1/(N1+N2) and x2 = N2/(N1+N2) 

we can reexpress the interaction energy as

U = (N12e11/2 + N2

2e22/2 + N1N2e12)z/(N1+N2)

We can focus on the non ideality of the solution by introducingWe can focus on the non‐ideality of the solution by introducing 

the quantity

w = U = e11 + e22 ‐ 2e12w   U   e11  e22 2e12

Page 21: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Comparing ideal and real energiesFor an ideal solution e11 = e22 = e12 and so w = 0.  However, for a 

non ideal solution e ≠ e ≠ enon‐ideal solution e11 ≠ e22 ≠ e12.  Substituting e12 = (e11 + e22 ‐ w)/2 we have

U = (N12e11/2 + N2

2e22/2 + N1N2(e11 + e22 ‐ w)/2)z/(N1+N2)U   (N1 e11/2   N2 e22/2   N1N2(e11  e22 w)/2)z/(N1 N2)

U = zN1e11/2 + zN2e22/2 ‐ zwN1N2/2(N1+N2)

The last term represents the non‐ideality in the solution.

Therefore, we can express the Gibbs energy of the solution as

Gsoln = Gideal ‐ zwN1N2/2(N1+N2)

or units of moles

Gsoln = Gideal ‐ zwNAn1n2/2(n1+n2)

Page 22: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

The chemical potential of component 1 is given by

μ ∂G ∂Gid zwN A ∂n1n2/(n1 + n2)

Note that the chemical potential of an ideal solution is given by

μ1 = ∂G∂n1

= ∂n1– A

21 2 ( 1 2)

∂n1

μ1 = μ1* + RT lnx1

The derivative is

This leads to the expression

∂n1n2/(n1 + n2)∂n1

= n2n1 + n2

– n1n2

n1 + n22 = x2 – x1x2 = x2(1 – x1) = x2

2

This leads to the expression

μ1 = μ1* + RT lnx1 ‐zwNAx22/2

μ1 = μ1* + RT ln(x1e ‐zwx22/2kT)μ1 μ1 ( 1 )

where we have used the fact that k = R/NA.

Our simple model of a solution has led directly to an expression 

for the activity in terms of the interaction strength w, 

coordination number z, mole fraction x2, and thermal energy kT.

Page 23: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Definition of a critical pointDefinition of a critical point

The activity is a1 = P1/P1* = x1exp(‐zwx22/2kT)y 1 1/ 1 1 p( 2 / )

The activity coefficient is  γ1 = exp(‐zwx22/2kT)The expression derived is exactly analogous to the expressions 

used above for deviations from Raoult's law provided 

α = ‐zw/2kT.  

This simple model not only allows us to calculate activities from 

molecular properties, but it also includes the possibility of phase 

separation A critical point in a two component phase diagramseparation.  A critical point in a two component phase diagram 

indicates that there is a region of temperature or pressure

beyond which the solution separates into two phases.beyond which the solution separates into two phases.

Page 24: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Phase separationPhase separation

In the case of the model liquid discussed here phase separation q p p

will occur if zw/2kT > 2 or in other words if the parameter α < ‐2.  We first show the relationship between the activities of two 

species in a non‐ideal binary solution and then use all of the 

information to discuss the free energy of mixing.  This leads γ

naturally to the idea of limited solubility even with this very 

simple model.

Page 25: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Application of the bb hGibbs‐Duhem equation

At this point, you might well ask whether the activity coefficient p , y g y

for component 1 has any bearing on the magnitude of the 

activity coefficient for component 2.  In fact, they are related as 

we now prove using the Gibbs‐Duhem relation.  The Gibbs‐

Duhem equation states that

n1dμ1 + n2dμ2 = 0.Dividing through by n the Gibbs‐Duhem equation is

x dμ + x dμ = 0x1dμ1 + x2dμ2 = 0.

dμ2 = ‐ x1dμ1 / x2with μ1 = μ1

* + RT ln(x1e ‐αx22) where α = ‐zw/2kT,with μ1  μ1  RT ln(x1e ) where α   zw/2kT,

Page 26: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Application of the bb hGibbs‐Duhem equation

dμ1 = ‐ RTdx1/x1 ‐ 2α(1‐ x1)dx1 and dμ2 =  ‐ RTdx1/x2 ‐ 2αx1dx1μ1 1/ 1 ( 1) 1 μ2 1/ 2 1 1

Change variables from dx1 to ‐ dx2.

dμ2 = RTdx2/x2 + 2α(1‐x2)dx2Now we integrate,

μ2 ‐ μ2* = RTlnx2 + α(1‐x2)2

and finally

μ2 = μ2* + RT ln(x2e –αx12)

which shows that the activity of coefficient of component 1which shows that the activity of coefficient of component 1 

implies the magnitude of the activity coefficient for 

component2.component2.

γ1 = exp(‐zwx22/2kT) implies γ2 = exp(‐zwx12/2kT)

Page 27: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Parameter for non‐ideal solutionsParameter for non ideal solutionsAs a result of our model for the interaction energy of particles 

in a non‐ideal solution we can calculate ΔmixG.  For a two component solution

Δ G n RTln x + n RTln x zwN /2(n x 2 + n x 2)ΔmixG = n1RTln x1 + n2RTln x2 ‐ zwNA/2(n2x12 + n1x22)

ΔmixG = n1RTln x1 + n2RTln x2 ‐ zwNA(n1 + n2)x1x2/2

Our final expression for Δ i G isOur final expression for ΔmixG is

ΔmixG = nRT(x1ln x1 + x2ln x2 ‐ zwx1x2/2kT)which is clearly separable into an ideal part and the excess free 

energy discussed previously.  We can plot ΔmixG/nRT for various values of zw/2kT as shown below.

Page 28: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Parameter for non‐ideal solutionsParameter for non ideal solutions

Page 29: NC State Universityfranzen/public_html/CH433/lecture/Non_ideal.pdf · Free energy and entropy of mixing We can calculate the free energy of mixing for an ideal solution based on the

Phase separation and critical pointPhase separation and critical point

Note that for α < ‐2 the curvature is negative in the central region (around a mole fraction of x1 = 0.5).  This corresponds to a region where mixing is not spontaneous.  I th d th ill b h ti i thiIn other words, there will be a phase separation in thisregion.By assumption, the entropy of mixing is still equal to theBy assumption, the entropy of mixing is still equal to the entropy of mixing of an ideal solution.  Thus,ΔmixS = ‐nR(x1ln x1 + x2ln x2)and therefore the non‐ideality appears in the enthalpyΔmixH =  ‐ zwNAx1x2/2.