numerical study on esr of v15 iis, u. tokyo, manabu machida riken, toshiaki iitaka dept. of phys.,...

19
Numerical study on ESR of V15 IIS, U. Tokyo, Manabu Mac hida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miy ashita June 27- July 1, 2005 Trieste, Italy

Post on 20-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Numerical study on ESR of V15

IIS, U. Tokyo, Manabu MachidaRIKEN, Toshiaki Iitaka

Dept. of Phys., Seiji Miyashita

June 27- July 1, 2005

Trieste, Italy

Nanoscale molecular magnet V15

(http://lab-neel.grenoble.cnrs.fr/)€

K6 V15IVAs6O42 H2O( )[ ] • 8H2O

Vanadiums provide fifteen 1/2 spins.

[A. Mueller and J. Doering (1988)]

Hamiltonian and Intensity

H = − Jij

v S i ⋅

v S j

i, j

∑ +v D ij ⋅

v S i ×

v S j( )

i, j

∑ − HS Siz

i

I T( ) = I ω,T( ) dω0

∫ =ωHR

2

2′ ′ χ ω,T( ) dω

0

∫€

′ ′ χ ω,T( ) = 1− e−βω( ) Re M x M x t( ) e−iωt dt

0

[H. De Raedt, et al., PRB 70 (2004) 064401]

[M. Machida, et al., JPSJ (2005) suppl.]

J = −800K, J1 = −225K, J2 = −350K

D1,2x = D1,2

y = D1,2z = 40K

The parameter set

Difficulty

– Its computation time is of(e.g. S. Miyashita et al. (1999))

M x M x t( ) =Tr e−βH M x M x t( )

Tr e−βH

– Direct diagonalization requires memory of

O N 2( )

O N 3( )

difficult!

Two numerical methods

• The double Chebyshev expansion method (DCEM) - speed and memory of O(N) - all states and all temperatures

• The subspace iteration method (SIM) - ESR at low temperatures.

DCEM

ESR absorption curves

Typical calculation time for one absorption curve is about half a day.

DCEM

Background of DCEM

The DCEM =a slight modification of the Boltzmann-weighted time-dependent method (BWTDM).

Making use of the random vector technique andthe Chebyshev polynomial expansion

[T. Iitaka and T. Ebisuzaki, PRL (2003)]

DCEM (1)

M x M x t( ) =Φ e−βH / 2

( )M x M x t( ) e−βH / 2 Φ( )[ ]av

Φ e−βH / 2( ) e−βH / 2 Φ( )[ ]

av

Random phase vector

Φ ˆ X Φ[ ]av

= n ˆ X nn

∑ + e i θ m −θ n( )−δmn[ ]av

n ˆ X mm,n

= Tr ˆ X + Δ ˆ X ≅ Tr ˆ X €

Φ = n e iθ n

n=1

N

DCEM (2)Chebyshev expansions of the thermal and time-evolution operators.

e−βH / 2 = I0 − β2( )T0 H( ) + 2 Ik − β

2( )Tk H( )k=1

kmax

e− i Ht = J0 t( )T0 H( ) + 2 −i( )kJk t( )Tk H( )

k=1

kmax

J

HS>> small

Temperature dependence of intensity

[Y.Ajiro et al. (2003)]

Our calculation Experiment

Itot β( ) = I ω,β( )dω0

SIM

′ ′ χ ω,T( ) =π

e−βEm

m

∑ m,n

∑ e−βEm − e−βEn( ) ψ m M x ψ n

2

×δ ω − En − Em( )( )

I1 T( ) =πHR

2 HS

8tanh

βHS

2

⎝ ⎜

⎠ ⎟

ESR at low temperatures by SIM

We consider the lowest eight levels.

R T( ) = I T( ) /I1 T( )

I T( ) =ωHR

2

2′ ′ χ ω,T( ) dω

0

Intensity ratio

Temperature dependence of R(T)

With DM Without DM

Triangle model analysis

J12 = J23 = J31 = J = −2.5K

D1,2x = D1,2

y = D1,2z = D ≅ 0.25K( )

E8 = − 34 J + 3

2 HS

E4 = 34 J + 1

2 HS + 32 D

E7 = − 34 J + 1

2 HS

E6 = − 34 J − 1

2 HS

E5 = − 34 J − 3

2 HS

E3 = 34 J + 1

2 HS − 32 D

E2 = 34 J − 1

2 HS + 32 D

E1 = 34 J − 1

2 HS − 32 D

HSc0 =

3

2J

Energy levels with weak DM

E2

E5

E1

O D( )( )

HS⟨⟨HSc 0

HSc0⟨⟨HS

Rtri T( ) T →0 ⏐ → ⏐ ⏐

3

1+3D

HS

Intensity ratio of triangle model

At zero temperature

SummaryO(N) algorithms for the Kubo formula

DCEM

ESR of V15

■ High to low temperatures by DCEM■ Ultra-cold temperature by SIM■ Triangle model analysis

■ Random vector and Chebyshev polynomials

M. Machida, T. Iitaka, and S. Miyashita, JPSJ (2005) suppl.(cond-mat/0501439)