具有高 cmti ±50mv 输入电压范围和 280khz 高带宽的 amc1302 · 2020. 6. 11. · hv+...

36
HV+ HV- to Load Floating Power Supply 3.3 V, or 5.0 V RSHUNT 3.3 V or 5.0 V RFLT RFLT AMC1302 OUTP OUTN VDD2 GND2 GND1 INP INN VDD1 Reinforced Isolation ADS7263 14-Bit ADC Diagnostics CFLT Product Folder Order Now Technical Documents Tools & Software Support & Community 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确 性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SBAS812 AMC1302 ZHCSIF3C – JUNE 2018 – REVISED JANUARY 2020 具有高 CMTI±50mV 输入电压范围和 280kHz 高带宽的 AMC1302 精密增强型隔离式放大器 1 1 特性 1±50mV 输入电压范围,适用于低功率耗散且基于分 流电阻器的电流测量 低温漂固定增益:41 ± 0.3%,±50ppm/°C 低输入失调电压和温漂:±100μV±0.8μV/°C 低非线性和温漂:±0.03%±1ppm/°C 3.3V 电源下工作时,隔离式高侧功率耗散非常 系统级诊断 功能 安全相关认证: 符合 DIN V VDE V 0884-11: 2017-01 标准的 7071V PK 增强型隔离 符合 UL1577 标准且长达 1 分钟的 5000V RMS 隔离 工业工作温度范围: -55°C +125°C CMTI80kV/μs(典型值),55kV/μs(最小 值) 2 应用 基于分流电阻器的电流感应,可用于: 电机驱动 航电设备 电力输送 工业运输 电器 电网基础设施 3 说明 AMC1302 是一款精密的隔离放大器,具有磁场抗扰度 较高的电容式隔离层。该隔离层最高可提供 5kV RMS 增强型隔离,使用寿命非常长,功率耗散非常低。与隔 离式电源结合使用时,该器件可将以不同共模电压电平 运行的组件隔开。此外,AMC1302 还可以保护低电压 器件免受损坏。 AMC1302 的输入针对直接连接分流电阻器或其他低电 压等级信号源进行了优化。借助 ±50mV 输入电压范 围,可通过分流器显著降低功率耗散。而且 AMC1302 的高侧电源电流和电压较低,支持使用低成本隔离式电 源解决方案。该器件性能可实现精确电流控制,从而降 低系统级功耗和扭矩纹波,后者在电机控制 应用中尤 为重要。借助集成共模过压和高侧电源电压缺失检测 特性, AMC1302 可简化系统级诊断。 器件信息 (1) 器件型号 封装 封装尺寸(标称值) AMC1302 SOIC (8) 5.85mm × 7.50mm (1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。 简化原理图

Upload: others

Post on 26-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • HV+

    HV-

    to Load

    Floating

    Power Supply

    3.3 V, or 5.0 V

    RSHUNT

    3.3 V or 5.0 V

    RFLT

    RFLT

    AMC1302

    OUTP

    OUTN

    VDD2

    GND2GND1

    INP

    INN

    VDD1

    Re

    info

    rce

    d Iso

    latio

    n

    ADS7263

    14-Bit ADC

    Diagnostics

    CFLT

    Product

    Folder

    Order

    Now

    Technical

    Documents

    Tools &

    Software

    Support &Community

    本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。

    English Data Sheet: SBAS812

    AMC1302ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020

    具具有有高高 CMTI、、±50mV 输输入入电电压压范范围围和和 280kHz 高高带带宽宽的的AMC1302 精精密密增增强强型型隔隔离离式式放放大大器器

    1

    1 特特性性1• ±50mV 输入电压范围,适用于低功率耗散且基于分

    流电阻器的电流测量

    • 低温漂固定增益:41 ± 0.3%,±50ppm/°C• 低输入失调电压和温漂:±100µV,±0.8µV/°C• 低非线性和温漂:±0.03%,±1ppm/°C• 在 3.3V 电源下工作时,隔离式高侧功率耗散非常

    • 系统级诊断 功能• 安全相关认证:

    – 符合 DIN V VDE V 0884-11: 2017-01 标准的7071VPK 增强型隔离

    – 符合 UL1577 标准且长达 1 分钟的 5000VRMS隔离

    • 工业工作温度范围:-55°C 至 +125°C

    • 高 CMTI:80kV/µs(典型值),55kV/µs(最小值)

    2 应应用用基于分流电阻器的电流感应,可用于:

    • 电机驱动• 航电设备• 电力输送• 工业运输• 电器• 电网基础设施

    3 说说明明AMC1302 是一款精密的隔离放大器,具有磁场抗扰度较高的电容式隔离层。该隔离层最高可提供 5kVRMS 的增强型隔离,使用寿命非常长,功率耗散非常低。与隔

    离式电源结合使用时,该器件可将以不同共模电压电平

    运行的组件隔开。此外,AMC1302 还可以保护低电压器件免受损坏。

    AMC1302 的输入针对直接连接分流电阻器或其他低电压等级信号源进行了优化。借助 ±50mV 输入电压范围,可通过分流器显著降低功率耗散。而且 AMC1302的高侧电源电流和电压较低,支持使用低成本隔离式电

    源解决方案。该器件性能可实现精确电流控制,从而降

    低系统级功耗和扭矩纹波,后者在电机控制 应用中尤

    为重要。借助集成共模过压和高侧电源电压缺失检测

    特性, AMC1302 可简化系统级诊断。

    器器件件信信息息(1)

    器器件件型型号号 封封装装 封封装装尺尺寸寸((标标称称值值))

    AMC1302 SOIC (8) 5.85mm × 7.50mm

    (1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

    简简化化原原理理图图

    http://www-s.ti.com/sc/techlit/SBAS812.pdfhttp://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cn/product/cn/AMC1302?dcmp=dsproject&hqs=pfhttp://www.ti.com.cn/product/cn/AMC1302?dcmp=dsproject&hqs=sandbuysamplebuyhttp://www.ti.com.cn/product/cn/AMC1302?dcmp=dsproject&hqs=tddoctype2http://www.ti.com.cn/product/cn/AMC1302?dcmp=dsproject&hqs=swdesKithttp://www.ti.com.cn/product/cn/AMC1302?dcmp=dsproject&hqs=supportcommunity

  • 2

    AMC1302ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020 www.ti.com.cn

    Copyright © 2018–2020, Texas Instruments Incorporated

    目目录录

    1 特特性性.......................................................................... 12 应应用用.......................................................................... 13 说说明明.......................................................................... 14 修修订订历历史史记记录录 ........................................................... 25 Pin Configuration and Functions ......................... 36 Specifications......................................................... 4

    6.1 Absolute Maximum Ratings ...................................... 46.2 ESD Ratings.............................................................. 46.3 Recommended Operating Conditions....................... 46.4 Thermal Information .................................................. 56.5 Power Ratings........................................................... 56.6 Insulation Specifications............................................ 66.7 Safety-Related Certifications..................................... 76.8 Safety Limiting Values .............................................. 76.9 Electrical Characteristics........................................... 76.10 Switching Characteristics ........................................ 96.11 Insulation Characteristics Curves ......................... 106.12 Typical Characteristics .......................................... 11

    7 Detailed Description ............................................ 187.1 Overview ................................................................. 18

    7.2 Functional Block Diagram ....................................... 187.3 Feature Description................................................. 197.4 Device Functional Modes........................................ 21

    8 Application and Implementation ........................ 228.1 Application Information............................................ 228.2 Typical Application .................................................. 228.3 What to Do and What Not to Do ............................. 24

    9 Power Supply Recommendations ...................... 2510 Layout................................................................... 26

    10.1 Layout Guidelines ................................................. 2610.2 Layout Example .................................................... 26

    11 器器件件和和文文档档支支持持 ..................................................... 2711.1 器件支持 ................................................................ 2711.2 文档支持 ............................................................... 2711.3 接收文档更新通知 ................................................. 2711.4 社区资源 ................................................................ 2711.5 商标 ....................................................................... 2711.6 静电放电警告......................................................... 2711.7 Glossary ................................................................ 27

    12 机机械械、、封封装装和和可可订订购购信信息息....................................... 27

    4 修修订订历历史史记记录录注:之前版本的页码可能与当前版本有所不同。

    Changes from Revision B (November 2018) to Revision C Page

    • 已更改 将安全相关认证 “特性” 项目符号中的 VDE 认证从“DIN V VDE V 0884-11 (VDE V 0884-11)”更改为“DIN VDEV 0884-11” .............................................................................................................................................................................. 1

    • Changed VDE certificate format from DIN V VDE V 0884-11 (VDE V 0884-11) to DIN VDE V 0884-11 in DIN VDE V0884-11: 2017-01 header row of Insulation Specifications table ........................................................................................... 6

    • Changed VDE certificate details in Safety-Related Certifications table ................................................................................. 7

    Changes from Revision A (September 2018) to Revision B Page

    • 已更改 将高 CMTI 规格从 140kV/µs(典型值),70kV/µs(最小值) 更改为 80kV/µs(典型值),55kV/µs(最小值)(位于特性 部分)........................................................................................................................................................... 1

    • Changed PSRR specifications in Electrical Characteristics table ......................................................................................... 8• Changed footnote 3 in PSRR parameter from output referred to input referred .................................................................... 8• 已更改 Power-Supply Rejection Ratio vs Ripple Frequency figure...................................................................................... 16• 已更改 CMTI value in 表 1 from 140 kV/µs (typical) to 80 kV/µs (typical)............................................................................ 23

    Changes from Original (June 2018) to Revision A Page

    • 已更改 将器件状态从“预告信息”更改为“生产数据” .................................................................................................................. 1

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cn

  • 1VDD1 8 VDD2

    2INP 7 OUTP

    3INN 6 OUTN

    4GND1 5 GND2

    Not to scale

    3

    AMC1302www.ti.com.cn ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020

    Copyright © 2018–2020, Texas Instruments Incorporated

    5 Pin Configuration and Functions

    DWV Package8-Pin SOICTop View

    Pin FunctionsPIN

    I/O DESCRIPTIONNO. NAME

    1 VDD1 — High-side power supply, 3.0 V to 5.5 V.See the Power Supply Recommendations section for power-supply decoupling recommendations.2 INP I Noninverting analog input3 INN I Inverting analog input4 GND1 — High-side analog ground5 GND2 — Low-side analog ground6 OUTN O Inverting analog output7 OUTP O Noninverting analog output

    8 VDD2 — Low-side power supply, 3.0 V to 5.5 V.See the Power Supply Recommendations section for power-supply decoupling recommendations.

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cn

  • 4

    AMC1302ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020 www.ti.com.cn

    Copyright © 2018–2020, Texas Instruments Incorporated

    (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratingsonly, which do not imply functional operation of the device at these or any other conditions beyond those indicated under RecommendedOperating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

    6 Specifications

    6.1 Absolute Maximum Ratingssee (1)

    MIN MAX UNIT

    Power-supply voltageVDD1 to GND1 –0.3 6.5

    VVDD2 to GND2 –0.3 6.5

    Input voltage INP, INN GND1 – 6 VDD1 + 0.5 VOutput voltage OUTP, OUTN GND2 – 0.5 VDD2 + 0.5 VInput current Continuous, any pin except power-supply pins –10 10 mA

    TemperatureJunction, TJ 150 °CStorage, Tstg –65 150

    (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

    6.2 ESD RatingsVALUE UNIT

    V(ESD) Electrostatic dischargeHuman-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±2000

    VCharged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±1000

    (1) Steady-state voltage supported by the device in case of a system failure. See the specified common-mode input voltage VCM for normaloperation. Observe analog input voltage range as specified in the Absolute Maximum Ratings table.

    6.3 Recommended Operating Conditionsover operating ambient temperature range (unless otherwise noted)

    MIN NOM MAX UNITPOWER SUPPLY

    High-side power supply VDD1 to GND1 3.0 5 5.5 VLow-side power supply VDD2 to GND2 3.0 3.3 5.5 V

    ANALOG INPUTSVClipping Differential input voltage before clipping output VIN = VINP – VINN ±64 mVVFSR Specified linear differential input full-scale VIN = VINP – VINN –50 50 mV

    Absolute common-mode input voltage (1) (VINP + VINN) / 2 to GND1 –2 VDD1 VVCM Operating common-mode input voltage (VINP + VINN) / 2 to GND1 –0.032 VDD1 – 2.2 VTEMPERATURE RANGETA Specified ambient temperature –55 125 °C

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cn

  • 5

    AMC1302www.ti.com.cn ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020

    Copyright © 2018–2020, Texas Instruments Incorporated

    (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics applicationreport.

    6.4 Thermal Information

    THERMAL METRIC (1)AMC1302

    UNITDWV (SOIC)8 PINS

    RθJA Junction-to-ambient thermal resistance 85.4 °C/WRθJC(top) Junction-to-case (top) thermal resistance 26.8 °C/WRθJB Junction-to-board thermal resistance 43.5 °C/WψJT Junction-to-top characterization parameter 4.8 °C/WψJB Junction-to-board characterization parameter 41.2 °C/WRθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W

    6.5 Power RatingsPARAMETER TEST CONDITIONS VALUE UNIT

    PD Maximum power dissipation (both sides)VDD1 = VDD2 = 5.5 V 98.45

    mWVDD1 = VDD2 = 3.6 V 56.52

    PD1 Maximum power dissipation (high-side supply)VDD1 = 5.5 V 53.90

    mWVDD1 = 3.6 V 30.60

    PD2 Maximum power dissipation (low-side supply)VDD2 = 5.5 V 44.55

    mWVDD2 = 3.6 V 25.92

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cnhttp://www.ti.com/cn/lit/pdf/spra953http://www.ti.com/cn/lit/pdf/spra953

  • 6

    AMC1302ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020 www.ti.com.cn

    Copyright © 2018–2020, Texas Instruments Incorporated

    (1) Apply creepage and clearance requirements according to the specific equipment isolation standards of an application. Care must betaken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printedcircuit board (PCB) do not reduce this distance. Creepage and clearance on a PCB become equal in certain cases. Techniques such asinserting grooves, ribs, or both on a PCB are used to help increase these specifications.

    (2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured bymeans of suitable protective circuits.

    (3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.(4) Apparent charge is electrical discharge caused by a partial discharge (pd).(5) All pins on each side of the barrier are tied together, creating a two-pin device.

    6.6 Insulation Specificationsover operating ambient temperature range (unless otherwise noted)

    PARAMETER TEST CONDITIONS VALUE UNITGENERALCLR External clearance (1) Shortest pin-to-pin distance through air ≥ 8.5 mmCPG External creepage (1) Shortest pin-to-pin distance across the package surface ≥ 8.5 mm

    DTI Distance through insulation Minimum internal gap (internal clearance) of the double insulation(2 × 0.0105 mm) ≥ 0.021 mm

    CTI Comparative tracking index DIN EN 60112 (VDE 0303-11); IEC 60112 ≥ 600 VMaterial group According to IEC 60664-1 I

    Overvoltage categoryper IEC 60664-1

    Rated mains voltage ≤ 300 VRMS I-IVRated mains voltage ≤ 600 VRMS I-IVRated mains voltage ≤ 1000 VRMS I-III

    DIN VDE V 0884-11: 2017-01 (2)

    VIORMMaximum repetitive peakisolation voltage At AC voltage 2121 VPK

    VIOWMMaximum-rated isolationworking voltage

    At AC voltage (sine wave); see 图 4 1500 VRMSAt DC voltage 2121 VDC

    VIOTMMaximum transientisolation voltage

    VTEST = VIOTM, t = 60 s (qualification test) 7071 VPKVTEST = 1.2 × VIOTM, t = 1 s (100% production test) 8485

    VIOSMMaximum surgeisolation voltage (3)

    Test method per IEC 60065, 1.2/50-µs waveform,VTEST = 1.6 × VIOSM = 12800 VPK (qualification)

    8000 VPK

    qpd Apparent charge (4)

    Method a, after input/output safety test subgroup 2 / 3,Vini = VIOTM, tini = 60 s, Vpd(m) = 1.2 × VIORM = 2545 VPK, tm = 10 s

    ≤ 5

    pCMethod a, after environmental tests subgroup 1,Vini = VIOTM, tini = 60 s, Vpd(m) = 1.6 × VIORM = 3394 VPK, tm = 10 s≤ 5

    Method b1, at routine test (100% production) and preconditioning (type test),Vini = VIOTM, tini = 1 s, Vpd(m) = 1.875 × VIORM = 3977 VPK, tm = 1 s

    ≤ 5

    CIOBarrier capacitance,input to output (5) VIO = 0.5 VPP at 1 MHz ~1 pF

    RIOInsulation resistance,input to output (5)

    VIO = 500 V at TA = 25°C > 1012

    ΩVIO = 500 V at 100°C ≤ TA ≤ 125°C > 1011

    VIO = 500 V at TS = 150°C > 109

    Pollution degree 2Climatic category 55/125/21

    UL1577

    VISO Withstand isolation voltageVTEST = VISO = 5000 VRMS or 7071 VDC, t = 60 s (qualification),VTEST = 1.2 × VISO = 6000 VRMS, t = 1 s (100% production test)

    5000 VRMS

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cn

  • 7

    AMC1302www.ti.com.cn ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020

    Copyright © 2018–2020, Texas Instruments Incorporated

    6.7 Safety-Related CertificationsVDE UL

    Certified according to DIN VDE V 0884-11: 2017-01, DIN EN 62368-1:2016-05, EN 62368-1: 2014, and IEC 62368-1: 2014

    Recognized under 1577 component recognition andCSA component acceptance NO 5 programs

    Reinforced insulation Single protectionCertificate number: 40040142 File number: E181974

    (1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The ISand PS parameters represent the safety current and safety power, respectively. Do not exceed the maximum limits of IS and PS. Theselimits vary with the ambient temperature, TA.The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board forleaded surface-mount packages. Use these equations to calculate the value for each parameter:TJ = TA + RθJA × P, where P is the power dissipated in the device.TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum junction temperature.PS = IS × VDD1max + IS × VDD2max, where VDD1max is the maximum high-side voltage and VDD2max is the maximum low-side supplyvoltage.

    6.8 Safety Limiting ValuesSafety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.

    PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    ISSafety input, output,or supply current

    RθJA = 85.4°C/W, TJ = 150°C, TA = 25°C,VDD1 = VDD2 = 5.5 V, see 图 2 266

    mARθJA = 85.4°C/W, TJ = 150°C, TA = 25°C,VDD1 = VDD2 = 3.6 V, see 图 2 406

    PSSafety input, output,or total power (1) RθJA = 85.4°C/W, TJ = 150°C, TA = 25°C, see 图 3 1463 mW

    TS Maximum safety temperature 150 °C

    (1) The typical value includes one sigma statistical variation.(2) See 图 47.

    6.9 Electrical Characteristicsminimum and maximum specifications apply from TA = –55°C to +125°C, VDD1 = 3.0 V to 5.5 V, VDD2 = 3.0 V to 5.5 V, INP= –50 mV to +50 mV, and INN = GND1 = 0 V; typical specifications are at TA = 25°C, VDD1 = 5 V, and VDD2 = 3.3 V (unlessotherwise noted)

    PARAMETER TEST CONDITIONS MIN TYP MAX UNITANALOG INPUT

    VCMovCommon-mode overvoltagedetection level (VINP + VINN) / 2 to GND1 VDD1 – 2.1 V

    Hysteresis of common-modeovervoltage detection level 60 mV

    VOS Input offset voltage (1) initial, at TA = 25°C, VINP = VINN = GND1 –100 ±10 100 μVTCVOS Input offset drift (1) –0.8 ±0.15 0.8 µV/°C

    CMRR Common-mode rejectionratiofIN = 0 Hz, VCM min ≤ VCM ≤ VCM max –100 dBfIN = 10 kHz, VCM min ≤ VCM ≤ VCM max –98

    CINSingle-ended inputcapacitance (2) INN = GND1, fIN = 300 kHz 4 pF

    CINDDifferential inputcapacitance (2) fIN = 300 kHz 2 pF

    RINSingle-ended inputresistance (2) INN = GND1 4.75 kΩ

    RINDDifferential inputresistance (2) 4.9 kΩ

    IIB Input bias current INP = INN = GND1; IIB = (IIBP + IIBN) / 2 –48.5 –36 –28.5 μATCIIB Input bias current drift ±1.5 nA/°CIIO Input offset current IIO = IIBP – IIBN ±10 nA

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cn

  • 8

    AMC1302ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020 www.ti.com.cn

    Copyright © 2018–2020, Texas Instruments Incorporated

    Electrical Characteristics (continued)minimum and maximum specifications apply from TA = –55°C to +125°C, VDD1 = 3.0 V to 5.5 V, VDD2 = 3.0 V to 5.5 V, INP= –50 mV to +50 mV, and INN = GND1 = 0 V; typical specifications are at TA = 25°C, VDD1 = 5 V, and VDD2 = 3.3 V (unlessotherwise noted)

    PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    (3) This parameter is input referred.

    ANALOG OUTPUTNominal gain 41

    EG Gain error (1) initial, at TA = 25°C –0.3% ±0.05% 0.3%TCEG Gain error drift (1) –50 ±15 50 ppm/°C

    Nonlinearity (1) –0.03% ±0.01% 0.03%Nonlinearity drift ±1 ppm/°C

    THD Total harmonic distortion VIN = 100 mVPP, fIN = 10 kHz, BW = 100 kHz –85 dBOutput noise VINP = VINN = GND1, BW = 100 kHz 260 μVRMS

    SNR Signal-to-noise ratioVIN = 100 mVPP, fIN = 1 kHz, BW = 10 kHz 80 84 dBVIN = 100 mVPP, fIN = 10 kHz, BW = 100 kHz 70

    PSRR Power-supply rejectionratio (3)

    PSRR vs VDD1, at DC –113

    dBPSRR vs VDD1, 100-mV and 10-kHz ripple –108PSRR vs VDD2, at DC –116PSRR vs VDD2, 100-mV and 10-kHz ripple –87

    VCMoutCommon-mode outputvoltage 1.39 1.44 1.49 V

    VFAILSAFEFailsafe differential outputvoltage VCM > VCMov or VDD1 ≤ VDD1UV –2.6 –2.5 V

    BW Output bandwidth 220 280 kHzROUT Output resistance On OUTP or OUTN < 0.2 Ω

    Output short-circuit current ±14 mA

    CMTI Common-mode transientimmunity |GND1 – GND2| = 1 kV 55 80 kV/µs

    POWER SUPPLY

    VDD1PORVDD1 power on resetthreshold voltage VDD1 falling 1.75 2.15 2.7 V

    IDD1 High-side supply current3.0 V ≤ VDD1 ≤ 3.6 V 6.2 8.5

    mA4.5 V ≤ VDD1 ≤ 5.5 V 7.2 9.8

    IDD2 Low-side supply current3.0 V ≤ VDD2 ≤ 3.6 V 5.3 7.2

    mA4.5 V ≤ VDD2 ≤ 5.5 V 5.9 8.1

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cn

  • VINP - VINN

    VOUTP

    VOUTN

    50% - 10%

    0.05 V

    0 V

    50%

    50% - 50% 50% - 90%

    10% 50%

    tr tf

    VCMout 90%

    9

    AMC1302www.ti.com.cn ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020

    版权 © 2018–2020, Texas Instruments Incorporated

    6.10 Switching Characteristicsover operating ambient temperature range (unless otherwise noted)

    PARAMETER TEST CONDITIONS MIN TYP MAX UNITtr Rise time of OUTP, OUTN See 图 1 1.3 µstf Fall time of OUTP, OUTN See 图 1 1.3 µs

    INP, INN to OUTP, OUTN signaldelay (50% – 10%) Unfiltered output, see 图 1 1.0 1.5 µs

    INP, INN to OUTP, OUTN signaldelay (50% – 50%) Unfiltered output, see 图 1 1.6 2.1 µs

    INP, INN to OUTP, OUTN signaldelay (50% – 90%) Unfiltered output, see 图 1 2.5 3.0 µs

    tAS Analog startup timeVDD1 step to 3.0 V with VDD2 ≥ 3.0 V,to OUTP, OUTN valid, 0.1% settling 500 µs

    图图 1. Rise, Fall, and Delay Time Waveforms

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cn

  • Stress Voltage (VRMS)

    Tim

    e to

    Fa

    il (s

    )

    500 1500 2500 3500 4500 5500 6500 7500 8500 95001.E+1

    1.E+2

    1.E+3

    1.E+4

    1.E+5

    1.E+6

    1.E+7

    1.E+8

    1.E+9

    1.E+10

    1.E+11Safety Margin Zone: 1800 VRMS, 254 Years

    Operating Zone: 1500 VRMS, 135 Years

    20%

    87.5% TDDB Line (

  • VDDx (V)

    VO

    S (P

    V)

    3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.5-100

    -75

    -50

    -25

    0

    25

    50

    75

    100

    D007

    vs VDD1vs VDD2

    Temperature (°C)

    VO

    S (P

    V)

    -55 -40 -25 -10 5 20 35 50 65 80 95 110 125-100

    -75

    -50

    -25

    0

    25

    50

    75

    100

    D009

    Device 1Device 2Device 3

    VOS (PV)

    De

    vic

    es (

    %)

    0

    10

    20

    30

    40

    50

    -10

    0

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10 0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    10

    0

    D005 VOS (PV)

    De

    vic

    es (

    %)

    0

    10

    20

    30

    40

    50

    -10

    0

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10 0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    10

    0

    D006

    VDD1 (V)

    VC

    Mo

    v (

    V)

    3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.51

    1.4

    1.8

    2.2

    2.6

    3

    3.4

    3.8

    D003Temperature (qC)

    VC

    Mo

    v (

    V)

    -55 -40 -25 -10 5 20 35 50 65 80 95 110 1252.9

    2.95

    3

    3.05

    3.1

    3.15

    3.2

    3.25

    3.3

    D004

    11

    AMC1302www.ti.com.cn ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020

    版权 © 2018–2020, Texas Instruments Incorporated

    6.12 Typical Characteristicsat TA = 25°C, VDD1 = 5 V, VDD2 = 3.3 V, VINP = –50 mV to 50 mV, VINN = GND1, and fIN = 10 kHz (unless otherwisenoted)

    图图 5. Common-Mode Overvoltage Detection Levelvs High-Side Supply Voltage

    图图 6. Common-Mode Overvoltage Detection Levelvs Temperature

    VDD1 = 3.3 V

    图图 7. Input Offset Voltage Histogram

    VDD1 = 5 V

    图图 8. Input Offset Voltage Histogram

    图图 9. Input Offset Voltage vs Supply Voltage 图图 10. Input Offset Voltage vs Temperature

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cn

  • VCM (V)

    I IB (P

    A)

    -0.5 0 0.5 1 1.5 2 2.5 3 3.5-80

    -60

    -40

    -20

    0

    20

    40

    60

    D014VDD1 (V)

    I IB (P

    A)

    3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.5-45

    -43

    -41

    -39

    -37

    -35

    -33

    -31

    -29

    -27

    D015

    fIN (kHz)

    CM

    RR

    (d

    B)

    0.001 0.01 0.1 1 10 100 1000-120

    -100

    -80

    -60

    -40

    -20

    0

    D012Temperature (°C)

    CM

    RR

    (d

    B)

    -55 -40 -25 -10 5 20 35 50 65 80 95 110 125-115

    -110

    -105

    -100

    -95

    -90

    -85

    -80

    -75

    D013

    TCVOS (PV/qC)

    De

    vic

    es (

    %)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    -0.8

    -0.7

    -0.6

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1 0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    D010 TCVOS (PV/qC)

    Devic

    es (

    %)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    -0.8

    -0.7

    -0.6

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1 0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    D011

    12

    AMC1302ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020 www.ti.com.cn

    版权 © 2018–2020, Texas Instruments Incorporated

    Typical Characteristics (接接下下页页)at TA = 25°C, VDD1 = 5 V, VDD2 = 3.3 V, VINP = –50 mV to 50 mV, VINN = GND1, and fIN = 10 kHz (unless otherwisenoted)

    VDD1 = 3.3 V

    图图 11. Input Offset Drift Histogram

    VDD1 = 5 V

    图图 12. Input Offset Drift Histogram

    图图 13. Common-Mode Rejection Ratiovs Input Frequency

    图图 14. Common-Mode Rejection Ratiovs Temperature

    图图 15. Input Bias Currentvs Common-Mode Input Voltage

    图图 16. Input Bias Currentvs High-Side Supply Voltage

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cn

  • Temperature (°C)

    EG

    (%

    )

    -55 -40 -25 -10 5 20 35 50 65 80 95 110 125-0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    D020

    Device 1Device 2Device 3

    TCEG (ppm/qC)

    Devic

    es (

    %)

    0

    5

    10

    15

    20

    25

    30

    35

    40

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10 -5 5 10

    15

    20

    25

    30

    35

    40

    45

    D021

    VDDx (V)

    EG

    (%

    )

    3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.5-0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    D019

    vs VDD1vs VDD2

    EG (%)

    De

    vic

    es (

    %)

    0

    10

    20

    30

    40

    50

    -0.3

    -0.2

    5

    -0.2

    -0.1

    5

    -0.1

    -0.0

    5 0

    0.0

    5

    0.1

    0.1

    5

    0.2

    0.2

    5

    0.3

    D018

    Temperature (°C)

    I IB (P

    A)

    -55 -40 -25 -10 5 20 35 50 65 80 95 110 125-45

    -43

    -41

    -39

    -37

    -35

    -33

    -31

    -29

    -27

    D016 EG (%)

    Devic

    es (

    %)

    0

    10

    20

    30

    40

    50

    -0.3

    -0.2

    5

    -0.2

    -0.1

    5

    -0.1

    -0.0

    5 0

    0.0

    5

    0.1

    0.1

    5

    0.2

    0.2

    5

    0.3

    D017

    13

    AMC1302www.ti.com.cn ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020

    版权 © 2018–2020, Texas Instruments Incorporated

    Typical Characteristics (接接下下页页)at TA = 25°C, VDD1 = 5 V, VDD2 = 3.3 V, VINP = –50 mV to 50 mV, VINN = GND1, and fIN = 10 kHz (unless otherwisenoted)

    图图 17. Input Bias Current vs Temperature

    VDD2 = 3.3 V

    图图 18. Gain Error Histogram

    VDD2 = 5 V

    图图 19. Gain Error Histogram 图图 20. Gain Error vs Supply Voltage

    图图 21. Gain Error vs Temperature

    VDD1 = 3.3 V

    图图 22. Gain Error Drift Histogram

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cn

  • Differential Input Voltage (mV)

    No

    nlin

    ea

    rity

    (%

    )

    -50 -40 -30 -20 -10 0 10 20 30 40 50-0.03

    -0.02

    -0.01

    0

    0.01

    0.02

    0.03

    D026VDDx (V)

    No

    nlin

    ea

    rity

    (%

    )

    3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.5-0.03

    -0.02

    -0.01

    0

    0.01

    0.02

    0.03

    D027

    vs VDD1vs VDD2

    fIN (kHz)

    Outp

    ut P

    hase

    0.01 0.1 1 10 100 1000-360°

    -315°

    -270°

    -225°

    -180°

    -135°

    -90°

    -45°

    D024Differential Input Voltage (mV)

    VO

    UT (

    V)

    -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 700

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    D025

    VOUTNVOUTP

    fIN (kHz)

    Norm

    aliz

    ed G

    ain

    (d

    B)

    0.01 0.1 1 10 100 1000-40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    D023TCEG (ppm/qC)

    De

    vic

    es (

    %)

    0

    5

    10

    15

    20

    25

    30

    35

    40

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10 -5 5 10

    15

    20

    25

    30

    35

    40

    D022

    14

    AMC1302ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020 www.ti.com.cn

    版权 © 2018–2020, Texas Instruments Incorporated

    Typical Characteristics (接接下下页页)at TA = 25°C, VDD1 = 5 V, VDD2 = 3.3 V, VINP = –50 mV to 50 mV, VINN = GND1, and fIN = 10 kHz (unless otherwisenoted)

    VDD1 = 5 V

    图图 23. Gain Error Drift Histogram 图图 24. Normalized Gain vs Input Frequency

    图图 25. Output Phase vs Input Frequency 图图 26. Output Voltage vs Input Voltage

    图图 27. Nonlinearity vs Input Voltage 图图 28. Nonlinearity vs Supply Voltage

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cn

  • |VINP - VINN| (mV)

    SN

    R (

    dB

    )

    0 5 10 15 20 25 30 35 40 45 50 5530

    35

    40

    45

    50

    55

    60

    65

    70

    75

    D032VDDx (V)

    SN

    R (

    dB

    )

    3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.565

    66

    67

    68

    69

    70

    71

    72

    73

    74

    75

    D033

    vs VDD1vs VDD2

    Temperature (°C)

    TH

    D (

    dB

    )

    -55 -40 -25 -10 5 20 35 50 65 80 95 110 125-100

    -95

    -90

    -85

    -80

    -75

    -70

    D030

    Device 1Device 2Device 3

    Frequency (kHz)

    Nois

    e D

    ensity (P

    V/

    Hz)

    0.1 1 10 100 10000.1

    1

    10

    D031

    Temperature (°C)

    No

    nlin

    ea

    rity

    (%

    )

    -55 -40 -25 -10 5 20 35 50 65 80 95 110 125-0.03

    -0.02

    -0.01

    0

    0.01

    0.02

    0.03

    D028

    Device 1Device 2Device 3

    VDDx (V)

    TH

    D (

    dB

    )

    3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.5-100

    -95

    -90

    -85

    -80

    -75

    -70

    D029

    vs VDD1vs VDD2

    15

    AMC1302www.ti.com.cn ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020

    版权 © 2018–2020, Texas Instruments Incorporated

    Typical Characteristics (接接下下页页)at TA = 25°C, VDD1 = 5 V, VDD2 = 3.3 V, VINP = –50 mV to 50 mV, VINN = GND1, and fIN = 10 kHz (unless otherwisenoted)

    图图 29. Nonlinearity vs Temperature 图图 30. Total Harmonic Distortion vs Supply Voltage

    图图 31. Total Harmonic Distortion vs Temperature 图图 32. Output Noise Density vs Frequency

    图图 33. Signal-to-Noise Ratio vs Input Voltage 图图 34. Signal-to-Noise Ratio vs Supply Voltage

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cn

  • VDD2 (V)

    BW

    (kH

    z)

    3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.5240

    250

    260

    270

    280

    290

    300

    310

    320

    D038Temperature (°C)

    BW

    (kH

    z)

    -55 -40 -25 -10 5 20 35 50 65 80 95 110 125240

    250

    260

    270

    280

    290

    300

    310

    320

    D039

    VDD2 (V)

    VC

    Mo

    ut (V

    )

    3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.51.39

    1.4

    1.41

    1.42

    1.43

    1.44

    1.45

    1.46

    1.47

    1.48

    1.49

    D036Temperature (°C)

    VC

    Mo

    ut (V

    )

    -55 -40 -25 -10 5 20 35 50 65 80 95 110 1251.39

    1.4

    1.41

    1.42

    1.43

    1.44

    1.45

    1.46

    1.47

    1.48

    1.49

    D037

    Temperature (°C)

    SN

    R (

    dB

    )

    -55 -40 -25 -10 5 20 35 50 65 80 95 110 12565

    66

    67

    68

    69

    70

    71

    72

    73

    74

    75

    D034

    Device 1Device 2Device 3

    Ripple Frequency (kHz)

    PS

    RR

    (d

    B)

    0.001 0.01 0.1 1 10 100 1000-120

    -100

    -80

    -60

    -40

    -20

    0

    20

    D035

    vs VDD2vs VDD1

    16

    AMC1302ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020 www.ti.com.cn

    版权 © 2018–2020, Texas Instruments Incorporated

    Typical Characteristics (接接下下页页)at TA = 25°C, VDD1 = 5 V, VDD2 = 3.3 V, VINP = –50 mV to 50 mV, VINN = GND1, and fIN = 10 kHz (unless otherwisenoted)

    图图 35. Signal-to-Noise Ratio vs Temperature 图图 36. Power-Supply Rejection Ratiovs Ripple Frequency

    图图 37. Output Common-Mode Voltagevs Low-Side Supply Voltage

    图图 38. Output Common-Mode Voltage vs Temperature

    图图 39. Output Bandwidth vs Low-Side Supply Voltage 图图 40. Output Bandwidth vs Temperature

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cn

  • VDD2 (V)

    Sig

    nal D

    ela

    y (P

    s)

    3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.50.2

    0.6

    1

    1.4

    1.8

    2.2

    2.6

    3

    3.4

    3.8

    D044

    50% - 90%50% - 50%50% - 10%

    Temperature (°C)

    Sig

    na

    l D

    ela

    y (P

    s)

    -55 -40 -25 -10 5 20 35 50 65 80 95 110 1250.2

    0.6

    1

    1.4

    1.8

    2.2

    2.6

    3

    3.4

    3.8

    D045

    50% - 90%50% - 50%50% - 10%

    VDD2 (V)

    t r / t

    f (P

    s)

    3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.50.2

    0.6

    1

    1.4

    1.8

    2.2

    2.6

    3

    3.4

    3.8

    D042Temperature (°C)

    t r/t

    f (P

    s)

    -55 -40 -25 -10 5 20 35 50 65 80 95 110 1250.2

    0.6

    1

    1.4

    1.8

    2.2

    2.6

    3

    3.4

    3.8

    D043

    VDDx (V)

    IDD

    x (

    mA

    )

    3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.53.5

    4

    4.5

    5

    5.5

    6

    6.5

    7

    7.5

    8

    8.5

    D040

    IDD1 vs VDD1IDD2 vs VDD2

    Temperature (°C)

    IDD

    x (

    mA

    )

    -55 -40 -25 -10 5 20 35 50 65 80 95 110 1253.5

    4

    4.5

    5

    5.5

    6

    6.5

    7

    7.5

    8

    8.5

    D041

    IDD1 at VDD1 = 5 VIDD1 at VDD1 = 3.3 VIDD2 at VDD2 = 5 VIDD2 at VDD2 = 3.3 V

    17

    AMC1302www.ti.com.cn ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020

    版权 © 2018–2020, Texas Instruments Incorporated

    Typical Characteristics (接接下下页页)at TA = 25°C, VDD1 = 5 V, VDD2 = 3.3 V, VINP = –50 mV to 50 mV, VINN = GND1, and fIN = 10 kHz (unless otherwisenoted)

    图图 41. Supply Current vs Supply Voltage 图图 42. Supply Current vs Temperature

    图图 43. Output Rise and Fall Timevs Low-Side Supply Voltage

    图图 44. Output Rise and Fall Time vs Temperature

    图图 45. VIN to VOUT Signal Delayvs Low-Side Supply Voltage

    图图 46. VIN to VOUT Signal Delay vs Temperature

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cn

  • TX

    Retiming and

    4th order

    active

    low-pass filter

    û�-Modulator

    Bandgap

    Reference

    OUTP

    OUTN

    GND1

    AMC1302

    RX

    RX TX

    Data

    CLK

    VDD2

    GND2

    Bandgap

    Reference

    Oscillator

    INP

    INN

    Reinforced

    Isolation

    Barrier

    VCM

    Diagnostic

    VDD1

    VDD1

    Detection

    18

    AMC1302ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020 www.ti.com.cn

    版权 © 2018–2020, Texas Instruments Incorporated

    7 Detailed Description

    7.1 OverviewThe AMC1302 is a fully-differential, precision, isolated amplifier. The input stage of the device consists of a fully-differential amplifier that drives a second-order, delta-sigma (ΔΣ) modulator. The modulator uses the internalvoltage reference and clock generator to convert the analog input signal to a digital bitstream. The drivers (calledTX in the Functional Block Diagram) transfer the output of the modulator across the isolation barrier thatseparates the high-side and low-side voltage domains. The received bitstream and clock are synchronized andprocessed by a fourth-order analog filter on the low-side and presented as a differential output of the device.

    The SiO2-based, double-capacitive isolation barrier supports a high level of magnetic field immunity, as describedin ISO72x Digital Isolator Magnetic-Field Immunity. The digital modulation used in the AMC1302 (see also theIsolation Channel Signal Transmission section for more details) and the isolation barrier characteristics result inhigh reliability and common-mode transient immunity.

    7.2 Functional Block Diagram

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cnhttp://www.ti.com/cn/lit/pdf/slla181

  • GND1

    INP

    VDD14 pF

    VCMop = 2 V

    INN

    4 pF to VCMOvervoltage

    monitor

    100 N�

    100 N�

    16 pF

    50 k

    2.5 N� 50 N�

    2.5 k

    GND1

    VDD1

    VDD1

    19

    AMC1302www.ti.com.cn ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020

    版权 © 2018–2020, Texas Instruments Incorporated

    7.3 Feature Description

    7.3.1 Analog InputThe differential amplifier input stage of the AMC1302 feeds a second-order, switched-capacitor, feed-forward ΔΣmodulator. The modulator converts the analog signal into a bitstream that is transferred over the isolation barrier,as described in the Isolation Channel Signal Transmission section.

    图 47 depicts the equivalent input structure of the AMC1302 with the relevant components. The total gain of thedevice results from a combination of the gain of the fully-differential input amplifier and the gain of the activeoutput filter.

    图图 47. Equivalent Analog Input Circuit

    There are two restrictions on the analog input signals (INP and INN). First, if the input voltage exceeds the rangeGND1 – 6 V to VDD1 + 0.5 V, the input current must be limited to 10 mA because the device input electrostaticdischarge (ESD) diodes turn on. In addition, the linearity and noise performance of the device are ensured onlywhen the analog input voltage remains within the specified linear full-scale range (VFSR) and within the specifiedcommon-mode input voltage range (VCM); see the Recommended Operating Conditions table for detailedspecifications.

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cn

  • TX IN

    Carrier Signal Across

    the Isolation Barrier

    RX OUT

    TX IN

    Oscillator

    OOK

    Modulation

    Transmitter

    TX Signal

    Conditioning

    Envelope

    Detection

    RX Signal

    Conditioning

    Receiver

    RX OUT

    SiO2-Based

    Capacitive

    Reinforced

    Isolation

    Barrier

    20

    AMC1302ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020 www.ti.com.cn

    版权 © 2018–2020, Texas Instruments Incorporated

    Feature Description (接接下下页页)7.3.2 Isolation Channel Signal TransmissionThe AMC1302 uses an on-off keying (OOK) modulation scheme to transmit the modulator output bitstreamacross the SiO2-based isolation barrier. As shown in 图 48, the transmitter modulates the bitstream at TX IN withan internally-generated, high-frequency carrier across the isolation barrier to represent a digital one and does notsend a signal to represent the digital zero. The nominal frequency of the carrier used inside the AMC1302 is 480MHz.

    The receiver demodulates the signal after advanced signal conditioning and produces the output. The AMC1302also incorporates advanced circuit techniques to maximize the CMTI performance and minimize the radiatedemissions caused by the high-frequency carrier and IO buffer switching.

    图图 48. Block Diagram of an Isolation Channel

    图 49 shows the concept of the OOK scheme.

    图图 49. OOK-Based Modulation Scheme

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cn

  • 21

    AMC1302www.ti.com.cn ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020

    版权 © 2018–2020, Texas Instruments Incorporated

    Feature Description (接接下下页页)7.3.3 Fail-Safe OutputThe AMC1302 offers a fail-safe output that simplifies diagnostics on a system level. The fail-safe output is activein two cases:• When the high-side supply VDD1 of the AMC1302 is missing, or• When the common-mode input voltage, that is VCM = (VINP + VINN) / 2, exceeds the minimum common-mode

    overvoltage detection level VCMov of VDD1 – 2 V

    图 50 and 图 51 show the fail-safe output of the AMC1302 as a negative differential output voltage value thatdoes not occur under normal device operation. Use the VFAILSAFE voltage specified in the ElectricalCharacteristics table as a reference value for the fail-safe detection on a system level.

    图图 50. Typical Negative Clipping Output of the AMC1302 图图 51. Typical Failsafe Output of the AMC1302

    7.4 Device Functional ModesThe AMC1302 is operational when the power supplies VDD1 and VDD2 are applied, as specified in theRecommended Operating Conditions table. The device does not require any specific power-supply sequence.Consider the analog startup time tAS as defined in the Switching Characteristics table when the high-side powersupply VDD1 powers up with the low-side power supply VDD2 already operating in the specified range.

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cn

  • +VBUS

    L1

    L2

    L3

    Motor

    VOUTP

    VOUTN

    VDD2

    GND2GND1

    SHTDN

    VIN

    VDD1

    AMC1311B3.3 V 3.3 V

    -VBUS

    OUTP

    OUTN

    VDD2

    GND2GND1

    INN

    INP

    VDD1

    AMC13023.3 V 3.3 V

    Analog

    Filterto ADC

    RFLT

    RFLT

    CFLT

    OUTP

    OUTN

    VDD2

    GND2GND1

    INN

    INP

    VDD1

    AMC13023.3 V 3.3 V

    Analog

    Filterto ADC

    RFLT

    RFLT

    CFLT

    RSHUNT

    RSHUNT

    OUTP

    OUTN

    VDD2

    GND2GND1

    INN

    INP

    VDD1

    AMC13023.3 V 3.3 V

    Analog

    Filterto ADC

    RFLT

    RFLT

    CFLT

    RSHUNT

    RFLT

    CFLTAnalog

    Filterto ADC

    22

    AMC1302ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020 www.ti.com.cn

    版权 © 2018–2020, Texas Instruments Incorporated

    8 Application and Implementation

    注注Information in the following applications sections is not part of the TI componentspecification, and TI does not warrant its accuracy or completeness. TI’s customers areresponsible for determining suitability of components for their purposes. Customers shouldvalidate and test their design implementation to confirm system functionality.

    8.1 Application InformationThe low input voltage range, very low nonlinearity, and temperature drift make the AMC1302 a high-performancesolution for industrial applications where low-power dissipation, shunt-based current sensing with high common-mode voltage levels is required.

    8.2 Typical ApplicationIsolated amplifiers are widely used in frequency inverters that are critical parts of industrial motor drives,photovoltaic inverters, uninterruptible power supplies, and other industrial applications. The input structure of theAMC1302 is optimized for use with very low-value shunt resistors in current-sensing applications.

    图 52 shows a typical operation of the AMC1302 for current sensing in a frequency inverter application. Phasecurrent measurement is accomplished through the shunt resistors, RSHUNT (in this case, a two-pin shunt). Thedifferential input and the high common-mode transient immunity of the AMC1302 ensure reliable and accurateoperation even in high-noise environments (such as the power stage of the motor drive). The high-impedanceinput and wide input voltage range make the AMC1311 suitable for DC bus voltage sensing.

    图图 52. Using the AMC1302 for Current Sensing in Frequency Inverters

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cnhttp://www.ti.com/product/AMC1311

  • AMC1302

    GND2

    TLV6001

    +

    ±

    VDD1

    INP

    INN

    GND1

    VDD2

    OUTP

    OUTN

    GND2

    VCMADC

    To ADC

    23

    AMC1302www.ti.com.cn ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020

    版权 © 2018–2020, Texas Instruments Incorporated

    Typical Application (接接下下页页)8.2.1 Design Requirements表 1 lists the parameters for this typical application.

    表表 1. Design RequirementsPARAMETER VALUE

    High-side supply voltage 3.3 V or 5 VLow-side supply voltage 3.3 V or 5 V

    Voltage drop across the shunt for a linear response ±50 mV (maximum)Signal delay (90% settling) 3 µs (maximum)

    High common-mode transient immunity (CMTI) 80 kV/µs (typical)

    8.2.2 Detailed Design ProcedureThe high-side power supply (VDD1) for the AMC1302 is derived from the power supply of the upper gate driver.Further details are provided in the Power Supply Recommendations section.

    The floating ground reference (GND1) is derived from one of the ends of the shunt resistor that is connected tothe negative input of the AMC1302 (INN). If a four-pin shunt is used, the inputs of the AMC1302 device areconnected to the inner leads and GND1 is connected to one of the outer shunt leads.

    Use Ohm's Law to calculate the voltage drop across the shunt resistor (VSHUNT) for the desired measuredcurrent: VSHUNT = I × RSHUNT.

    Consider the following two restrictions to choose the proper value of the shunt resistor RSHUNT:• The voltage drop caused by the nominal current range must not exceed the recommended differential input

    voltage range: VSHUNT ≤ ± 50 mV• The voltage drop caused by the maximum allowed overcurrent must not exceed the input voltage that causes

    a clipping output: VSHUNT ≤ VClippingFor systems using single-ended input ADCs, 图 53 shows an example of a TLV6001-based signal conversionand filter circuit as used on the AMC1302EVM, where VCMADC is the common-mode input voltage of the ADC.Tailor the bandwidth of this filter stage to the bandwidth requirement of the system and use NP0-type capacitorsfor best performance.

    图图 53. Connecting the AMC1302 Output to Single-Ended Input ADC

    For more information on the general procedure to design the filtering and driving stages of SAR ADCs, see 18-Bit, 1MSPS Data Acquisition Block (DAQ) Optimized for Lowest Distortion and Noise and 18-Bit Data AcquisitionBlock (DAQ) Optimized for Lowest Power, available for download at www.ti.com.

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cnhttp://www.ti.com/cn/lit/pdf/SBOS779http://www.ti.com/tool/amc1302evmhttp://www.ti.com/cn/lit/pdf/SLAU515http://www.ti.com/cn/lit/pdf/SLAU515http://www.ti.com/cn/lit/pdf/SLAU513http://www.ti.com/cn/lit/pdf/SLAU513http://www.ti.com/

  • Differential Input Voltage (mV)

    No

    nlin

    ea

    rity

    (%

    )

    -50 -40 -30 -20 -10 0 10 20 30 40 50-0.03

    -0.02

    -0.01

    0

    0.01

    0.02

    0.03

    D026

    VOUTN

    VIN

    VOUTP

    24

    AMC1302ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020 www.ti.com.cn

    版权 © 2018–2020, Texas Instruments Incorporated

    8.2.3 Application CurvesIn frequency inverter applications, the power switches must be protected in case of an overcurrent condition. Toallow for fast powering off of the system, a low delay caused by the isolated amplifier is required. 图 54 showsthe typical full-scale step response of the AMC1302. Consider the delay of the required window comparator andthe MCU to calculate the overall response time of the system.

    图图 54. Step Response of the AMC1302

    The high linearity and low temperature drift of the offset and gain errors of the AMC1302 (see the TypicalCharacteristics section) allows design of motor drives with low torque ripple.

    图图 55. Typical Nonlinearity of the AMC1302

    8.3 What to Do and What Not to DoDo not leave the inputs of the AMC1302 unconnected (floating) when the device is powered up. If both deviceinputs are left floating, the input bias current drives these inputs to the output common-mode of the analog front-end of approximately 2 V. If the high-side supply voltage VDD1 is below 4 V, the internal common-modeovervoltage detector turns on and the output functions as described in the Fail-Safe Output section, which maylead to an undesired reaction on the system level.

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cn

  • OUTP

    OUTN

    VDD2

    GND2GND1

    INP

    INN

    VDD1

    AMC1302

    HV+

    HV-

    to Load

    Floating

    Power Supply

    15 V

    3.3 V or

    5.0 V

    RSHUNT

    5.1 V

    R1

    800 �

    Z1

    1N751A

    C2

    2.2 �F C1

    0.1 �F

    C3

    0.1 �F C4

    2.2 �F

    ADS7263

    14-Bit ADC

    Gate Driver

    Gate DriverR

    ein

    forc

    ed

    Iso

    latio

    n

    CFLT RFLT

    RFLT

    25

    AMC1302www.ti.com.cn ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020

    版权 © 2018–2020, Texas Instruments Incorporated

    9 Power Supply RecommendationsIn a typical frequency inverter application, the high-side power supply (VDD1) for the device is derived from thefloating power supply of the upper gate driver. For lowest system-level cost, a Zener diode can be used to limitthe voltage to 5 V or 3.3 V ± 10%. Alternatively, a low-cost low-dropout (LDO) regulator (for example, the LM317-N) may be used to minimize noise on the power supply. TI recommends a low-ESR decoupling capacitor of0.1 µF to filter this power-supply path. Place this capacitor (C1 in 图 56) as close as possible to the VDD1 pin ofthe AMC1302 for best performance. Use an additional 2.2-µF decoupling capacitor (C2) for filtering lower-frequency noise. The floating ground reference (GND1) is derived from the end of the shunt resistor, which isconnected to the negative input (INN) of the device. If a four-pin shunt is used, the device inputs are connectedto the inner leads, and GND1 is connected to one of the outer leads of the shunt.

    To decouple the digital power supply on the controller side, use a 0.1-µF capacitor (C3) placed as close to theVDD2 pin of the AMC1302 as possible, followed by an additional capacitor from 1 µF to 10 µF (C4).

    图图 56. Zener-Diode-Based, High-Side Power Supply

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cnhttp://www.ti.com/product/LP2951-Q1http://www.ti.com/product/LP2951-Q1

  • To Filteror ADC

    Clearance area,to be kept free of any conductive materials.

    AMC1302

    OUTN

    GND2

    OUTP

    VDD2

    0.1 µF

    SMD0603

    LEGEND

    Copper Pour and Traces

    High-Side Area

    Low-Side Area

    Via to Ground Plane

    Via to Supply Plane

    2.2 µF

    SMD0603

    INP

    INN

    GND1

    To Floating Power Supply

    Sh

    un

    t R

    es

    isto

    r

    VDD1

    0.1 µF

    SMD0603

    2.2 µF

    SMD0603

    CFLT

    SMD0603

    RFLTSMD0603

    RFLTSMD0603

    26

    AMC1302ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020 www.ti.com.cn

    版权 © 2018–2020, Texas Instruments Incorporated

    10 Layout

    10.1 Layout Guidelines图 57 shows a layout recommendation with the critical placement of the decoupling capacitors (as close aspossible to the AMC1302 supply pins) and placement of the other components required by the device. For bestperformance, place the shunt resistor close to the INP and INN inputs of the AMC1302 and keep the layout ofboth connections symmetrical.

    10.2 Layout Example

    图图 57. Recommended Layout of the AMC1302

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cn

  • 27

    AMC1302www.ti.com.cn ZHCSIF3C –JUNE 2018–REVISED JANUARY 2020

    版权 © 2018–2020, Texas Instruments Incorporated

    11 器器件件和和文文档档支支持持

    11.1 器器件件支支持持

    11.1.1 器器件件命命名名规规则则德州仪器 (TI),《隔离相关术语》应用报告

    11.2 文文档档支支持持

    11.2.1 相相关关文文档档请参阅如下相关文档:

    • 德州仪器 (TI),《双通道、1MSPS、16/14/12 位、4×2 或 2×2 通道同步采样模数转换器》 数据表• 德州仪器 (TI),《半导体和 IC 封装热指标》 应用报告• 德州仪器 (TI),《ISO72x 数字隔离器磁场抗扰度》 应用报告• 德州仪器 (TI),《AMC1311x 高阻抗 2V 输入增强型隔离式放大器》 数据表• 德州仪器 (TI),《适用于成本敏感型系统的 TLV600x 低功耗、轨至轨输入/输出、1MHz 运算放大器》 数据表• 德州仪器 (TI),《LM117、LM317-N 宽温度范围三引脚可调稳压器》 数据表• 德州仪器 (TI),《AMC130x 评估模块》 用户指南• 德州仪器 (TI),《经优化可实现最低失真和噪声的 18 位、1MSPS 数据采集块 (DAQ)》 用户指南• 德州仪器 (TI),《经优化可实现最低功耗的 18 位、1MSPS 数据采集块 (DAQ)》 用户指南• 德州仪器 (TI),《适用于隔离式电源的 SN6501 变压器驱动器》 数据表

    11.3 接接收收文文档档更更新新通通知知要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

    11.4 社社区区资资源源TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straightfrom the experts. Search existing answers or ask your own question to get the quick design help you need.

    Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and donot necessarily reflect TI's views; see TI's Terms of Use.

    11.5 商商标标E2E is a trademark of Texas Instruments.All other trademarks are the property of their respective owners.

    11.6 静静电电放放电电警警告告ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可能会损坏集成电路。

    ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

    11.7 GlossarySLYZ022 — TI Glossary.

    This glossary lists and explains terms, acronyms, and definitions.

    12 机机械械、、封封装装和和可可订订购购信信息息以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。

    http://www.ti.com.cn/product/cn/amc1302?qgpn=amc1302http://www.ti.com.cnhttp://www.ti.com/cn/lit/pdf/SLLA353http://www.ti.com/cn/lit/pdf/SBAS523http://www.ti.com/cn/lit/pdf/spra953http://www.ti.com/cn/lit/pdf/SLLA181http://www.ti.com/cn/lit/pdf/SBAS786http://www.ti.com/cn/lit/pdf/SBOS779http://www.ti.com/cn/lit/pdf/SNVS774http://www.ti.com/cn/lit/pdf/SBAU256http://www.ti.com/cn/lit/pdf/SLAU515http://www.ti.com/cn/lit/pdf/SLAU513http://www.ti.com/cn/lit/pdf/SLLSEA0http://e2e.ti.comhttp://www.ti.com/corp/docs/legal/termsofuse.shtmlhttp://www.ti.com/cn/lit/pdf/SLYZ022

  • 重重要要声声明明和和免免责责声声明明

    TI 均以“原样”提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

    所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE

    邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122Copyright © 2020 德州仪器半导体技术(上海)有限公司

    http://www.ti.com.cn/zh-cn/legal/termsofsale.htmlhttp://www.ti.com.cn

  • PACKAGE OPTION ADDENDUM

    www.ti.com 10-Dec-2020

    Addendum-Page 1

    PACKAGING INFORMATION

    Orderable Device Status(1)

    Package Type PackageDrawing

    Pins PackageQty

    Eco Plan(2)

    Lead finish/Ball material

    (6)

    MSL Peak Temp(3)

    Op Temp (°C) Device Marking(4/5)

    Samples

    AMC1302DWV ACTIVE SOIC DWV 8 64 RoHS & Green NIPDAU Level-3-260C-168 HR -55 to 125 AMC1302

    AMC1302DWVR ACTIVE SOIC DWV 8 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -55 to 125 AMC1302

    (1) The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.

    (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substancedo not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI mayreference these types of products as "Pb-Free".RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of

  • PACKAGE OPTION ADDENDUM

    www.ti.com 10-Dec-2020

    Addendum-Page 2

  • TAPE AND REEL INFORMATION

    *All dimensions are nominal

    Device PackageType

    PackageDrawing

    Pins SPQ ReelDiameter

    (mm)

    ReelWidth

    W1 (mm)

    A0(mm)

    B0(mm)

    K0(mm)

    P1(mm)

    W(mm)

    Pin1Quadrant

    AMC1302DWVR SOIC DWV 8 1000 330.0 16.4 12.05 6.15 3.3 16.0 16.0 Q1

    PACKAGE MATERIALS INFORMATION

    www.ti.com 6-Jan-2020

    Pack Materials-Page 1

  • *All dimensions are nominal

    Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)

    AMC1302DWVR SOIC DWV 8 1000 350.0 350.0 43.0

    PACKAGE MATERIALS INFORMATION

    www.ti.com 6-Jan-2020

    Pack Materials-Page 2

  • www.ti.com

    PACKAGE OUTLINE

    C

    TYP11.5 0.25

    2.8 MAX

    TYP0.330.13

    0 -8

    6X 1.27

    8X 0.510.31

    2X3.81

    0.460.36

    1.00.5

    0.25GAGE PLANE

    A

    NOTE 3

    5.955.75

    BNOTE 4

    7.67.4

    (2.286)

    (2)

    4218796/A 09/2013

    SOIC - 2.8 mm max heightDWV0008ASOIC

    NOTES: 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.

    18

    0.25 C A B

    54

    AREAPIN 1 ID

    SEATING PLANE

    0.1 C

    SEE DETAIL A

    DETAIL ATYPICAL

    SCALE 2.000

  • www.ti.com

    EXAMPLE BOARD LAYOUT

    (10.9)

    0.07 MAXALL AROUND

    0.07 MINALL AROUND

    8X (1.8)

    8X (0.6)

    6X (1.27)

    4218796/A 09/2013

    SOIC - 2.8 mm max heightDWV0008ASOIC

    SYMM

    SYMM

    SEE DETAILS

    LAND PATTERN EXAMPLE9.1 mm NOMINAL CLEARANCE/CREEPAGE

    SCALE:6X

    NOTES: (continued) 5. Publication IPC-7351 may have alternate designs. 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

    METAL SOLDER MASKOPENING

    NON SOLDER MASKDEFINED

    SOLDER MASK DETAILS

    OPENINGSOLDER MASK METAL

    SOLDER MASKDEFINED

  • www.ti.com

    EXAMPLE STENCIL DESIGN

    8X (1.8)

    8X (0.6)

    6X (1.27)

    (10.9)

    4218796/A 09/2013

    SOIC - 2.8 mm max heightDWV0008ASOIC

    NOTES: (continued) 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 8. Board assembly site may have different recommendations for stencil design.

    SOLDER PASTE EXAMPLEBASED ON 0.125 mm THICK STENCIL

    SCALE:6X

    SYMM

    SYMM

  • 重重要要声声明明和和免免责责声声明明

    TI 均以“原样”提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

    所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE

    邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122Copyright © 2020 德州仪器半导体技术(上海)有限公司

    http://www.ti.com.cn/zh-cn/legal/termsofsale.htmlhttp://www.ti.com.cn

    1 特性2 应用3 说明目录4 修订历史记录5 Pin Configuration and Functions6 Specifications6.1 Absolute Maximum Ratings6.2 ESD Ratings6.3 Recommended Operating Conditions6.4 Thermal Information6.5 Power Ratings6.6 Insulation Specifications6.7 Safety-Related Certifications6.8 Safety Limiting Values6.9 Electrical Characteristics6.10 Switching Characteristics6.11 Insulation Characteristics Curves6.12 Typical Characteristics

    7 Detailed Description7.1 Overview7.2 Functional Block Diagram7.3 Feature Description7.3.1 Analog Input7.3.2 Isolation Channel Signal Transmission7.3.3 Fail-Safe Output

    7.4 Device Functional Modes

    8 Application and Implementation8.1 Application Information8.2 Typical Application8.2.1 Design Requirements8.2.2 Detailed Design Procedure8.2.3 Application Curves

    8.3 What to Do and What Not to Do

    9 Power Supply Recommendations10 Layout10.1 Layout Guidelines10.2 Layout Example

    11 器件和文档支持11.1 器件支持11.1.1 器件命名规则

    11.2 文档支持11.2.1 相关文档

    11.3 接收文档更新通知11.4 社区资源11.5 商标11.6 静电放电警告11.7 Glossary

    12 机械、封装和可订购信息