유체역학및열전달 chapter 4. basic equations of fluid flow...

32
부산대학교 현규 유체역학 및 열전달 1 유체역학 및 열전달 Chapter 4. Basic Equations of Fluid Flow (3) -solving velocity profile 부산대학교 화공생명공학부 현규 (Kyu Hyun)

Upload: others

Post on 28-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 부산대학교현규유체역학및열전달 1

    유체역학및열전달

    Chapter 4. Basic Equations of Fluid Flow (3)

    -solving velocity profile

    부산대학교 화공생명공학부현 규 (Kyu Hyun)

  • 부산대학교현규

    Balance Equation – Mass and Momentum

    0=×Ñ+¶¶ )( Vrrt

    l Continuity equation: Microscopic Mass balance

    0=×Ñ+ )( VrrDtD

    l Equation of motion: Microscopic Momentum balance

    gτVVV rrr +×Ñ--Ñ=×Ñ+¶¶ pt

    )()(

    gτV rr +×Ñ--Ñ= pDtD

    gVVVV rmr +Ñ+-Ñ=÷øö

    çèæ Ñ×+¶¶ 2pt

    0=×Ñ+ )( VrrDtD

    ( )( )TVVτ Ñ+Ñ-=-= mgm &

    l Navier-Stokes Equation

    Continuity equation

    Newtonian fluid equation

    0=×Ñ VIncompressible fluid

    유체역학및열전달 2

  • 부산대학교현규

    Newton’s law of viscosity

    유체역학및열전달 3

    ( )T)( VVτ Ñ+Ñ-= m

    ÷÷÷÷÷÷÷

    ø

    ö

    ççççççç

    è

    æ

    ¶¶

    ¶¶

    ¶¶

    ¶¶

    ¶¶

    ¶¶

    ¶¶

    ¶¶

    ¶¶

    =¶¶

    ¶¶

    ¶¶

    yw

    zv

    zu

    yw

    yv

    yu

    xw

    xv

    xu

    wvuzyx

    ),,)(,,(V

    ÷÷÷÷÷÷÷

    ø

    ö

    ççççççç

    è

    æ

    ¶¶

    ¶¶

    ¶¶

    ¶¶

    ¶¶

    ¶¶

    ¶¶

    ¶¶

    ¶¶

    yw

    yw

    xw

    zv

    yv

    xv

    zu

    yu

    xu

    T)( V

    ( )

    ÷÷÷÷÷÷÷

    ø

    ö

    ççççççç

    è

    æ

    ¶¶

    ¶¶

    +¶¶

    ¶¶

    +¶¶

    ¶¶

    +¶¶

    ¶¶

    ¶¶

    +¶¶

    ¶¶

    +¶¶

    ¶¶

    +¶¶

    ¶¶

    =Ñ+Ñ

    yw

    yw

    zv

    xw

    zu

    zv

    yw

    yv

    xv

    yu

    zu

    xw

    yu

    xv

    xu

    T

    2

    2

    2

    VV

    ÷÷÷÷÷÷÷

    ø

    ö

    ççççççç

    è

    æ

    ¶¶

    ¶¶

    +¶¶

    ¶¶

    +¶¶

    ¶¶

    +¶¶

    ¶¶

    ¶¶

    +¶¶

    ¶¶

    +¶¶

    ¶¶

    +¶¶

    ¶¶

    -=

    yw

    yw

    zv

    xw

    zu

    zv

    yw

    yv

    xv

    yu

    zu

    xw

    yu

    xv

    xu

    2

    2

    2

    • Stress tensor should be symmetric

    ( )TVV Ñ+Ñ=g&

  • 부산대학교현규

    Equation of Motion

    • Basic Equation of motion using Momentum Balance

    • Mass Balance Equation (Continuity Eq’n) 적용 (Incompressible or compressible)

    • Navier Stokes Equation (Newtonian Fluid) = μ (점도)가 일정

    gτVVV rrr +Ñ-×Ñ-×-Ñ=¶

    ¶ pt

    ][)()(

    gτV rr +×Ñ--Ñ= ][pDtD

    gVV rmr +Ñ+-Ñ= 2pDtD

    유체역학및열전달 4

    ( )T)( VVτ Ñ+Ñ-= m

  • 부산대학교현규

    Step for finding velocity profile

    Step 1. Draw a schematics of the system

    Step 2. Make a list of assumptions (ex. z-direction only)

    Step 3. Mathematical formulation in a proper coordinate

    Step 4. Get Boundary conditions and initial condition

    Step 5. Get Velocity profile (O.D.E. or sometimes P.D.E)

    유체역학및열전달 5

    xgzu

    yu

    xu

    xp

    zuw

    yuv

    xuu

    tu rmr +÷÷

    ø

    öççè

    涶

    +¶¶

    +¶¶

    +¶¶

    -=÷÷ø

    öççè

    涶

    +¶¶

    +¶¶

    +¶¶

    2

    2

    2

    2

    2

    2

  • 부산대학교현규

    Boundary Conditions (BCs)

    • BCs are commonly encountered in momentum transfer

    1. Fixed Boundary: constant value of velocity at the surface (No-slip)

    2. Free Boundary: no stress at the surface

    3. Max velocity : velocity gradient should be zero

    4. Two fluid : same stress at the interface between two liquids

    HzatVu == 00 == zatu

    ( ) ( )IIFluidxyIFluidxy

    tt =

    0=÷÷ø

    öççè

    涶

    +¶¶

    -==xv

    yu

    yxxy mtt

    유체역학및열전달 6

    0=¶¶yu

  • 부산대학교현규

    Couette flow (Plane Couette flow) –문제 1

    유체역학및열전달 7

    0u

    ),,(),,( 00uwvu ==V

    B

    x

    y

    z

    )(yu

    lx 방향으로만흐름이존재, 그러므로velocity u, v=w=0 그리고 u=u(y)

    l No Force of gravity in x direction

    lNo Pressure difference also in x-direction

    Drag flow

    • When a Newtonian fluid is confined between two broad parallel plates, separated by B, as shown in below figure. The upper plate is moving at a constant velocity.

  • 부산대학교현규

    Couette flow (Plane Couette flow) –문제 1• When a Newtonian fluid is confined between two broad parallel plates,

    separated by B, as shown in below figure. The upper plate is moving at a constant velocity.

    • x comp.

    xgzu

    yu

    xu

    xp

    zuw

    yuv

    xuu

    tu rmr +÷÷

    ø

    öççè

    涶

    +¶¶

    +¶¶

    +¶¶

    -=÷÷ø

    öççè

    涶

    +¶¶

    +¶¶

    +¶¶

    2

    2

    2

    2

    2

    2

    lx방향으로만 흐름이 존재, 그러므로 velocity u, v=w=0 그리고 u=u(y)

    l Force of gravity may be neglectedl Pressure difference also may be neglected

    lx방향으로만 흐름이 존재, 그러므로 velocity u, v=w=0 그리고 u=u(y)

    l Force of gravity may be neglectedl Pressure difference also may be neglected

    2

    2

    0yu

    ¶¶

    =\ 21 cycu +=

    0

    00uuBy

    uy====

    ,,

    Byuu 0=

    0uB

    AF

    dyduss ==\

    /tm

    유체역학및열전달 8

    gVVVV rmr +Ñ+-Ñ=÷øö

    çèæ Ñ×+¶¶ 2pt

  • 부산대학교현규

    Example 4.3 –문제 2• A Newtonian fluid confined between two parallel vertical plates• The plate on the left is stationary• That on the right is moving vertically at a constant velocity v0.• Assuming that flow is laminar, find the equation for the steady-

    state velocity.

    • Continuity equation

    • Navier-Stokes equation

    -y방향으로만흐름이존재, 그러므로 u=w=0 그리고 v=f(x)

    0=¶¶

    +¶¶

    +¶¶

    zw

    yv

    xu 0=

    ¶¶yv

    ygzv

    yv

    xv

    yp

    zvw

    yvv

    xvu

    tv rmr +÷÷

    ø

    öççè

    涶

    +¶¶

    +¶¶

    +¶¶

    -=÷÷ø

    öççè

    涶

    +¶¶

    +¶¶

    +¶¶

    2

    2

    2

    2

    2

    2

    Steady state Continuitygr-

    022

    =-¶¶

    -¶¶

    \ gyp

    xv rm

    유체역학및열전달 9

  • 부산대학교현규

    Example 4.3

    .)( constgyp

    xv

    =+¶¶

    =¶¶ rm 22

    상수v는 x만의 함수

    p는 y만의 함수

    21

    2

    1

    2CxCg

    ypxv

    Cgypx

    dxdv

    ++÷÷ø

    öççè

    æ+

    ¶¶

    =

    +÷÷ø

    öççè

    æ+

    ¶¶

    =

    rm

    rm

    Bxatvvxatv====

    0

    00

    -위의 식을 적분하면

    -한번더 적분하면

    BxvxBxg

    ypv 0

    2

    21

    +-÷÷ø

    öççè

    æ+

    ¶¶

    -=\ )(rm

    -경계조건을 적용하면

    유체역학및열전달 10

  • 부산대학교현규

    Layer flow with free surface (Gravity driven) (1)-교과서 page 83 (문제 3)

    Assumptions and conditions• No end effect

    • Velocity

    • Pressure ,중력보다 작아서 무시

    • Newton’s law of viscosity

    d>>LW &

    0=== vuxww ),(

    )(zpp =

    )(xw

    유체역학및열전달 11

  • 부산대학교현규

    z

    x

    Layer flow with free surface (2) –문제 3

    )(xw

    유체역학및열전달 12

  • 부산대학교현규

    Layer flow with free surface (3)

    br cosgzzzyzxz gzyxz

    pzww

    ywv

    xwu

    tw rtttr +÷÷

    ø

    öççè

    涶

    +¶¶

    +¶¶

    -¶¶

    -=÷÷ø

    öççè

    涶

    +¶¶

    +¶¶

    +¶¶

    brt cosgxxz =

    ¶¶

    \

    1Cxgxz +=\ )cos( brt

    -B.C. 1 1 00 == xatxzt xgxz )cos( brt =

    ÷øö

    çèæ

    ¶¶

    +¶¶

    -=÷÷ø

    öççè

    涶

    +¶¶

    -=¶¶

    -=xw

    zu

    yw

    zv

    zw

    xzyzzz mtmtmt ,,2

    xgxw

    mbr cos

    -=¶¶

    \

    - 마찰이 없어서 전단응력이 없다.

    유체역학및열전달 13

    -Governing Equation (지배방정식)

  • 부산대학교현규

    Layer flow with free surface (4)

    -B.C. 2 1 d== xatw 0

    xgxw

    mbr cos

    -=¶¶

    22

    2Cxgw +-=

    mbr cos

    úúû

    ù

    êêë

    é÷øö

    çèæ-=\

    22

    12 dm

    bdr xgw cos

    -Total mass flow rate1

    mbrdr

    d

    3

    23

    0

    cosbgwbdxm == ò&31

    2

    3/

    cos ÷÷ø

    öççè

    æ=

    brmdgbm&

    유체역학및열전달 14

  • 부산대학교현규

    Flow through a Parallel Plate (Pressure driven)- 교과서 page 129 (Problems 5.1 & 5.3)

    Assumptions and conditions• No end effect

    • Velocity

    • Pressure , x방향 중력은 없음

    • Newton’s law of viscosity

    BLW >>&

    0=== wvyuu ),(

    )(xpp =

    Lower Plate

    Upper Plate

    x

    y

    B-

    B+W

    L

    유체역학및열전달 15

  • 부산대학교현규

    Flow through a Parallel Plate (2)

    xgzu

    yu

    xu

    xp

    zuw

    yuv

    xuu

    tu rmr +÷÷

    ø

    öççè

    涶

    +¶¶

    +¶¶

    +¶¶

    -=÷÷ø

    öççè

    涶

    +¶¶

    +¶¶

    +¶¶

    2

    2

    2

    2

    2

    2

    xp

    yu

    ¶¶

    =¶¶

    \ 22

    m

    02

    2

    Cconstxp

    yu

    ==¶¶

    =¶¶

    \ .m

    LppLxppxat

    ====

    ,, 00

    0

    00

    ==

    =¶¶

    =

    uByxuyat

    ,

    ,

    0Cxp=

    ¶¶

    10 CxCp += 00 px

    Lppp L +-=

    02

    2

    Cyu=

    ¶¶m 20 Cy

    Cyu

    +=¶¶

    m 320

    2Cy

    Lppu L +-=

    m

    úúû

    ù

    êêë

    é÷øö

    çèæ-

    -=

    220 12 B

    yLBppu L

    m)(

    유체역학및열전달 16

    -Governing Equation

    -B.C.

  • 부산대학교현규

    Flow through a Parallel Plate (3)

    úúû

    ù

    êêë

    é÷øö

    çèæ-=

    úúû

    ù

    êêë

    é÷øö

    çèæ-

    D=

    úúû

    ù

    êêë

    é÷øö

    çèæ-

    -=

    222220 11

    21

    2 Byu

    By

    LpB

    By

    LBppu L max)(

    mm

    -Average velocity

    ò= udSSV1

    max

    max

    max

    u

    yyBBu

    WdyBy

    BWu

    uWdyBW

    V

    B

    B

    B

    B

    B

    B

    32

    31

    2

    12

    21

    322

    2

    =

    úûù

    êëé -=

    úúû

    ù

    êêë

    é÷øö

    çèæ-=

    =

    +

    --

    -

    ò

    ò

    ò

    Lower Plate

    Upper Plate

    W

    WdydS =

    dy

    BWS 2=

    32

    =maxuV -주황색면으로흘러

    들어가는유체에대해서

    B-

    B+

    유체역학및열전달 17

  • 부산대학교현규

    Flow through a circular tube (1)-page 102~103

    Assumptions and conditions• No end effect

    • Velocity

    • Pressure , 중력은 무시

    • Newton’s law of viscosity

    RL >>

    0=== quuzruu r),,(

    )(zpp =

    zr

    유체역학및열전달 18

  • 부산대학교현규

    Flow through a circular tube (2)-page 102~103

    • Continuity equation011 =

    ¶¶

    +¶¶

    +¶¶

    zuu

    rru

    rr r)()( qq

    ),,(),,( uuuur 00== qV

    • Equation of motion

    rrrrrrr

    rr g

    rp

    zuu

    ru

    rrru

    rrru

    zuuuu

    ruu

    tu r

    qqm

    qqr qqq +

    ¶¶

    -úû

    ùêë

    鶶

    +¶¶

    -¶¶

    +÷øö

    çèæ

    ¶¶

    ¶¶

    =÷÷ø

    öççè

    æ-

    ¶¶

    +¶¶

    +¶¶

    +¶¶

    2

    2

    22

    2

    2

    2 211 )(

    qqqqqqqqqq r

    qqqm

    qr gp

    rzuu

    ru

    rrru

    rrruu

    zuuu

    ru

    ruu

    tu rr

    r +¶¶

    -úû

    ùêë

    鶶

    +¶¶

    +¶¶

    +÷øö

    çèæ

    ¶¶

    ¶¶

    =÷øö

    çèæ +

    ¶¶

    +¶¶

    +¶¶

    +¶¶ 1211

    2

    2

    22

    2

    2

    )(

    zr gzp

    zuu

    rrur

    rrzuuu

    ru

    ruu

    tu r

    qm

    qr q +

    ¶¶

    -úû

    ùêë

    鶶

    +¶¶

    +÷øö

    çè涶

    ¶¶

    =÷øö

    çèæ

    ¶¶

    +¶¶

    +¶¶

    +¶¶

    2

    2

    2

    2

    2

    11

    )(ruu =\

    zp

    rur

    rr ¶¶

    =÷øö

    çè涶

    ¶¶

    \1m

    유체역학및열전달 19

  • 부산대학교현규

    Flow through a circular tube (3)-page 102~103

    q¶¶

    =¶¶

    =p

    rp0

    01 Cconst

    zp

    rur

    rr==

    ¶¶

    =÷øö

    çè涶

    ¶¶

    \ .m

    -p는 z만의함수라는것을알수있다.

    • Equation of motion에서 r과 θ 요소 방정식에서 다음과 같은결과가 나온다.

    LppLzppzat

    ====

    ,, 00

    10 CzCp += 00 pz

    Lppp L +-=

    0

    00

    ==

    =¶¶

    =

    uRrrurat

    ,

    ,0

    1 Crur

    rr=÷øö

    çè涶

    ¶¶m

    유체역학및열전달 20

  • 부산대학교현규

    Flow through a circular tube (4)-page 102~103

    00 =¶¶

    =rurat ,

    rCrur

    r m0=÷

    øö

    çè涶

    ¶¶

    01 C

    rur

    rr=÷øö

    çè涶

    ¶¶m 2

    20

    2CrC

    rur +=¶¶

    m

    rCrC

    ru 20

    2+=

    ¶¶

    m

    -위의경계조건을만족시키려면 C2가 0이되어야한다

    320

    4CrCu +=

    m0== uRrat ,

    [ ]

    úúû

    ù

    êêë

    é÷øö

    çèæ-

    -=

    úúû

    ù

    êêë

    é-÷

    øö

    çèæ-=

    úúû

    ù

    êêë

    é-÷

    øö

    çèæ=-=-=

    220

    220

    2202202020

    14

    14

    14444

    Rr

    LRpp

    Rr

    LRpp

    RrRCRrCRCrCu

    LL

    mm

    mmmm

    )()(

    유체역학및열전달 21

  • 부산대학교현규

    Flow through a circular tube (5)-page 102~103

    úúû

    ù

    êêë

    é÷øö

    çèæ-=

    úúû

    ù

    êêë

    é÷øö

    çèæ-

    D=

    úúû

    ù

    êêë

    é÷øö

    çèæ-

    -=

    222220 11

    41

    4 Rru

    Rr

    LpR

    Rr

    LRppu L max)(

    mm

    l Average velocity

    ò= udSSV1

    ( )

    242

    2

    21

    21

    4

    4

    0

    324

    0

    2

    2

    2

    maxmax

    max

    max

    uRRu

    drrrRRu

    rdrRr

    Ru

    rdruR

    V

    R

    R

    =×=

    -=

    úúû

    ù

    êêë

    é÷øö

    çèæ-=

    =

    ò

    ò

    ò

    pp

    pp

    21

    =maxuV

    2RS p=

    rdrdS p2=

    유체역학및열전달 22

  • 부산대학교현규유체역학및열전달 23

    유체역학및열전달

    Chapter 4. Basic Equations of Fluid Flow

    using Shell Balance

    부산대학교 화공생명공학부현 규 (Kyu Hyun)

  • 부산대학교현규

    Flow through a Parallel Plate (Pressure driven)- 교과서 page 129 (Problems 5.1 & 5.3)

    Assumptions and conditions• No end effect

    • Velocity

    • Pressure , 중력은 무시

    • Newton’s law of viscosity

    BLW >>&

    0=== wvyuu ),(

    )(xpp =

    Lower Plate

    Upper Plate

    x

    y

    B-

    B+W

    L

    유체역학및열전달 24

  • 부산대학교현규

    Flow through a Parallel Plate (1)-Shell Balance를이용한방법

    Lower Plate

    Upper PlateW

    L

    x

    y

    xDyD

    -두개의평판안에있는유체의 volume element를생각하자. 이러한계에서 z방향으로는특별한변화는없고단지길이W만가진다고생각하자. -빨간색으로표시된작은 volume element에대해서 momentum balance를생각하자.

    유체역학및열전달 25

  • 부산대학교현규

    Flow through a Parallel Plate (2)-shell Balance를이용한방법

    gΦgτVV

    gτVVV

    rrr

    rrr

    +Ñ-×-Ñ=+Ñ-+×-Ñ=

    +Ñ-×Ñ-×-Ñ=¶

    pp

    pt

    )(

    ][)()( τVVΦ += rConvective momentum과Molecular stress항을묶어서Total stress라고가정하자.

    -Rate of x-momentum in across surface at x xxx

    yW FD )(-Rate of x-momentum out across surface at x+Δx xxxxyW D+FD )(

    -Rate of x-momentum in across surface at y yyx

    xW FD )(

    -Rate of x-momentum out across surface at y+Δy yyyx

    xWD+

    FD )(

    -Pressure in across surface at xx

    pyW )( D-Pressure out across surface at x+Δx xxpyW D+D )(

    유체역학및열전달 26

  • 부산대학교현규

    Flow through a Parallel Plate (3)-shell Balance를이용한방법

    [ ] [ ] [ ] 0=D-D+FD-FD+FD-FDD+D+D+ xxxyyyxyyxxxxxxxx

    pyWpyWxWxWyWyW )()()()()()(

    - 이번 문제의 경우 이미 steady state를 가정했으므로 축적량(accumulation)은 없다. 옆에 보이는 빨간 volume element에걸리는 힘에 대해서 생각해보면 다음과 같다. 속도가 x 방향 쪽으로만존재하므로, x 방향의 힘만 고려하자.

    0=D

    -+

    D

    F-F+

    D

    F-FD+D+D+

    xpp

    yxxxxyyyxyyxxxxxxxx

    0=¶¶

    F¶+

    ¶F¶

    xp

    yxyxxx

    τVVΦ += r

    xuuuu xxxxxx ¶¶

    -=+=F mrtr 22

    ÷÷ø

    öççè

    涶

    +¶¶

    -=+=Fxv

    yuvuuu yxxyyx mrtr

    02

    =¶¶

    +÷÷ø

    öççè

    涶

    -¶¶

    +¶¶

    xp

    yu

    yxu mr

    xp

    yu

    ¶¶

    =¶¶

    \ 22

    m유체역학및열전달 27

    yxDD 로 나누기

  • 부산대학교현규

    Flow through a circular tube (1)-Shell balance를이용한방법

    Assumptions and conditions• No end effect

    • Velocity

    • Pressure

    • Newton’s law of viscosity

    RL >>

    0=== quuzruu r),,(

    )(zpp =

    유체역학및열전달 28

  • 부산대학교현규

    Flow through a circular tube (2)-shell Balance를이용한방법

    gΦgτVV

    gτVVV

    rrr

    rrr

    +Ñ-×-Ñ=+Ñ-+×-Ñ=

    +Ñ-×Ñ-×-Ñ=¶

    pp

    pt

    )(

    ][)()( τVVΦ += rConvective momentum과Molecular stress항을묶어서Total stress라고가정하자.

    -Rate of z-momentum in across annular surface at z zzz

    rr FD )( p2-Rate of z-momentum out across annular surface at z+Δz

    -Rate of z-momentum in across cylindrical surface at r-Rate of z-momentum in across cylindrical surface at r+Δr

    -Pressure across surface at zz

    prr )( Dp2-Pressure across surface at z+Δz

    rz

    zD

    rD

    zzzzrr

    D+FD )( p2

    rrzzr FD )( p2

    rrrzzrr

    D+FDD+ ))(( p2

    zzprrπ

    Δ+)Δ2(

    유체역학및열전달 29

  • 부산대학교현규

    Flow through a circular tube (3) -shell Balance를이용한방법

    유체역학및열전달 30

  • 부산대학교현규

    rz

    Flow through a circular tube (4) -shell Balance를이용한방법

    zzzzzzzrrrr

    D+FD-FD )()( pp 22

    rrrzrrzzrrzr

    D+FDD+-FD ))(()( pp 22

    zzzprrprr

    D+D-D )()( pp 22

    유체역학및열전달 31

    Area= zrDp2

    Area= rrDp2

    벽면에서 걸리는 shear stress

  • 부산대학교현규

    Flow through a circular tube (5) -shell Balance를이용한방법

    [ ][ ] [ ] 02222

    22

    =D-D+FDD+-FD+

    FD-FD

    D+D+

    D+

    zzzrrrzrrz

    zzzzzzz

    prrprrzrrzr

    rrrr

    )()())(()(

    )()(

    pppp

    pp

    ( ) ( )0=

    D

    -+

    D

    F-F+

    D

    F-FD+D+D+

    zpp

    rrrr

    zr zzzrzrzrrzzzzzzzz

    ( )zpr

    zrr

    rzz

    rz ¶¶

    -¶F¶

    -=F¶¶

    τVVΦ += r

    zuuuu zzzzzz ¶¶

    -=+=F mrtr 22

    ÷øö

    çèæ

    ¶¶

    +¶¶

    -=+=Fru

    zuuuuu rrrzzrrz mrtr

    zpr

    rur

    r ¶¶

    =÷øö

    çè涶

    ¶¶

    \m

    zrDDp2 로 나누어 주면

    zpr

    zur

    rur

    r ¶¶

    ¶-=÷

    øö

    çèæ

    ¶¶

    -¶¶ )( 2rm

    )(ruu =Q

    유체역학및열전달 32