optimization of protein force-field parameters€¦ · optimization of protein force-field...

85
Optimization of Protein Force-Field Parameters Yuko OKAMOTO (岡本 祐幸) Department of Physics and Structural Biology Research Center Graduate School of Science and Center for Computational Science Graduate School of Engineering and Information Technology Center NAGOYA UNIVERSITY (名古屋大学) e-mail: okamoto{a}phys.nagoya-u.ac.jp URL: http://www.tb.phys.nagoya-u.ac.jp/ Seminar at the Basque Center for Applied Mathematics July 14, 2014

Upload: others

Post on 06-Jun-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

  • Optimization of Protein Force-Field Parameters

    Yuko OKAMOTO (岡本 祐幸) Department of Physics and

    Structural Biology Research Center

    Graduate School of Science

    and Center for Computational Science

    Graduate School of Engineering

    and Information Technology Center

    NAGOYA UNIVERSITY (名古屋大学) e-mail: okamoto{a}phys.nagoya-u.ac.jp

    URL: http://www.tb.phys.nagoya-u.ac.jp/

    Seminar at the Basque Center for Applied Mathematics

    July 14, 2014

  • cano

    E

    PB(E) = n(E)WB(E)

    Canonical Probability Distribution

    E

    WB(E) = exp(- E )

    Boltzmann Factor

    E

    n(E)

    Density of States

    Canonical Ensemble at

    Temperature T

  • SA-2

    P B

    (E)

    E E

    P B

    (E) = n(E)W B

    (E)

    High T

    P B

    (E)

    E

    E min

    Low T

    Canonical Distributions of Potential Energy

    Intermediate T

  • 30

    20

    10

    0

    -10

    E

    200000150000100000500000

    MC Sweeps

    Canonical 1000K

  • 30

    20

    10

    0

    -10

    E

    200000150000100000500000

    MC Sweeps

    Canonical 600K

  • 30

    20

    10

    0

    -10

    E

    200000150000100000500000

    MC Sweeps

    Canonical 50K

  • Generalized-Ensemble Algorithm(拡張アンサンブル法) Generic Term for Simulation Methods that Greatly Enhance

    Conformational Sampling [e.g., Multicanonical Algorithm, Wang-Landau, Simulated Tempering, Replica-Exchange Method, etc.]

    Based on Non-Boltzmann Weight Factors

    Realize random walks in potential energy and/or any other physical quantities (OR their conjugate parameters)

    Histogram Reweighting Techniques

    Can obtain thermodynamic quantities for a wide range of temperature

    and/or other parameter values from a single simulation run REVIEWS: U.H.E. Hansmann & Y.O., in Ann. Rev. Comput. Phys. VI, D. Stauffer (ed.) (World Scientific, Singapore, 1999) pp. 129-157;

    A. Mitsutake, Y. Sugita, & Y.O., Biopolymers 60, 96 (2001); Y.O., J. Mol. Graphics Modell. 22, 425 (2004);

    Y. Sugita, A. Mitsutake, & Y.O., in Lecture Notes in Physics,

    W. Janke (ed.) (Springer-Verlag, Berlin, 2008) pp. 369-407; H. Okumura, S.G. Itoh, & Y.O., in Practical Aspects of Computational Chemistry II: An Overview of the Last Two Decades and Current Trends,

    J. Leszczynski and M.K. Shukla (eds.) (Springer, Dordrecht, 2012) pp. 69-101;

    A. Mitsutake, Y. Mori, and Y.O, in Biomolecular Simulations: Methods and Protocols,

    L. Monticelli and E. Salonen (eds.) (Humana Press, New York, 2012) pp. 153-195;

    H. Kokubo, T. Tanaka, & Y.O., in Advances in Protein Chemistry and Structural Biology,

    T. Karabencheva-Christova (ed.) (Elsevier, Amsterdam, 2013) pp. 63-91.

  • P mu

    (E) = n(E)W mu

    (E) = const

    E

    E min

    Multicanonical Algorithm

    uniform (flat) distribution in energy

    W mu

    (E) = n(E) -1

    Random Walk in Potential Energy Space

    MC: B. Berg & T. Neuhaus, Phys. Lett. B267, 249 (1991); Phys. Rev. Lett. 68, 9 (1992).

    MD: U. Hansmann, Y.O. & F. Eisenmenger, Chem. Phys. Lett. 259, 321 (1996);

    N. Nakajima, H. Nakamura & A. Kidera, J. Phys. Chem. B 101, 817 (1997).

    Cf: Wang-Landau method where the weight is dynamically updated

    F. Wang & D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001);

    Phys. Rev. E 64, 056101 (2001).

  • Canonical Ensemble

    MC version:

    Multicanonical Ensemble

    MC version:

    Generalized-Ensemble Algorithms have been

    developed in MC algorithms

  • Canonical Ensemble MD version:

    MD version:

    22

    03

    mu mui i i i

    i

    i B

    i

    E Es sm m m

    s E s

    sQs s m Nk T Q

    s

    q q f qq

    q

    0

    1( ) exp( ( ))

    ( )mu muW E E E

    n E

    Multicanonical Ensemble

    22 3

    i i i i

    i

    i B

    i

    E s sm m m

    s s

    sQs s m Nk T Q

    s

    q q f qq

    q

    U. Hansmann, Y.O. & F. Eisenmenger, Chem. Phys. Lett. 259, 321 (1996);

    N. Nakajima, H. Nakamura & A. Kidera, J. Phys. Chem. B 101, 817 (1997).

  • MULTICANONICAL ALGORITHM

    B. Berg & T. Neuhaus, Phys. Lett. B267, 249 (1991).

    B. Berg & T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992).

    Step 1: Iterations of Short Preliminary Runs to

    Determine the Multicanonical Weight Factor Wmu (E)

    Step 2: One Long Production Run

    Step 3: Analyze the Data to Obtain:

    * Global-Minimum Energy Configuration

    * Thermodynamic Quantities for Desired Temperatures

    (by Ferrenberg-Swendsen Single-Histogram

    Reweighting Techniques)

    ;;

    B

    C mu

    mu

    W E TP E T P E

    W E

  • 30

    20

    10

    0

    -10

    E

    200000150000100000500000

    MC Sweeps

    Multicanonical

    Canonical 50K

    Canonical 1000K

  • Single-Histogram Reweighting Techniques

    , where ( ) ( .(

    )( )

    )mu m

    u

    mu

    um N E n E W

    N En E

    W EE

    A. Ferrenberg & R. Swendsen, Phys. Rev. Lett. 61, 2635 (1988).

    ( ) ; ( )

    ;

    E

    C

    E ET E

    C

    E E

    n EA E P E T A E e

    AP E T en E

    Here, the density of states n(E) is obtained from the histogram of the

    energy distribution Nmu(E) that was obtained from the production run of

    the multicanonical simulation:

  • Enk-ave

  • Single-Histogram Reweighting Techniques

    A. Mitsutake, Y. Sugita & Y.O., J. Chem. Phys. 118, 6664 (2003).

    When the physical quantity A cannot be written as

    a function of E, we use the following equation:

  • fast movie

    17-Residue Helical Peptide (120000-300000 MC Sweeps)

    Simulation and movie by A. Mitsutake

    Canonical MC: T = 200 K Multicanonical MC

  • ST( ; ) exp( ( ))W E T E a T

    ST ( )exp( ( )) const( ) dEn E E a TP T

    ST( ; ) exp( )m m mW E T E a

    exp(am) dEn(E) exp(mE)

    am : Dimensionless Helmholtz free energy at temperature Tm

    Random Walk in Temperature Space

    → Random Walk in Energy Space

    is determinded by iterations of short ST runs am

    Discretize Temperature:

    A.P. Lyubartsev, et al., J. Chem. Phys. 96, 1776 (1992).

    E. Marinari and G. Parisi, Europhys. Lett. 19, 451 (1992).

    Temperature is a dynamical variable: Sample temperature uniformly

    Simulated Tempering (焼き戻し法)

    See also: A. Irback & F. Potthast, J. Chem. Phys. 103, 10298 (1995).

    U. Hansmann & Y.O., J. Comput. Chem. 18, 920 (1997).

  • Step 1: Canonical MC/MD Simulations at Temperature Tm

    for a Few Steps

    Step 2: Temperature is Updated to a Neighboring Value Tm±1

    a la Metropolis with Conformations Fixed

    where

    Repeat These 2 Steps

    Canonical Distribution at Any Temperature

    by Multiple Histogram Reweighting Techniques (WHAM)

    A.P. Lyubartsev, et al., J. Chem. Phys. 96, 1776 (1992).

    E. Marinari and G. Parisi, Europhys. Lett. 19, 451 (1992).

    Simulated Tempering (焼き戻し法)

  • Multiple-Histogram Reweighting Techniques

    (Weighted Histogram Analysis Method: WHAM)

    n E

    Nm(E)m1

    M

    nmefm mE

    m1

    M

    , where e

    fm n E E

    e mE .

    A. Ferrenberg & R. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).

    S. Kumar, D. Bouzida, R. Swendsen, P. Kollman & J. Rosenberg, J. Comput. Chem. 13, 1011 (1992).

    A T

    A(E)n E E

    e E

    n E E

    e E

    Given M set of histograms Nm(E), which were obtained at Tm, the

    following WHAM equations are solved iteratively for density of states n(E)

    and dimensionless Helmholtz free energy f m : (nm are the total number

    of samples obtained at Tm)

  • A. Mitsutake, Y. Sugita & Y.O., J. Chem. Phys. 118, 6664 (2003).

    When the physical quantity A cannot be written as

    a function of E, we first obtain the dimensionless

    Helmholtz free energy fm (m = 1, …, M) by solving

    the WHAM equations. We then use the following

    equation:

    Multiple-Histogram Reweighting Techniques

    (Weighted Histogram Analysis Method: WHAM)

    See also: M. R. Shirts and J. D. Chodera, J. Chem. Phys. 129, 124105 (2008).

  • Replica-Exchange Method (also referred to as Parallel Tempering)

    1. System

    M Non-Interacting Replicas of the Original System at M Different Temperatures

    2. Replica-Exchange

    Step 1: Independent Canonical Simulations Performed for Each Replica

    Step 2: A Pair of Replicas (i and j) Corresponding to Neighboring

    Temperatures (Tm and Tn) (i.e., n=m+1) are Exchanged a la Metropolis

    Repeat These 2 Steps

    3. Canonical Distribution at Any Temperature

    by Multiple Histogram Reweighting Techniques (WHAM)

    MC: K. Hukushima & K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996).

    MD: Y. Sugita & Y.O., Chem. Phys. Lett. 314, 141 (1999).

  • From Multidimensional REM to

    Multidimensional MUCA and ST

    MMUCA: random walk in multidimensional energy

    MST: random walk in multidimensional parameter

    MREM: random walk in multidimensional parameter

    e.g.,

    WHAM eqns.

    ,

    ,

    ,( ), 1

    ( ) ,

    ,, 1

    ( , )

    , where ., , m nm n

    m n

    m n

    M

    m nE Vm n

    ME V EV

    m nm n

    f

    f

    N E V

    en E V n eE

    n

    V

    e

    A. Mitsutake & Y.O., Phys. Rev. E 79, 047701 (2009);

    J. Chem. Phys. 130, 214105 (2009); A. Mitsutake, J. Chem. Phys. 131, 094105 (2009).

  • Examples of Multidimensional REM, MUCA, and ST

    T. Nagai & Y.O., Phys. Rev. E 86, 056705 (2012).

    1. Simulated Tempering and Magnetizing

    random walk in temperature T and external field h

    *Ising Model

    *3-state Potts Model

    = h = external field

    V = M = magnetization

    T. Nagai, Y.O., & W. Janke,

    J. Stat. Mech. (2013) P02039.

    A. Mitsutake & Y.O., Phys. Rev. E 79, 047701 (2009);

    J. Chem. Phys. 130, 214105 (2009); A. Mitsutake, J. Chem. Phys. 131, 094105 (2009).

  • Examples of Multidimensional REM, MUCA, and ST A. Mitsutake & Y.O., Phys. Rev. E 79, 047701 (2009);

    J. Chem. Phys. 130, 214105 (2009); A. Mitsutake, J. Chem. Phys. 131, 094105 (2009).

    2. Isobaric-Isothermal Ensemble(定圧定温アンサンブル)

    * MUCA: Multibaric-Multithermal Algorithm (MUBATH) random walk in potential energy E and volume V H. Okumura & Y.O., Chem. Phys. Lett. 383, 391 (2004). (MC version) H. Okumura & Y.O., Chem. Phys. Lett. 391, 248 (2004). (MD version)

    * REM: random walk in temperature T and pressure P Y. Sugita & Y.O., in Lect. Notes in Computational Science & Engineering,

    ed. by T. Schlick and H.Gun (2002) pp. 304-332; cond-mat/0102296.

    T. Okabe, M. Kawata, Y.O. & M. Mikami, Chem. Phys. Lett. 335, 435 (2001).

    Also, see D. Paschek & A. Garcia, Phys. Rev. Lett. 93, 238105 (2004).

    * ST: random walk in temperature T and pressure P Y. Mori & Y.O., J. Phys. Soc. Jpn. 79, 074003 (2010).

  • Examples of Multidimensional REM, MUCA, and ST A. Mitsutake & Y.O., Phys. Rev. E 79, 047701 (2009);

    J. Chem. Phys. 130, 214105 (2009); A. Mitsutake, J. Chem. Phys. 131, 094105 (2009).

    3. Umbrella Sampling

    * REM: Replica-Exchange Umbrella Sampling (REUS) random walk in reaction coordinate x Y. Sugita, A. Kitao & Y.O., J. Chem. Phys. 113, 6042 (2000).

    * ST: Simulated Tempering Umbrella Sampling (STUS) random walk in reaction coordinate x Y. Mori & Y.O., Phys. Rev. E 87, 023301 (2013). Cf.

    * MUCA: Metadynamics (Wang-Landau in reaction coordinate) random walk in reaction coordinate x A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. USA 99, 12562 (2002).

    Hk q, p K p E0 q lVl q

    l1

    L

    , where Vl x Kl x q dl 2

    .

  • Challenging the prediction of the 3-dimensional structure

    of a small protein by MUCAREM.

    Villin headpiece subdomain

    (36 amino acids; 596 atoms)

    sphere of water with radius 30 Å (3513 water molecules);

    Total number of atoms = 11,135

    Folding of a Small Globular Protein T. Yoda, Y. Sugita & Y.O., Biophys. J. 99, 1637 (2010).

    helix1 helix2

    MLSDEDFKAVFGMTRSAFANLPLWKQQNLKKEKGLF 1 10 20 30

    helix3

    Primary Sequence of HP-36

    T. Yoda, Y. Sugita & Y.O., Proteins 82, 933-943 (2014).

  • Computational Details

    (Force Field = CHARMM22/CMAP for protein

    & TIP3P for water)

    (1) REMD with 96 replicas in implicit solvent (GB/SA);

    initial conformation was fully extended

    (2) Unfolded protein w/o any secondary structures was

    soaked in a sphere of radius 30Å (with 3513 TIP3P water molecules)

    (3) REMD with 128 replicas (T = 250 K ~ 700 K) (4) Determine multicanonical weight factors by WHAM

    (iterate several times to refine weight)

    (5) Two production runs of MUCAREM with 8 replicas

    (MUCAREM1: 1.127 ms in total covering T = 269 K ~ 699 K MUCAREM2: 1.157 ms in total covering T = 289 K ~ 699 K)

    T. Yoda, Y. Sugita & Y.O., Biophys. J. 99, 1637 (2010).

  • Villin headpiece subdomain

    (36 amino acids; 596 atoms)

    in sphere of water of radius 30 Å (3513 water molecules);

    altogether 11,135 atoms

    MUCAREM simulation

  • MUCAREM2 (Replica 5)

    Simulation and movie by T. Yoda

  • Native-Like Structures Obtained from MUCAREM

    Main-Chain RMSD = 1.1 Å (residues 2 to 35) [Replica 5] 灰色:自然の構造(PDB ID: 1YRF)、緑色:シミュレーションの結果

    T. Yoda, Y. Sugita & Y.O., Biophys. J. 99, 1637 (2010).

  • Challenging the prediction of the 3-dimensional structure

    of a small protein by MUCAREM.

    Villin headpiece subdomain

    (36 amino acids; 596 atoms)

    sphere of salted water with radius

    30 Å (3494 water molecules,

    11 K+, 13 Cl- ≈ 0.2 M KCl);

    Salt Effects on Folding of a Small Globular

    Protein T. Yoda, Y. Sugita & Y.O., Proteins 82, 933-943 (2014).

    helix1 helix2

    MLSDEDFKAVFGMTRSAFANLPLWKQQNLKKEKGLF 1 10 20 30

    helix3

    Primary Sequence of HP-36

  • Native-Like Structure (Global Minimum in Free

    Energy) Obtained from MUCAREM Simulation

    (Left)

    Main-Chain RMSD = 1.25 Å Experimental Structure

    (PDB ID: 1YRF)

    T. Yoda, Y. Sugita & Y.O., Proteins 82, 933-943 (2014).

  • Free Energy Landscape

    in Pure Water in 0.2 M Salted Water

    T. Yoda, Y. Sugita & Y.O., Proteins 82, 933-943 (2014).

  • T. Hiroyasu, M. Miki, M. Ogura, & Y. O., J. IPS Japan 43, 70 (2002).

    Combinations with Genetic Crossover

    Simulated Annealing

    Y. Sakae, T. Hiroyasu, M. Miki, K. Ishii & Y. O., J. Phys.: Conf. Ser. 487,

    012003 (2014).

    Y. Sakae, T. Hiroyasu, M. Miki, K. Ishii & Y. O., in preparation.

    Metropolis

    Y. Sakae, T. Hiroyasu, M. Miki & Y. O., J. Comput. Chem. 32, 1353 (2011).

  • High T A B C D F E

    GA crossover

    GA crossover

    GA crossover

    GA crossover

    Low T

    Y. Sakae, T. Hiroyasu, M. Miki & Y. O., J. Comput. Chem. 32, 1353 (2011).

    Parallel Simulated Annealing MD with Genetic Crossover

    (PSAMD/GAc2)

    Step 1. Parallel simulated annealing simulations for a certain MD steps

    Step 2. Genetic crossover Repeat these two steps. P

    aral

    lel

    Sim

    ula

    ted A

    nnea

    lin

    g S

    imula

    tions

  • All dihedral angles in randomly selected

    consecutive amino-acid residues

    are exchanged.

    Structure A

    Structure B

    Dihedral Angle

    Exchange a Randomly Chosen Pair of Dihedral Angle Sets

    Genetic Crossover (2-Point Crossover)

  • 1. All dihedral angles in randomly selected n (2-10)

    consecutive amino-acid residues are exchanged.

    2. A short (say, 20 ps) MD simulation with

    H = H0 + Hconstr where Hconstr is a harmonic constraint potential that

    constrains the corresponding main-chain dihedral

    angles (f, y).

    3. A short (say, 20 ps) equilibration MD with

    H = H0 4. Selection rule is imposed with respect to the final

    conformations in Step 3.

    After Genetic Crossover Operation,

    two children will have large energies;

    side chains bump into each other.

    Y. Sakae, T. Hiroyasu, M. Miki, K. Ishii & Y. O., J. Phys.: Conf. Ser. 487,

    012003 (2014).

  • Detailed Balance Conditions

    1. All dihedral angles in randomly selected n (2-10)

    consecutive amino-acid residues are exchanged.

    2. A short (say, 20 ps) MD simulation with

    H = H0 + Hconstr where Hconstr is a harmonic constraint potential that

    constrains the corresponding main-chain dihedral

    angles (f, y).

    3. A short (say, 20 ps) equilibration MD with

    H = H0 4. Accept or reject a la Metropolis criterion.

    Detailed Balance Condition is satisfied just as in

    Hybrid Monte Carlo method, provided that we use a

    volume-preserving and time-reversal MD integrator.

    Metropolis with Genetic Crossover Combined

  • Example 1

    Trp-Cage (PDB ID: 1L2Y)

    20 residues

    method: MD (Langevin dynamics)

    temperature: 282 K

    solvent: GB/SA

    force field: AMBER ff03

    no. of individuals: 16

    simulation time per individual: 100ps×100(10ns)

    Simulation(Individual No.2) PDB Structure(NMR)

    RMSD : 0.809 Å

    Y. Sakae, T. Hiroyasu, M. Miki, K. Ishi & Y.O., in preparation.

  • Example 2

    Villin Headpiece (PDB ID: 1YRF)

    36 residues

    PDB Structure (X-ray)

    RMSD : 2.234 Å

    Simulation(Individual No. 11)

    method: MD (Langevin dynamics)

    temperature: 300 K

    solvent: GB/SA

    force field: AMBER ff03

    no. of individuals: 32

    simulation time per individual: 200ps×100(39.4ns)

    Y. Sakae, T. Hiroyasu, M. Miki, K. Ishi & Y.O., in preparation.

  • Example 3

    Protein A (PDB ID: 1BDD)

    46 residues (10-55 out of 60)

    RMSD : 1.707 Å Simulation(Individual No. 5)

    PDB Structure(NMR)

    method: MD (Langevin dynamics)

    temperature: 300 K

    solvent: GB/SA

    force field: AMBER ff03

    no. of individuals: 32

    simulation time per individual: 1.0ns×90(90ns)

    Y. Sakae, T. Hiroyasu, M. Miki, K. Ishii & Y. O., J. Phys.: Conf. Ser. 487,

    012003 (2014).

  • 2-Dimensional ST Simulation

    in Isobaric-Isothermal Ensemble

    temperature and pressure become dynamical

    variables.

    2-dimensional random walk

    in temperature and pressure

    Y. Mori & Y.O., J. Phys. Soc. Jpn. 79, 074003 (2010);

    in preparation.

  • Pressure-Induced Unfolding of Ubiquitin

    R. Kitahara et al. (2005)

    30 bar – 3000 bar

    NMR Experiments

    • 76 amino acids

    • 6232 water molecules

    • 19985 atoms

    PDB: 1V80

    Simulated System

  • Time series of pressure P, potential energy E, and volume V for ubiquitin

    Y. Mori & Y.O., in preparation.

  • Large structural fluctuations

    Amino Acid Residues

    f [Å]

    • Fluctuations of distance d between pairs of Ca atoms.

    Large fluctuations observed in agreement with experiments.

    http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}f /equiv /sqrt{/langle d^2 /rangle - /langle d /rangle^2}/end{align*}

  • Structural changes under high pressure

    r

    r [Å]

    distribution [Å-1]

    r

  • Ubiquitin and water molecules

    at low pressure at high pressure

    Simulation and movie by Y. Mori

  • Experiments:

    R. Kitahara & K. Akasaka,

    PNAS 100, 3167 (2003).

    N

    H

  • Calculation of chemical shifts • We calculated 15N chemical shifts for all the amino acid residues

    and show the distributions of several calculated chemical shifts.

    • Program: CamShift (ver. 1.35)

    • Pressure: 1bar (blue) to 4,000 bar (red)

    Residue 70

    Residue 68 Residue 69

    Residue 71 Residue 72

    low pressure

    high pressure

    Y. Mori et al., in preparation.

  • Prediction of Protein-Ligand Binding Structures by

    Replica-Exchange Umbrella Sampling H. Kokubo, T. Tanaka & Y.O., J. Comput. Chem. 32, 2810-2821 (2011).

    Replica-Exchange Umbrella Sampling (REUS)

    Potential of Mean Force

    Hk q, p K p E0 q lVl q

    l1

    L

    , where Vl x Kl x q dl 2

    .

    W x 1

    ln P ,0 x .

    P , E,x Nm(E,x)e

    EV x

    m1

    M

    nmef m m EVm x

    m1

    M

    ,

    e f m P

    m , mE,x

    x

    E

    .WHAM

    Y. Sugita, A. Kitao & Y.O., J. Chem. Phys. 113, 6042 (2000).

    See also:

    E.M. Boczko & C.L. Brooks, J. Phys. Chem. 97, 4509 (1993).

    B. Roux, Comp. Phys. Commun. 91, 275 (1995).

  • Five test systems [ligand (protein)] (T = 300 K, P = 1 atm)

    benzodiazepine

    (protein: MDM2)

    deoxythymidine 3’,5’-bisphosphate (pdTp)

    (protein: staphylococcal nuclease)

    tyrosine

    (protein: aldolase)

    cytidylic acid (2’-CMP)

    (protein: ribonuclease A)

    2-aminopyrimidine

    (protein: heat shock protein HSP90)

    PDB code

    PDB code

    H. Kokubo, T. Tanaka & Y.O., J. Comput. Chem. 32, 2810-2821 (2011).

  • Umbrella Potentials (24 Replicas)

    dm : 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0,

    12.0, 13.0, 14.0, 15.0, 16.0, 17.5, 19.0, 20.5, 22.0, 23.5, 25.0

    km : 1.0 for dm < 13.5 Å, 0.5 for dm > 13.5 Å

    MD simulation: 110-220 nsec per replica

    H. Kokubo, T. Tanaka & Y.O., J. Comput. Chem. 32, 2810-2821 (2011).

  • The initial structures of five protein-ligand complexes

    53

    The space-filled molecules, which do not actually exist in these

    simulations, show the correct ligand binding positions (from

    PDB) as references. The ligands are in bulk water and far

    away from the binding pockets. 53

  • Simulation and movie by H. Kokubo

    MDM2 and benzodiazepine: REUS simulation

  • Snapshots of MDM2 protein system

    Protein surface is fluctuating

  • Simulation and movie

    by H. Kokubo

    heat shock protein and

    2-aminopyrimidine

    Asp-78 and ligand

  • Results: REUS with 24 replicas

    • Starting from configurations in which protein and ligand are far away from

    each other in each system, our method predicted the ligand binding

    structures as the global minima in free energy (or, potential of mean force)

    in excellent agreement with the experimental data from PDB.

    potential of mean force shows

    the most stable distance

    crystal

    predicted

    We remark that for 1ROB and 1SNC, there

    are attempts by a popular existing docking

    program, GOLD, but they failed in the

    predictions (classified as significant errors).

    H. Kokubo, T. Tanaka & Y.O., J. Comput. Chem. 32, 2810-2821 (2011).

  • Kinase systems we tested

    JNK3

    1PMV 150 nM

    2O2U 3.0 uM

    P38

    1OVE 0.74nM

    1OZ1 6.5 nM

    *240ns REUS simulations were performed for four systems:

    1PMV, 2O2U, 1OVE, and 1OZ1.

    H. Kokubo, T. Tanaka & Y.O., J. Chem. Theor. Comput. 9, 4660-4671 (2013).

  • Potential of Mean Force

    59

    1OZ1 1OVE

    1PMV 2O2U

    150 nM 3000 nM

    0.74nM 6.5 nM

    p38 p38

    JNK3 JNK3

    H. Kokubo, T. Tanaka & Y.O., J. Chem. Theor. Comput. 9, 4660-4671 (2013).

  • The comparison of the predicted global minimum free

    energy structures and PDB structures

    1PMV

    1OVE

    2O2U

    JNK3 JNK3

    p38 p38

    1OZ1 crystal predicted

    H. Kokubo, T. Tanaka & Y.O., J. Chem. Theor. Comput. 9, 4660-4671 (2013).

  • Movie for 1PMV

    Simulation and movie by H. Kokubo

  • Necessity of protein flexibility

    P38 & dihydroquinolinone (PDB ID: 1OVE)

    Without flexibility With flexibility

    H. Kokubo, T. Tanaka & Y.O., J. Chem. Theor. Comput. 9, 4660-4671 (2013).

  • Necessity of protein flexibility

    P38 & dihydroquinolinone (PDB ID: 1OVE)

    Without flexibility With flexibility

    H. Kokubo, T. Tanaka & Y.O., J. Chem. Theor. Comput. 9, 4660-4671 (2013).

  • Prediction of Protein-Ligand Binding Structures by

    2-dim H-REMD: Replica-Exchange Umbrella

    Sampling (REUS) and Replica-Exchange Solute

    Tempering (REST)

    H. Kokubo, T. Tanaka & Y.O., J. Comput. Chem. 34, 2601-2614 (2013) .

    Potential Energy:

    [ ] [ ] [ ]] [

    0

    [ ]

    0

    ( ) ( ) () )( ( )ni i i imn ll ls ss mn iE q U q U qU Vq q

    l: ligand

    s: protein/water

    REST: P. Liu, B. Kim, R.A. Friesner, & B.J. Berne, PNAS 102, 13749 (2005).

    REUS: Y. Sugita, A. Kitao & Y.O., J. Chem. Phys. 113, 6042 (2000).

    Total no. of replicas: M × N REST parameters (n=1, 2, …, N)

    REUS parameters, i.e., umbrella potentials

    (m=1, 2, …, M)

  • 2-dim H-REMD: REUS (M=24) + REST (N=8)

    (192 replicas)

    REUS (1T4E) REUS/REST (1T4E)

    No. of

    Random Walk

    Cycles

    H. Kokubo, T. Tanaka & Y.O., J. Comput. Chem. 34, 2601-2614 (2013) .

  • Force field refinement for all-atom

    protein models

    with Yoshitake Sakae

    REVIEW:

    Y. Sakae & Y.O.,

    in Computational Methods to Study the Structure and Dynamics of Biomolecules and

    Biomolecular Processes – from Bioinformatics to Molecular Quantum Mechanics

    A. Liwo (ed.) (Springer-Verlag, Berlin Heidelberg, 2014) pp. 195-247.

  • Force-field parameters for all-atom models

    2

    2

    12 6

    ( )

    ( )

    [1 cos( )]2

    332

    r eq

    eq

    n

    ij ij i

    conf

    bonds

    angles

    dihedrals

    i j j

    j

    i ij ij

    K r

    K

    E r

    Vn

    A q q

    R R

    B

    R

    f

    Bond-stretching

    Bond-bending

    Dihedral angle

    Non-bonding interactions

    (Lennard-Jones and electrostatic)

    These energy terms include some force-field parameters (blue color)

    Commonly used conformational potential energy

    The existing force fields have different force-field parameters

  • Force-field dependency of secondary-structure properties

    C-peptide

    (13 residues)

    AMBER parm94

    AMBER parm96

    AMBER parm99

    CHARMM22

    OPLS-AA/L

    GROMOS96

    α-h

    elix

    T. Yoda, Y. Sugita & Y.O.,

    Chem. Phys. Lett. 386, 460 (2004).

    Helicity of C-peptide

  • Typical example of folding simulations using different force fields

    AMBER ff94 AMBER ff96

    C-peptide

    (13 residues) Lys-Glu-Thr-Ala-Ala-Ala-Lys-Phe-Glu-Arg-Gln-His-Met

    Method:Simulated annealing, Simulation time : 1.0 nsec, Temperature : 700~200 K, Solvent model : GB/SA

  • 70

    Conformational Energy

    nonbondtorsionBABLconf EEEEE

    rest

    n

    nn

    torsion

    EE

    nV

    E

    ),(

    )]cos(1[2

    y

    Backbone-torsion energy term

    backbone dihedral

    angles φ and ψ

    rest of the torsion terms

    Φ : all dihedral angles

    n : number of waves

    γn : phase

    Vn : Fourier coefficient

    Side chain

  • Backbone-torsion energy surfaces of some force fields

    -180

    -90

    0

    90

    180

    180

    90

    0

    -90

    -180f

    y

    -180

    -90

    0

    90

    180

    180

    90

    0

    -90

    -180f

    y-180

    -90

    0

    90

    180

    180

    90

    0

    -90

    -180f

    y

    -180

    -90

    0

    90

    180

    180

    90

    0

    -90

    -180f

    y -180

    -90

    0

    90

    180

    180

    90

    0

    -90

    -180f

    y-180

    -90

    0

    90

    180

    180

    90

    0

    -90

    -180f

    y

    AMBER parm94 AMBER parm96 AMBER parm99

    CHARMM22 OPLS-AA OPLS-AA/L

  • 72

    m n

    nn

    mm n

    Vm

    VE )]cos(1[

    2)]cos(1[

    2),( yy

    resttorsion EE ),( y

    )sinsincossin yy nminnh mnmn

    1 1

    11

    sincoscoscos(

    )sincos()sincos(),(

    m n

    mnmn

    n

    nn

    m

    mm

    nmgnmf

    nendmcmba

    yy

    yyy

    Y. Sakae and Y.O., J. Phys. Soc. Jpn. 75, 054802 (9 pages) (2006).

    1. Proposal of new functional form

    conventional energy term

    New torsion energy term

    New backbone-torsion-energy term

    a,bm,cm,dn,en,fmn,gmn,hmn,imn

    : Fourier coefficient

  • Ramachandran plot

    タンパク質の構造入門第2版

    Example of the application of new backbone-torsion energy term

    -180

    -90

    0

    90

    180

    180

    90

    0

    -90

    -180f

    y-180

    -90

    0

    90

    180

    180

    90

    0

    -90

    -180f

    y-180

    -90

    0

    90

    180

    180

    90

    0

    -90

    -180f

    y

    a-helix region -structure region

    Energy surface of new energy term can represent Ramachandran space directly

  • 74

    -180

    -90

    0

    90

    180

    180

    90

    0

    -90

    -180f

    y

    -180

    -90

    0

    90

    180

    180

    90

    0

    -90

    -180f

    y

    ~

    ~

    ~

    ~

    ~

    ~

    ~

    ~

    AMBER parm94

    AMBER parm96

    Application to AMBER parm94 and AMBER parm96

    αhelix βstructure

    αhelix βstructure

  • 75

    AMBER parm94 AMBER parm96

    Original Original

    a-helix region a-helix region

    -structure region -structure region

    Results of folding simulations C-peptide

    Simulated annealing simulation Simulation time : 1ns (1,000,000 MD steps × 1.0fs × 60 times) Temperature : 2,000K to 250K (Berendsen’s method)

    Solvent : GB/SA model

  • 76

    AMBER parm94 AMBER parm96

    G-peptide

    Simulation time : 1ns (1,000,000 MD steps × 1.0fs × 60 times) Temperature : 2,000K to 250K (Berendsen’s method)

    Solvent : GB/SA model

    Results of folding simulations

    Original Original

    a-helix region a-helix region

    -structure region -structure region

    Simulated annealing simulation

  • mN

    mif

    2

    1 1

    1 m

    m

    m

    NN

    i

    m im

    F fN

    m

    m

    i

    m

    toti

    x

    Ef

    }{

    }{m

    totEmi

    fAtom i

    Molecule m

    Optimization method of force-field parameters

    Y. Sakae and Y.O., Chem. Phys. Lett. 382, 626-636 (2003)

    Number of atoms in molecule m

    Force acting on atom i

    Total potential energy for molecule m

    If force-field parameters are of ideal values, all native structures

    are stable without any force acting on each atom in molecules.

    (we expect F=0)

    In reality, F≠0, and because F ≥0, we can optimize the force-field

    parameters by minimizing F with respect to these parameters.

  • Structures of selected 100 proteins

    Resolution: >= 2.0Å, Sequence similarity of amino acid: >= 30%, Number of residue: < 200

  • Results: Optimized force-field parameters and its energy surface

    -180

    -90

    0

    90

    180

    180

    90

    0

    -90

    -180f

    y-180

    -90

    0

    90

    180

    180

    90

    0

    -90

    -180f

    y

    AMBER parm94 AMBER parm96

    Optimized ff

    yy

    yy

    yy

    yy

    y

    sinsin603.0cossin114.0

    sincos247.0coscos427.0

    2sin054.02cos019.0

    sin160.0cos287.0

    2sin100.02cos088.0

    sin327.0cos835.0),(

    -180

    -90

    0

    90

    180

    180

    90

    0

    -90

    -180f

    y

  • 80

    C-peptide

    (13 residues)

    blocked by COCH3- and –NH2

    G-peptide

    (16 residues)

    Test simulations

    Y. Sugita and Y.O., Chem. Phys. Lett. 314, 141-151 (1999)

    Replica Exchange Molecular Dynamics (REMD) simulation

    Simulation time : 5.0 ns (32 replica)

    Temperature : 700K to 250K (Nosé-Hoover method)

    Solvent : GB/SA model

    Program : Modified TINKER program package

  • C-peptide

    300K

    Comparison of helicity and strandness

  • G-peptide

    300K

    Comparison of helicity and strandness

  • C-peptide

    ),(ln),( yfyf BB PTkG

    Optimized ff

    AMBER ff96 AMBER ff94 300K

    Potential of mean force

  • G-peptide

    ),(ln),( yfyf BB PTkG

    Optimized ff

    AMBER ff96 AMBER ff94 300K

    Potential of mean force

  • COLLABORATORS Ayori MITSUTAKE [IMS Keio Univ.]

    Yuji SUGITA [IMS Univ. Tokyo RIKEN]

    Takao YODA [IMS Nagahama Inst. Bio-Science]

    Yoshitake SAKAE [IMS Hiroshima Univ. Nagoya Univ.]

    Yoshiharu MORI [Nagoya Univ. IMS]

    Tetsuro NAGAI [Nagoya Univ. Ritsumeikan Univ.]

    Hironori KOKUBO [IMS Univ. of Houston Takeda Pharm.]

    Toshimasa TANAKA [Takeda Pharm.]

    Takeshi NISHIKAWA [IMS AIST FOCUS]

    Yasuyuki ISHIKAWA [Univ. Puerto Rico]

    Ryo KITAHARA [Ritsumeikan Univ.]

    Kazuyuki AKASAKA [Kinki Univ.]

    Wolfhard JANKE [Univ. Leipzig]

    Giovanni LA PENNA [ICCOM, CNR, Firenze]

    Michele VENDRUSCOLO [Univ. of Cambridge]

    Christopher M. DOBSON [Univ. of Cambridge]