outline

63
30.03.22 30.03.22 Объединенный научный семинар Объединенный научный семинар "Глобальные и региональные аспекты в изучении климатической "Глобальные и региональные аспекты в изучении климатической системы Земли" системы Земли" (Рук. чл.-корр. РАН, проф. В.В. Зуев) (Рук. чл.-корр. РАН, проф. В.В. Зуев) 19.12.2013, Институт мониторинга климатических и экологических 19.12.2013, Институт мониторинга климатических и экологических систем СО РАН систем СО РАН Моделирование процессов поверхности суши с детальным описанием процессов в биосфере и гидрологии в рамках модели климатической системы В.Крупчатников e-mail: [email protected] Web: http://sibnigmi.ru

Upload: fredericka-kelley

Post on 01-Jan-2016

28 views

Category:

Documents


0 download

DESCRIPTION

Моделирование процессов поверхности суши с детальным описанием процессов в биосфере и гидрологии в рамках модели климатической системы В.Крупчатников e-mail: [email protected] Web: http://sibnigmi.ru. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: OUTLINE

19.04.2319.04.23

Объединенный научный семинарОбъединенный научный семинар "Глобальные и региональные аспекты в изучении климатической системы Земли" "Глобальные и региональные аспекты в изучении климатической системы Земли"

(Рук. чл.-корр. РАН, проф. В.В. Зуев)(Рук. чл.-корр. РАН, проф. В.В. Зуев)19.12.2013, Институт мониторинга климатических и экологических систем СО РАН19.12.2013, Институт мониторинга климатических и экологических систем СО РАН

Моделирование процессов поверхности суши с детальным описанием процессов в биосфере и гидрологии в рамках

модели климатической системы

В.Крупчатников

e-mail: [email protected] Web: http://sibnigmi.ru

Page 2: OUTLINE

19.04.2319.04.2319.04.2319.04.23 22

OUTLINEOUTLINE

Introduction

- Background

- Study Aim

- Modelling surface processes and Vegetation

- Experimental Design

- Future changes in Siberian region

- Results

-Discussions

- The new land component of ECHAM

Summary

Page 3: OUTLINE

19.04.2319.04.2319.04.2319.04.23 33

Exchanges between atmosphere and surface of :HeatWaterRadiationMomentum Biophysical consistency

Biogeochemistry, particularly as it affects atmospheric CO2Treatment of human land use (e.g., agriculture) and land-use change

Vegetation distribution changes consistently with climate

Scalability (grid independence?)

SiB , LSM, ISBA, CLM, CLM2, CLM3.5, NOAH,..., LSM/INM-RAS

Modelling of surface processes and vegetation

Page 4: OUTLINE

19.04.2319.04.2319.04.2319.04.23 44

Prognostic Variables for Canopy Layer

Page 5: OUTLINE

19.04.2319.04.23 5519.04.2319.04.23

Dynamics Global Vegetation Models(DGVM)

The BIOME4 Global Vegetation Model (Haxeltine and Prentice ,1996).- Lund – Potsdam –Jena (LPJ) – intermediate complexity model with broad rang of applications to global climate dynamics (S. Sitch et al, 2003)

- The Community Land Model + Dynamic Global Vegetation Model (S.Levis, G. Bonan, M. Vertenstein, and K. Oleson, 2004)

- HyLand (HYL) model (Levy et al., 2004);

- ORCHIDEE (ORC) model (Krinner et al., 2005);

- Sheffield -DGVM (SHE) (Woodward et al., 1995; Woodward and Lomas, 2004);

- TRIFFID (TRI) (Cox 2001).

- JSBACH (Raddatz et al., 2007; Brovkin et al., 2009; Reick et al., 2013)

Page 6: OUTLINE

19.04.2319.04.2319.04.2319.04.23 66

Variations in vegetation-cover parameters for the two scenarios vs. integration decade number (0–2000, 10–2100) for Siberia.

The Planet Simulator run

Page 7: OUTLINE

19.04.2319.04.2319.04.2319.04.23 77

Distribution of the portions of (a) and (b) forest vegetation and (c) and (d) herb and bushes over Siberia; (a) and (c) correspond to the beginning (the first decade) of the 21st century and (b) and (d) correspond to the end (the eighth decade) of the 21st century. Scenario A2.

Page 8: OUTLINE

19.04.2319.04.23

The dynamics of vegetation in Siberia is in agreement with the dynamics of surface hydrology and with surface heat sources.

At the end of the integration time for scenario A2, significant variations in the structure of vegetation occur in Siberia: • the portion of the land surface occupied by vegetation decreases from ~48% to 35%, • the forest portion decreases from 20 to 10%, and the herb portion increases up to 26%.

In the control experiment, at the end of the integration time, the portions of forest and herb amount to 22 and 24%, respectively.

In this case, albedo increased from 0.3 to 0.4, and evapotranspiration decreased by more than two times due to the decrease of the forest portion.

.

Summary, Research Questions and…

Page 9: OUTLINE

19.04.2319.04.23

The southward shift of the forest boundary and the rapid increase in the depth of snow cover in fall during the last decade of the 21st century resulted in an increase of surface albedo in Siberia (especially in winter) and in surface cooling in this region

Comparing the data obtained from a simulation of vegetation dynamics with a more complex model (LPJ), we obtained similar results for the evolution of the basic types of vegetation by scenario A2

The presented model of methane emission coupled with LSM model yielded global estimates of CH4 fluxes from wetland soils, seasonal changes in fluxes CH4 in main areas of wetland ecosystems in northern latitudes.

Page 10: OUTLINE

19.04.2319.04.23

• What is the uncertainty in the future atmospheric CO2 concentration associated with choice of DGVM and SRES emission scenario?

• How uncertain is the Climate-Carbon feedback?

• Do DGVMs agree on their Global and Regional responses to changes in climate and atmospheric composition?

• Which key ecological processes are poorly represented in the models?

Page 11: OUTLINE

19.04.2319.04.23

• By 2100, atmospheric CO2 concentrations differ by up to 285 ppm among DGVMs, equivalent to ~64% of the uncertainty associated with choice of SRES emission scenario (448 ppm).

• Improving our understanding of and ability to model terrestrial biosphere processes (e.g. plant response to drought/ heat stress) is paramount to enhance our ability to predict the future development of the Earth system !

JSBACH ? Yes!!

Page 12: OUTLINE

19.04.2319.04.23

JSBACH

Christian H. Reick, Veronika Gayler, Thomas Raddatz, Reiner Schnur and Stiig WilkenskjeldMax Planck Institute for Meteorology

D-20146 Hamburg, GermanyJuly 22, 2013

I have been instructed as visiting scientist to establish contacts with the working group for the dissemination and implementation of the surface model

JSBACH with a detailed description of hydrology and processes in the biosphere, and in the soil, to obtain official permission for later inclusion that model as components of the climate system model

MGO (St. Petersburg) .

Page 13: OUTLINE

19.04.2319.04.23

Page 14: OUTLINE

19.04.2319.04.23

Page 15: OUTLINE

19.04.2319.04.23

Page 16: OUTLINE

19.04.2319.04.23

Page 17: OUTLINE

19.04.2319.04.23

Page 18: OUTLINE

19.04.2319.04.23

Page 19: OUTLINE

19.04.2319.04.23

Page 20: OUTLINE

19.04.2319.04.23

Page 21: OUTLINE

19.04.2319.04.23

Page 22: OUTLINE

19.04.2319.04.23

Page 23: OUTLINE

19.04.2319.04.23

Page 24: OUTLINE

19.04.2319.04.23

Page 25: OUTLINE

19.04.2319.04.23

Page 26: OUTLINE

19.04.2319.04.23

Page 27: OUTLINE

19.04.2319.04.23

Page 28: OUTLINE

19.04.2319.04.23

Page 29: OUTLINE

19.04.2319.04.23

Page 30: OUTLINE

19.04.2319.04.23

Page 31: OUTLINE

19.04.2319.04.23

Page 32: OUTLINE

19.04.2319.04.23

Page 33: OUTLINE

19.04.2319.04.23

Page 34: OUTLINE

19.04.2319.04.23

Page 35: OUTLINE

19.04.2319.04.23

Modeling of ecosystem dynamics and carbon cycling with coupled climate model - LPJ-DGV model.

Page 36: OUTLINE

19.04.2319.04.23

Model Description

• CGCM/INM RAS 5x4 horizontal resolution and 21-level vertical resolution

• LSM/ICMMG SB RAS - biophysical and biochemical surface model

• Dynamic global vegetation model

Page 37: OUTLINE

19.04.2319.04.23

• Terrain-following vertical coordinate (21 σ-levels)

• Semi-implicit formulation of integration in time

• Energy conservation finite-difference schemes (5x 4) (Arakawa-Lamb,1981)

• Convection (deep, middle, shallow)

• Radiation (H2O, CO2, O3, CH4, N2O, O2; 18 spectral bands for SR and 10 spectral bands for LR)

• PBL (5 σ-levels)

• Gravity wave drag over irregular terrain

Coupled atmospheric - ocean model (INM/RAS):

Page 38: OUTLINE

19.04.2319.04.23

Land surface model(ICM&MG/SB RAS):

• Vegetation composition, structure

• Radiative fluxes

• Momentum and energy fluxes

• Vegetation and ground temperature

• Soil and lake temperature

• Surface hydrology (snow, runoff, soil water, canopy water etc.)

• CO2 emissions from terrestrial vegetation

• CH4 emissions from natural wetlands

Page 39: OUTLINE

19.04.2319.04.23

Leaf area index

Page 40: OUTLINE

19.04.2319.04.23

Grid structure in land surface model

Page 41: OUTLINE

19.04.2319.04.23

Global Net CO2 fluxes(mmol CO2/m^2 c), (coupled simulation)

Page 42: OUTLINE

19.04.2319.04.2319.04.2319.04.23 4242

CO2 emissions from terrestrial vegetation (photosynthesis, respiration)

CH4 emissions from natural wetlands

1 sa

s s i

eAm P b

r c e

m in ( , , )c j eA w w w 25

10[ ( ) ]v

mT

a

m l l s s r rR L R f N B R B R e

0.25( )s u n s u n s h a s h agR A L A L

( )s u n s u n s h a s h am gN P P A L A L R R t

1 0

1 00 )()(m e anTT

p r o d QTfNPPfRR

1 01 04

4ma xm e a nTT

CHm

CHo xid Q

CK

CVR

4 4( ) ( )e C H C H th r es hQ f C C C

,diff e plantF F F F

Page 43: OUTLINE

19.04.2319.04.2319.04.2319.04.23 4343

CH4 emissions from natural wetlands (coupled framework) West Siberia

CH4 fluxes from wetlands: observations [Muller J.F., 1992]; CH4 fluxes (mmol CH4(m^2 c) coupled simulation

Page 44: OUTLINE

19.04.2319.04.2319.04.2319.04.23 4444

Seasonal variation of CH4 fluxes for Western Siberia and Michigan

Page 45: OUTLINE

19.04.2319.04.23

Dynamic global vegetation model

• Plant functional types (10 PFT)• Annual vegetation and carbon dynamics• Penology• Production - water availability - photosynthesis - respiration - reproduction - allocation - mortality• Input data (monthly mean temperature, precipitation and

cloud cover)

Page 46: OUTLINE

19.04.2319.04.23

LPJ dynamic global vegetation model

• is able to simulate spatial distributions of soil, litter and vegetation carbon pools and NPP, runoff within their accepted ranges and agree with observed patterns

• is able to reproduce global vegetation distribution in general agreement with satellite derived maps of phenology and leaf type

• is able to reproduce carbon and water exchange with atmosphere on seasonal time scale;

• is able to evaluate seasonal cycle of CO2

Page 47: OUTLINE

19.04.2319.04.23

Plant functional type

Page 48: OUTLINE

19.04.2319.04.23

Simulated dominant PFT

Page 49: OUTLINE

19.04.2319.04.23

Model were driven by CM3.0(INM) (scenario A2)

Page 50: OUTLINE

19.04.2319.04.23

A2 Storyline and Scenario Family

The A2 scenario family represents a differentiated world. Compared to the A1 storyline it is characterized by lower trade flows, relatively slow capital stock turnover, and slower technological change. The A2 world "consolidates" into a series of economic regions.

Self-reliance in terms of resources and less emphasis on economic, social, and cultural interactions between regions are characteristic for this future. Economic growth is uneven and the income gap between now-industrialized and developing parts of the world does not narrow, unlike in the A1 and B1 scenario families.

The A2 world has less international cooperation than the A1 or B1 worlds.

People, ideas, and capital are less mobile so that technology diffuses more slowly than in the other scenario families.

High-income but resource-poor regions shift toward advanced post-fossil technologies (renewables or nuclear), while low-income resource-rich regions generally rely on older fossil technologies..

As in other SRES storylines, the intention in this storyline is not to imply that the underlying dynamics of A2 are either good or bad.

Page 51: OUTLINE

19.04.2319.04.23

INM-simulation cloudiness, 2010,

dcld = cld(2040) – cld(2010) and dcld = cld(2080) – cld(2040)

Page 52: OUTLINE

19.04.2319.04.23

INM-simulation of temperature 2010, dTemp = T(2040) - T(2010) and dTemp = T(2080) – T(2040)

Page 53: OUTLINE

19.04.2319.04.23

INM-simulation of precipitation 2010, dPrec = Prec(2040) - Prec(2010) and dPrec = Prec(2080) – Prec(2040)

Page 54: OUTLINE

19.04.2319.04.23

Increasing of CO2 concentration (ppm) according to scenario A2

Page 55: OUTLINE

19.04.2319.04.23

Table of PFT

• TrBE - tropical broad-leaved evergreen

• TrBR - tropical broad-leaved raingreen

• TeNE – temperate needle – leaved evergreen

• TeBE - temperate broad – leaved evergreen

• TeBS - temperate broad – leaved summergreen

• BoNE – boreal needle – leaved evergreen

• BoNS - boreal needle – leaved summergreen

• BoBS - boreal broad – leaved summergreen

• TeH - temperate herbaceous

• TrH - tropical herbaceous

Page 56: OUTLINE

19.04.2319.04.23

LPJ/INM(RAS)-simulation (scenario A2) Temperate(TeBS) (black), Boreal(BoNE) (green) forest dynamics for grid

cell(60E,60N)

Page 57: OUTLINE

19.04.2319.04.23

LPJ/INM(RAS)-simulation (scenario A2) Boreal(BoBS) forest (green) and Temperate(TeH) herbaceous (yellow) dynamics for

grid cell(60E,60N)

Page 58: OUTLINE

19.04.2319.04.23

LPJ/INM(RAS)-simulation (scenario A2) of carbon pools, (60E,60N)vegc – green, soilc – black, litterc - yellow

Page 59: OUTLINE

19.04.2319.04.23

LPJ/INM(RAS)-simulation (scenario A2) of carbon pools(left)),(90E,60N)

Page 60: OUTLINE

19.04.2319.04.23

LPJ/INM(RAS)-simulation (scenario A2) Boreal(BoNE, BoBS) forest dynamics for grid cell(90E,60N)

Page 61: OUTLINE

19.04.2319.04.23

LPJ/INM(RAS)-simulation (scenario A2) Temperate(TeH) herbaceous dynamics for grid cell(90E,60N)

Page 62: OUTLINE

19.04.2319.04.23

Conclusion

LPJ model includes

• explicit representation of vegetation structure, dynamics and competition between PFT over greed cell, soil biogeochemistry;

• LPJ run of modern climate are in agreement with other models;

• The study showed that simulated PFT after 2050 year (at ~ 500ppm) begin to lose stability and reaches new balance.

Page 63: OUTLINE

19.04.2319.04.23

“Those who have knowledge, do not predict, Those who predict, do not have knowledge.”

(Lao Tzu)