overview of molecular diagnostics part 1 - laboratory · pdf fileoverview of molecular...

17
10/16/2014 1 1 Overview of Molecular Diagnostics Part 1 Jennifer L. Hunt, MD, MEd Aubrey J. Hough Jr, MD, Endowed Professor of Pathology Chair of Pathology and Laboratory Medicine University of Arkansas for Medical Sciences [email protected] 2 Agenda Basic Techniques in Molecular Diagnostics Difficult starting materials Polymerase chain reaction Reverse transcriptase – PCR Detection methods Sequencing Fluorescent in situ hybridization Kary Mullis (1983): Polymerase Chain Reaction (Nobel Prize, 1993) Watson & Crick (1953): DNA (Nobel Prize, 1962) Alfred Knudson (1971): Tumor suppressor genes Frederick Sanger (1975): Sequencing First human genome sequenced (20002003) 1950 1970 1960 1980 1990 2000 5 Source of DNA Blood Body fluids Cytology samples Fresh or frozen cells and tissue Paraffin embedded tissue Cell blocks 6 Potential Issues With Samples Sample purity Normal cell contamination Sample size and template concentration Template quality and degradation

Upload: vokhanh

Post on 03-Mar-2018

215 views

Category:

Documents


2 download

TRANSCRIPT

10/16/2014

1

1

Overview of Molecular DiagnosticsPart 1

Jennifer L. Hunt, MD, MEdAubrey J. Hough Jr, MD, Endowed Professor of PathologyChair of Pathology and Laboratory MedicineUniversity of Arkansas for Medical [email protected]

2

Agenda

•Basic Techniques in Molecular Diagnostics•Difficult starting materials

•Polymerase chain reaction

•Reverse transcriptase – PCR

•Detection methods

•Sequencing

•Fluorescent in situ hybridization

Kary Mullis (1983):  Polymerase Chain Reaction (Nobel Prize, 1993)

Watson & Crick (1953):  DNA (Nobel Prize, 1962)

Alfred Knudson (1971): Tumor suppressor genes 

Frederick Sanger (1975): Sequencing

First human genome sequenced (2000‐2003)

1950

1970

1960 1980

1990

2000

5

Source of DNA

• Blood

• Body fluids

• Cytology samples

• Fresh or frozen cells and tissue

• Paraffin embedded tissue• Cell blocks

6

Potential Issues With Samples

• Sample purity • Normal cell contamination

• Sample size and template concentration

• Template quality and degradation

10/16/2014

2

7

Nucleic Acids in Tissues

What have you done to your specimen?

8

Fixatives Are Our Friend

• Stabilize cell morphology and tissue architecture

• Disable proteolytic enzymes

• Strengthen samples to withstand further processing and staining

• Protect samples against microbial contamination and decomposition

9

Fixatives in AP

•Cross-linking fixatives•Formaldehyde

•Glutaraldehyde

•Paraformaldehyde

•Precipitating fixatives•Alcohol

•Methanol

•Acetone

12

DNA Damage in Formalin

300 to 400Basepair Fragments

10/16/2014

3

13

Tissue Fixation

Fixative Components DNA Quality RNA Quality

Unbuffered formalin Formaldehyde Poor Poor

Buffered formalin FormaldehydePhosphate buffers

Fair Fair

Ethanol 70% - 100% Good Good

Decalcifying acids Various acids Poor Poor

Bouin’s Picric acidFormaldehydeGlacial acetic acid

Poor Poor

Mercury solutions Mercuric chloride Sodium acetate

Poor Poor

14

DNA Degradation

69%

17%

5%0%

10%

20%

30%

40%

50%

60%

70%

152 b 268 bp 676 bp

Gillio-Tos, Pathology, 39:345, 2007

25 year-old tissue blocks

15

Agenda

•Basic Techniques in Molecular Diagnostics•Difficult starting materials

•Polymerase chain reaction

•Reverse transcriptase – PCR

•Detection methods

•Sequencing

•Fluorescent in situ hybridization

16

Analysis of DNA

17

Analysis of DNA

•Fresh tissue, blood, or cytology fluids

•Frozen tissue

•Fixed tissue

•Paraffin embedded tissue•Archival

18

Polymerase Chain Reaction

•Discovered in 1983 (Kary Mullis, Cetus)

•Patented technique

•Patent sold to Roche in 1991 for $300 Million

10/16/2014

4

19

•Problems before PCR•Quantity of DNA was small

•The target was a tiny fraction of all DNA

Polymerase Chain Reaction

Quiz

22

•PCR enabled•Amplification for quantity

•Target specific enrichment

Polymerase Chain Reaction

23

•Template DNA

•Primers

•Taq enzyme

•Nucleotide building blocks

Polymerase Chain Reaction

24

Primer Design

•Primers•Short DNA sequence (18-24 nucleotides)

• Forward and Reverse•“Sense & Antisense”

10/16/2014

5

25

Primer Design

26

Primer Binding

27

Polymerase

•Taq Enzyme•Thermus Aquaticus

•DNA polymerase

•Heat activated

TaqTaqTaqTaqTaqTaqTaqTaq

C G AT

C

G

G

G

T

TT

A

A

A

A

CC CTTT AA GG C

G

G

G

T

T

A

A

A

C CGG AAT A G T T T C C CA A G T

29

PCR: Thermal Cyclers

30

Cycle 2

DenaturationCycle 1

DenaturationAnnealingExtension

90

72

55

DenaturationAnnealingExtension Denaturation

A

G

C

T A

G

T

AG

C

T

A

G

C

T

A

GC

T

AG

C

T

AG

C

TAA

G

T

G

C T

A

G

C

T

Annealing

10/16/2014

6

31

PCR Amplification

Time

PCR Product Exponential phase

Plateau phase

32

Agenda

•Basic Techniques in Molecular Diagnostics•Difficult starting materials

•Polymerase chain reaction

•Detection methods

•Reverse transcriptase – PCR

•Sequencing

•Fluorescent in situ hybridization

33

PCR Product Analysis

• What do we do after PCR?• Detect the sequence in the product

• The actual sequence (Sequencing)

• Differences that cause altered migration (MSI)

• Detect the amount of product• Quantitative (real time-PCR)

• Semi-quantitative (LOH)

34

PCR product detection

•Gel: Agarose or polyacrylamide

•Capillary electrophoresis

•Quantitative PCR

35

Agarose Gel Electrophoresis

36

Capillary Electrophoresis

10/16/2014

7

37

Capillary Electrophoresis

38

Capillary Gel Electrophoresis

2000

1800

1600

1400

Size of PCR product (basepairs)aaaaaaaaaa

aaaaaaaa

Relative amount of PCR product

41

Quantitative Real-Time PCR(not RT-PCR)

• Polymerase chain reaction with a reporter• Double stranded DNA binding dye

• Fluorescent reporter probe

Quantitative PCR

Fluorescence

Cycle Number

10/16/2014

8

Quantitative PCR

Fluorescence

Cycle Number

Fluorescent Reporter Probe

45

Agenda

•Basic Techniques in Molecular Diagnostics•Difficult starting materials

•Polymerase chain reaction

•Reverse transcriptase – PCR

•Detection methods

•Sequencing

•Fluorescent in situ hybridization

46

Nucleotide

Ribose

Nucleo

side

H

CH2

H

HH

H

O

3’

5’

O

NH2

Cytosine

OH

RNA: Bases (A, C, G, U)

47

Gene Structure and Translation

mRNA

DNA

Protein

Intron 1 Intron 2 Intron 3

EX

ON

2

EX

ON

3

EX

ON

4

EX

ON

1

5’ UTRPromoter

3’ UTR

EX

ON

4

EX

ON

3

EX

ON

2

EX

ON

1

48

Reverse Transcriptase – PCR

Extract RNAfrom sample

Reverse TranscribemRNA to cDNA

Perform PCR on 

cDNA sample

Analyze PCR

products

10/16/2014

9

49

Primers for Reverse Transcriptase

• Random hexamers• Anneals randomly

• Oligo dT • Anneals to polyA tail of mRNA

• Product specific primers• Anneals to location of interest

50

mRNA

Primers for Reverse Transcriptase

AAAAAA

TTTTTT

51

RT

Reverse Transcriptase - PCR

CC C CGGG TT TTT AAAAA GGC CGG AAU A G U U U C C CA A G U

cDNA

mRNA

52

RT-PCR Product Analysis

• What do we do after RT-PCR?• Detect qualitative product

• Abnormal transcripts (Translocation analysis)

• Detect the amount of product, which represents the amount of expression of a gene• Quantitative (Real time or quantitative RT-PCR)

53

Detecting Translocations

• DNA based PCR testing

• RNA based RT-PCR testing

• Fluorescent in situ hybridization (FISH)

54

Gene 1DNA

Gene 2DNA

Fusion mRNA

X

Product

X

10/16/2014

10

55

Agenda

•Basic Techniques in Molecular Diagnostics•Difficult starting materials

•Polymerase chain reaction

•Reverse transcriptase – PCR

•Detection methods

•Sequencing

•Fluorescent in situ hybridization

56

Mutation Detection Techniques

• PCR detection and screening methods• Heteroduplex formation

• Allele specific PCR

• SSCP

• Full sequencing methods• Sanger sequencing

• Single base extension

• Pyrosequencing

• Next generation sequencing

57

Detecting Point Mutations

• Full Gene Sequencing Approaches• Dideoxy sequencing (“first generation”)

• Sanger sequencing

• Single base extension sequencing (“SNaPshot”)

58

Sanger Sequencing: The Gold Standard

Template DNA

PCR Product

Sequence

PCR with primers

Sequencing reaction

59

Frederick Sanger (1918 - )

• University of Cambridge, England

• Nobel Laureate twice• Insulin and unique protein structures (1958)

• Dideoxy method of sequencing “Sanger method” (1980)

60

Sequencing Reaction

• Primer

• Polymerase

• Labeled bases (A T C G)• Abundant normal nucleotides

• Low concentration modified bases • Dideoxy instead of deoxy: stops extension (chain

terminator)

• Added fluorescent tag: product visualization

10/16/2014

11

Nucleotide

Deoxyribose

Nucleo

side

H

CH2

H

H

HH

H

5’

O

Cytosine

Dideoxynucleotide Chain Terminator

NH2

H

P

P

P

P

P

Dideoxynucleotide Nucleotides

C G ATT

A

CC CTTT AA GG

G

G

G

T

T

A

A

A

C

Sanger Sequencing

C CGG AAT A G T T T C C CA A G T

10/16/2014

12

Sanger Sequencingttgatttgagattaatctacttttgatttgagattaatctactttgatttgagattaatctacttgatttgagattaatctattgatttgagattaatctttgatttgagattaatcttgatttgagattaatttgatttgagattaattgatttgagattattgatttgagattttgatttgagatttgatttgagattgatttgagttgatttgattgatttgttgatttttgattttgatttgattgttt

A G C T

T T G A T T T G A G A T T A A T C T A C T T

ttgatTttgaTttgA

CC CTTT AA GG

SNaPshot Sequencing

G

T

C

A

C CGG AAT A G T T T C C CA A G T

Patient’s tumorNormal Control

PIK3CA Gene

72

Pitfalls in Sequencing

• Performance characteristics• Sensitivity is variable

• Deletion detection not optimal

• Technical• Expensive and labor intensive

• Time consuming

• Tissue fixation may be an issue

10/16/2014

13

Normal and Mutant

74

3/8

2/8

Normal Contamination

100%

75%

50%

Mt Wt Mt Wt Mt Wt Mt Wt

Mt Wt Mt Wt Mt Wt Wt

Mt Wt Mt Wt

Wt

WtWtWtWt

4/8

75

Allele Specific PCR

CC CTTT AA GGC CGG AAT A G T T T C C CA A G T

CC CTCT AA GGC CGG GAT A G T T T C C CA A G T

Normal Sequence (A allele)

Mutant Sequence (G allele)

Allele Specific PCR

Allele Specific PCR for BRAF Mutation

Normal BRAF

Mutant BRAF

BRAF gene mutation

Pyrosequencing for BRAF Mutation

Normal BRAF

Mutant BRAF

BRAF gene mutation

10/16/2014

14

79

Agenda

•Basic Techniques in Molecular Diagnostics•Difficult starting materials

•Polymerase chain reaction

•Reverse transcriptase – PCR

•Detection methods

•Sequencing

•Fluorescent in situ hybridization

80

Basic Techniques

• Fluorescent in situ hybridization• Quantitative

• Amplification

• Deletion

• Qualitative • Translocation analysis

• Presence foreign nucleic acid (virus)

83

In Situ: Normal Cell

10/16/2014

15

85

In Situ for Amplification

86

In Situ for Deletion

87

In Situ for Virus

88

In Situ for Translocations

• Fusion probes• One probe on each

partner

• Both genes must be known

• Will only pick up consistent partner genes

• Break-apart probes• Probes flank the break

point on one partner

• Only one gene must be known

• Will pick up variable translocations

89

Fusion for Translocation

90

Break-Apart for Translocation

10/16/2014

16

Ewing’s Sarcoma, EWS break-apart probe92

Pitfalls in Translocation Detection

• Tissue specific issues• Small size

• Fixation

• Interpretation issues• Truncation

• Overlap

• Gene and probe specific issues

10/16/2014

17

97

Gene Specific Issues

• RET-PTC and EML4-ALK• Intrachromosomal rearrangements

99

Summary

•Basic Techniques in Molecular Diagnostics•Difficult starting materials

•Polymerase chain reaction

•Reverse transcriptase – PCR

•Detection methods

•Sequencing

•Fluorescent in situ hybridization