overview of neutrino masses and mixing carlo giunti · c. giunti −neutrino masses and mixing...

30
OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti INFN, Sezione di Torino and Dipartimento di Fisica Teorica, Universit` a di Torino [email protected] Neutrino Unbound: http://www.nu.to.infn.it XXIIIe Congr` es G´ en´ eral de la Soci´ et´ e Fran¸ caise de Physique Strasbourg 24-28 August 2015 C. Giunti NEUTRINO MASSES AND MIXING SFP 2015 25 August 2015 1/30

Upload: others

Post on 03-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

OVERVIEW OFNEUTRINO MASSES AND MIXING

Carlo Giunti

INFN, Sezione di Torinoand

Dipartimento di Fisica Teorica, Universita di Torino

[email protected]

Neutrino Unbound: http://www.nu.to.infn.it

XXIIIe Congres General de la Societe Francaise de Physique

Strasbourg

24-28 August 2015

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 1/30

Page 2: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

Fermion Mass Spectrum

m [e

V]

10−4

10−3

10−2

10−1

1

10

102

103

104

105

106

107

108

109

1010

1011

1012

νe

eu

d

νµ

µs

c

ντ

τ

b

t

ν1 ν2 ν3

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 2/30

Page 3: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

Standard Model: Massless Neutrinos

1st Generation 2nd Generation 3rd Generation

Quarks:

(

uLdL

)

uRdR

(

uRdR

)

uLdL

(

cLsL

)

cRsR

(

cRsR

)

cLsL

(

tLbL

)

tRbR

(

tRbR

)

tLbL

Leptons:

(

νeLeL

)

✟✟❍❍νeReR

(

νeReR

)

✟✟❍❍νeLeL

(

νµLµL

)

✟✟❍❍

νµRµR

(

νµRµR

)

✚✚❩❩

νµLµL

(

ντLτL

)

✘✘❳❳ντRτR

(

ντRτR

)

✟✟❍❍ντLτL

◮ No νR =⇒ No Dirac mass term LDνe ∼ mDνeRνeL

◮ Majorana Neutrino: ν = ν =⇒ νR = νR

Majorana mass term: LMνe ∼ mMνeRνeL = mMνeRνeL

forbidden by Standard Model SU(2)L × U(1)Y symmetry!

◮ In Standard Model neutrinos are massless!

◮ Experimentally allowed until 1998, when the Super-Kamiokandeatmospheric neutrino experiment obtained a model-independent proof of

Neutrino OscillationsC. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 3/30

Page 4: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

Neutrino Oscillations

◮ 1957: Bruno Pontecorvo proposed a form of neutrino oscillations inanalogy with K 0 ⇆ K 0 oscillations (Gell-Mann and Pais, 1955).

◮ Theoretical and experimental developments led to neutrino mixing [Maki,

Nakagawa, Sakata, Prog. Theor. Phys. 28 (1962) 870] and the theory of neutrino oscillationsas flavor transitions which oscillate with distance [Pontecorvo, Sov. Phys. JETP 26

(1968) 984; Gribov, Pontecorvo, PLB 28 (1969); Bilenky, Pontecorvo, Sov. J. Nucl. Phys. 24 (1976) 316, PLB 61 (1976)

248; Fritzsch, Minkowski, Phys. Lett. B62 (1976) 72; Eliezer, Swift, Nucl. Phys. B105 (1976) 45] .

◮ Flavor Neutrinos: νe , νµ, ντ produced in Weak Interactions

◮ Massive Neutrinos: ν1, ν2, ν3 propagate from Source to Detector

◮ A Flavor Neutrino is a superposition of Massive Neutrinos

|νe〉 = Ue1 |ν1〉+ Ue2 |ν2〉+ Ue3 |ν3〉|νµ〉 = Uµ1 |ν1〉+ Uµ2 |ν2〉+ Uµ3 |ν3〉|ντ 〉 = Uτ1 |ν1〉+ Uτ2 |ν2〉+ Uτ3 |ν3〉

◮ U is the 3× 3 Neutrino Mixing Matrix

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 4/30

Page 5: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

|ν(t = 0)〉=|νµ〉 = Uµ1 |ν1〉+ Uµ2 |ν2〉+ Uµ3 |ν3〉

νµ

ν3

ν2

ν1

source propagation

νe

detector

|ν(t > 0)〉 = Uµ1 e−iE1t |ν1〉+ Uµ2 e

−iE2t |ν2〉+ Uµ3 e−iE3t |ν3〉6=|νµ〉

E 2k = p2 +m2

k

Pνµ→νe(t > 0) = |〈νe |ν(t > 0)〉|2 ∼∑

k>j

Re[

UekU∗

µkU∗

ejUµj

]

sin2

(

∆m2kjL

4E

)

transition probabilities depend on U and ∆m2kj ≡ m2

k −m2j

νe → νµ νe → ντ νµ → νe νµ → ντνe → νµ νe → ντ νµ → νe νµ → ντ

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 5/30

Page 6: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

Three-Neutrino Mixing Paradigm

Standard Parameterization of Mixing Matrix

U =

1 0 0

0 c23 s23

0 −s23 c23

c13 0 s13e−iδ13

0 1 0

−s13eiδ13 0 c13

c12 s12 0

−s12 c12 0

0 0 1

1 0 0

0 e iλ21 0

0 0 e iλ31

=

c12c13 s12c13 s13e−iδ13

−s12c23−c12s23s13eiδ13 c12c23−s12s23s13e

iδ13 s23c13

s12s23−c12c23s13eiδ13 −c12s23−s12c23s13e

iδ13 c23c13

1 0 0

0 e iλ21 0

0 0 e iλ31

cab ≡ cosϑab sab ≡ sinϑab 0 ≤ ϑab ≤π

20 ≤ δ13, λ21, λ31 < 2π

OSCILLATIONPARAMETERS

3 Mixing Angles: ϑ12, ϑ23, ϑ13

1 CPV Dirac Phase: δ132 independent ∆m2

kj ≡ m2k −m2

j : ∆m221, ∆m2

31

2 CPV Majorana Phases: λ21, λ31 ⇐⇒ |∆L| = 2 processes

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 6/30

Page 7: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

Experimental Evidences of Neutrino Oscillations

Solar

νe → νµ, ντ

SNO, BOREXino

Super-Kamiokande

GALLEX/GNO, SAGE

Homestake, Kamiokande

VLBL Reactor

νe disappearance(KamLAND)

∆m2S = ∆m

221 ≃ 7.6× 10−5 eV2

sin2 ϑS = sin2 ϑ12 ≃ 0.30

Atmospheric

νµ → ντ

Super-Kamiokande

Kamiokande, IMB

MACRO, Soudan-2

LBL Accelerator

νµ disappearance

(

K2K, MINOS

T2K, NOνA

)

LBL Accelerator

νµ → ντ(Opera)

∆m2A = |∆m

231| ≃ 2.4× 10−3 eV2

sin2 ϑA = sin2 ϑ23 ≃ 0.50

LBL Accelerator

νµ → νe(T2K, MINOS, NOνA)

LBL Reactor

νe disappearance

(

Daya Bay, RENO

Double Chooz

)

∆m2A = |∆m

231|

sin2 ϑ13 ≃ 0.023

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 7/30

Page 8: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

0.0

0.2

0.4

0.6

0.8

1.0

L [km]

Pν e

→ν e

10−1 1 10 102 103

E ≈ 3.6MeV (reactor νe)

EL

≈ ∆mA2

E L ≈ ∆mS2

JUNORENO−50

DC

DB

R

KamLAND

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 8/30

Page 9: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

Recent Global Fits

◮ Capozzi, Fogli, Lisi, Marrone, Montanino, PalazzoStatus of three-neutrino oscillation parameters, circa 2013Phys.Rev. D89 (2014) 093018, arXiv:1312.2878

◮ Forero, Tortola, ValleNeutrino oscillations refittedPhys.Rev. D90 (2014) 093006, arXiv:1405.7540

◮ Gonzalez-Garcia, Maltoni, SchwetzUpdated fit to three neutrino mixing: status of leptonic CP violationJHEP 1411 (2014) 052, arXiv:1409.5439

◮ Bergstrom, Gonzalez-Garcia, Maltoni, SchwetzBayesian global analysis of neutrino oscillation dataarXiv:1507.04366

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 9/30

Page 10: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

∆m2S = ∆m2

21 ≃ 7.5± 0.3 × 10−5 eV2 uncertainty ≃ 3%

∆m2A = |∆m2

31| ≃ |∆m232| ≃ 2.4 ± 0.1× 10−3 eV2 uncertainty ≃ 4%

U =

1 0 0

0 c23 s23

0 −s23 c23

ϑ23 = ϑA

sin2 ϑ23 ≃ 0.4− 0.6

Posc ∝ sin2 2ϑ23

maximal and flat

at ϑ23 = 45◦

c13 0 s13e−iδ13

0 1 0

−s13eiδ13 0 c13

Daya Bay, RENO

Double Chooz

T2K, MINOS

sin2 ϑ13 ≃ 0.023 ± 0.002

δ13 ≈ 3π/2?

c12 s12 0

−s12 c12 0

0 0 1

ϑ12 = ϑS

sin2 ϑ12 ≃ 0.30 ± 0.01

1 0 0

0 e iλ21 0

0 0 e iλ31

ββ0ν

δ sin2 ϑ23

sin2 ϑ23≈ 40%

δ sin2 ϑ13

sin2 ϑ13≈ 10%

δ sin2 ϑ12

sin2 ϑ12≈ 5%

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 10/30

Page 11: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

Maximal CP Violation?

)13θ(2sin

0.02 0.04 0.06 0.08 0.1

π/

CP

δ

-1

-0.5

0

0.5

1

T2K Only 68% Credible Region

T2K Only 90% Credible Region

T2K Only Best Fit Line

T2K+Reactor 68% Credible Region

T2K+Reactor 90% Credible Region

T2K+Reactor Best Fit Point

T2K, Phys.Rev. D91 (2015) 072010, arXiv:1502.01550

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 11/30

Page 12: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

Mass Ordering

νe νµ ντ

∆m2A

∆m2S

ν2

ν1

ν3

m2

Normal Ordering

∆m231 > ∆m2

32 > 0

m2

∆m2S

ν2

ν1

∆m2A

ν3

Inverted Ordering

∆m232 < ∆m2

31 < 0

absolute scale is not determined by neutrino oscillation data

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 12/30

Page 13: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

Open Problems

◮ ϑ23 ⋚ 45◦ ?◮ T2K (Japan), NOνA (USA), PINGU (Antarctica), ORCA (EU),

INO (India), . . .

◮ Mass Ordering (Hierarchy) ?◮ NOνA (USA), JUNO (China), RENO-50 (Korea), PINGU (Antarctica),

ORCA (EU), INO (India), . . .

◮ CP violation ? δ13 ≈ 3π/2 ?◮ T2K (Japan), NOνA (USA), DUNE (USA), HyperK (Japan), . . .

◮ Absolute Mass Scale ?◮ β Decay, Neutrinoless Double-β Decay, Cosmology, . . .

◮ Dirac or Majorana ?◮ Neutrinoless Double-β Decay, . . .

◮ Beyond Three-Neutrino Mixing ? Sterile Neutrinos ?

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 13/30

Page 14: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

Absolute Scale of Neutrino Masses

Lightest mass: m1 [eV]

m1,

m2,

m3

[e

V]

10−3 10−2 10−1 110−3

10−2

10−1

1

m1m2

m3

∆mS2

∆mA2

95% M

ainz and Troitsk Limit

95% K

ATR

IN S

ensitivity

95% C

osmological Lim

itNormal Hierarchy

Quasi−DegenerateNormal Ordering

m3

m2m1

m22 = m2

1 +∆m221 = m2

1 +∆m2S

m23 = m2

1 +∆m231 = m2

1 +∆m2A

Lightest mass: m3 [eV]m

3, m

1, m

2

[eV

]

10−3 10−2 10−1 110−3

10−2

10−1

1

m3

m1

m2∆mA

2

95% M

ainz and Troitsk Limit

95% K

ATR

IN S

ensitivity

95% C

osmological Lim

itInverted Hierarchy

Quasi−DegenerateInverted Ordering

m2m1

m3

m21 = m2

3 −∆m231 = m2

3 +∆m2A

m22 = m2

1 +∆m221 ≃ m2

3 +∆m2A

Quasi-Degenerate for m1 ≃ m2 ≃ m3 ≃ mν &√

∆m2A ≃ 5× 10−2 eV

95% Cosmological Limit: Planck TT + lowP + BAO [arXiv:1502.01589]

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 14/30

Page 15: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

Neutrinoless Double-β Decay

∆L = 2

N (A,Z ) → N (A,Z +2)+ e− + e−

(T 0ν1/2)

−1 = G0ν |M0ν |2 |mββ |

2

mββ =∑

k

U2ekmk

d u

W

k

m

k

U

ek

U

ek

W

d u

e

e

Effective Majorana Neutrino Mass

mββ = |Ue1|2 m1 + |Ue2|

2 e iα21 m2 + |Ue3|2 e iα31 m3

α21 = 2λ21 α31 = 2 (λ31 − δ13)

possible cancellations between the three mass contributions

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 15/30

Page 16: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

Lightest mass: m1 [eV]

|Uek

|2 mk

[e

V]

10−4 10−3 10−2 10−1 110−4

10−3

10−2

10−1

1

|Ue1|2m1

|Ue2|2m2

|Ue3|2m3

3ν − Normal Ordering

1σ2σ3σ

Lightest mass: m1 [eV]

|mββ

| [

eV]

90% C.L. UPPER LIMIT

10−4 10−3 10−2 10−1 110−4

10−3

10−2

10−1

1

3ν − Normal Ordering

(+,+)(+,−)(−,+)(−,−)1σ2σ3σCPV

Lightest mass: m3 [eV]

|Uek

|2 mk

[e

V]

10−4 10−3 10−2 10−1 110−4

10−3

10−2

10−1

1

|Ue1|2m1

|Ue2|2m2

|Ue3|2m3

3ν − Inverted Ordering

1σ2σ3σ

Lightest mass: m3 [eV]

|mββ

| [

eV]

90% C.L. UPPER LIMIT

10−4 10−3 10−2 10−1 110−4

10−3

10−2

10−1

1

3ν − Inverted Ordering

(+,+)(+,−)(−,+)(−,−)1σ2σ3σCPV

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 16/30

Page 17: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

Indications of SBL Oscillations Beyond 3ν

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 17/30

Page 18: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

Reactor Electron Antineutrino Anomaly[Mention et al, PRD 83 (2011) 073006; update in White Paper, arXiv:1204.5379]

New reactor νe fluxes [Mueller et al, PRC 83 (2011) 054615; Huber, PRC 84 (2011) 024617]0.

70.

80.

91.

01.

11.

2

L [m]

R=

Nex

pN

no o

sc.

10 102 103

R = 0.933 ± 0.021

[2014 update of Giunti, Laveder, Li, Liu, Long, PRD 86 (2012) 113014]

Bugey−4Rovno91Bugey−3−15Bugey−3−40

Bugey−3−95Gosgen−38Gosgen−45Gosgen−65

ILL Krasno−33Krasno−92Krasno−57

Rovno88−1IRovno88−2IRovno88−1SRovno88−2S

Rovno88−3SSRP−18SRP−24Chooz

Palo VerdeDouble ChoozDaya Bay

νe → νe L ∼ 10− 100m E ∼ 4MeVNominal ≈ 3.1σ deficit ∆m2 & 0.5 eV2 (≫ ∆m2

A ≫ ∆m2S)

[see also: Sinev, arXiv:1103.2452; Ciuffoli, Evslin, Li, JHEP 12 (2012) 110; Zhang, Qian, Vogel, PRD 87 (2013) 073018;

Kopp, Machado, Maltoni, Schwetz, JHEP 1305 (2013) 050; Ivanov et al, PRC 88 (2013) 055501]

Problem: unknown νe flux uncertainties?[Hayes, Friar, Garvey, Jonkmans, PRL 112 (2014) 202501; Dwyer, Langford, PRL 114 (2015) 012502]

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 18/30

Page 19: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

0.7

0.8

0.9

1.0

1.1

L [m]

Pν e

→ν e

1 10 102 103

E ≈ 3.6MeV (reactor νe)

DCDB DB

R∆mSBL

2 [eV2]∆mSBL2 [eV2]

0.10.51

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 19/30

Page 20: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

Gallium Anomaly

Gallium Radioactive Source Experiments: GALLEX and SAGE

Detection Process: νe +71Ga → 71Ge + e−

νe Sources: e− + 51Cr → 51V + νe e− + 37Ar → 37Cl + νe

0.7

0.8

0.9

1.0

1.1

R=

Nex

pN

no o

sc.

Cr1GALLEX

CrSAGE

Cr2GALLEX

ArSAGE

R = 0.84 ± 0.05

[Giunti, Laveder, Li, Liu, Long, PRD 86 (2012) 113014]

νe → νe E ∼ 0.7MeV

〈L〉GALLEX = 1.9m

〈L〉SAGE = 0.6m

Nominal ≈ 2.9σ anomaly

∆m2 & 1 eV2 (≫ ∆m2A ≫ ∆m2

S)

[SAGE, PRC 73 (2006) 045805; PRC 80 (2009) 015807]

[Laveder et al, Nucl.Phys.Proc.Suppl. 168 (2007) 344;MPLA 22 (2007) 2499; PRD 78 (2008) 073009;

PRC 83 (2011) 065504]

[Mention et al, PRD 83 (2011) 073006]

◮ 3He+ 71Ga → 71Ge+ 3H cross section measurement [Frekers et al., PLB 706 (2011) 134]

◮ Eth(νe +71Ga → 71Ge + e−) = 233.5± 1.2 keV [Frekers et al., PLB 722 (2013) 233]

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 20/30

Page 21: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

LSND[PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007]

νµ → νe L ≃ 30m 20MeV ≤ E ≤ 60MeV

other

p(ν_

e,e+)n

p(ν_

µ→ν_

e,e+)n

Ee MeV

Bea

m E

vent

s

Beam Excess

0

5

10

15

20

25

30

35

20 25 30 35 40 45 50 55 60

◮ Well known source of νµ:

µ+ at rest → e+ + νe + νµ

◮ νµ −−−−→L≃30m

νe

◮ Well known detection process of νe :

νe + p → n + e+

◮ But signal not seen by KARMENwith same method at L ≃ 18m

[PRD 65 (2002) 112001]

Nominal ≈ 3.8σ excess ∆m2 & 0.2 eV2 (≫ ∆m2A ≫ ∆m2

S)

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 21/30

Page 22: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

MiniBooNE

L ≃ 541m 200MeV ≤ E . 3GeV

νµ → νe [PRL 102 (2009) 101802]

LSND signal

νµ → νe [PRL 110 (2013) 161801]

LSND signal

◮ Purpose: check LSND signal.

◮ Different L and E .

◮ Similar L/E (oscillations).

◮ No money, no Near Detector.

◮ LSND signal: E > 475MeV.

◮ Agreement with LSND signal?

◮ CP violation?

◮ Low-energy anomaly!

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 22/30

Page 23: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

Beyond Three-Neutrino Mixing: Sterile Neutrinos

ν1

m21 logm2m2

2

ν2 ν3

m23

νe

νµ

ντνs1 · · ·

ν4 ν5 · · ·

m24 m2

5

νs2

3ν-mixing

∆m2ATM ∆m2

SBL∆m2SOL

Terminology: a eV-scale sterile neutrinomeans: a eV-scale massive neutrino which is mainly sterile

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 23/30

Page 24: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

Effective SBL Oscillation Probabilities in 3+1 Schemes

PSBL(−)

να→

(−)

νβ

≃ sin2 2ϑαβ sin2

(

∆m241L

4E

)

sin2 2ϑαβ = 4|Uα4|2|Uβ4|

2

PSBL(−)

να→

(−)

να

≃ 1− sin2 2ϑαα sin2(

∆m241L

4E

)

sin2 2ϑαα = 4|Uα4|2(

1− |Uα4|2)

Perturbation of 3ν Mixing: |Ue4|2 ≪ 1 , |Uµ4|

2 ≪ 1 , |Uτ4|2 ≪ 1 , |Us4|

2 ≃ 1

Ue4

Uµ4

Uτ4

Us4

Uτ3

Ue3

Uµ3

Us3

Uµ2

Uτ2

Ue2

Us2

Uτ1

Ue1

Uµ1

Us1

U =

SBL

◮ 6 mixing angles

◮ 3 Dirac CP phases

◮ 3 Majorana CP phases

◮ But CP violation is not observablein current SBL experiments!

◮ Observable in LBL accelerator exp. sensitive

to ∆m2ATM [de Gouvea, Kelly, Kobach, PRD 91 (2015)

053005; Klop, Palazzo, PRD 91 (2015) 073017; Berryman, de

Gouvea, Kelly, Kobach, arXiv:1507.03986] and solar exp.

sensitive to ∆m2SOL [Long, Li, Giunti, PRD 87, 113004

(2013) 113004]C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 24/30

Page 25: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

3+1: Appearance vs Disappearance

◮ Amplitude of νe disappearance:

sin2 2ϑee = 4|Ue4|2(

1− |Ue4|2)

≃ 4|Ue4|2

◮ Amplitude of νµ disappearance:

sin2 2ϑµµ = 4|Uµ4|2(

1− |Uµ4|2)

≃ 4|Uµ4|2

◮ Amplitude of νµ → νe transitions:

sin2 2ϑeµ = 4|Ue4|2|Uµ4|

2 ≃1

4sin2 2ϑee sin

2 2ϑµµ

◮ Upper bounds on νe and νµ disappearance ⇒ strong limit on νµ → νe[Okada, Yasuda, IJMPA 12 (1997) 3669; Bilenky, Giunti, Grimus, EPJC 1 (1998) 247]

◮ Similar constraint in 3+2, 3+3, . . . , 3+Ns ! [Giunti, Zavanin, arXiv:1508.03172]

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 25/30

Page 26: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

Global 3+1 Fit[Giunti, Laveder, Y.F. Li, H.W. Long, PRD 88 (2013) 073008]

sin22ϑeµ

∆m412

[e

V2 ]

10−4 10−3 10−2 10−1 110−1

1

10

+

10−4 10−3 10−2 10−1 110−1

1

10

+

[2014 update of Giunti, Laveder, Li, Long, PRD 88 (2013) 073008]

3+1 − GLO

68.27% CL90.00% CL95.45% CL99.00% CL99.73% CL

3+1 − 3σνe DISνµ DISDISAPP

MiniBooNE E > 475MeVGoF = 26% PGoF = 7%

◮ APP νµ → νe & νµ → νe :LSND (νs), MiniBooNE (?),OPERA (✚✚❩❩νs), ICARUS (✚✚❩❩νs),KARMEN (✚✚❩❩νs),NOMAD (✚✚❩❩νs), BNL-E776 (✚✚❩❩νs)

◮ DIS νe & νe : Reactors (νs),Gallium (νs), νeC (✚✚❩❩νs),Solar (✚✚❩❩νs)

◮ DIS νµ & νµ: CDHSW (✚✚❩❩νs),MINOS (✚✚❩❩νs),Atmospheric (✚✚❩❩νs),MiniBooNE/SciBooNE (✚✚❩❩νs)

No Osc. nominally disfavoredat ≈ 6.3σ

∆χ2/NDF = 47.7/3

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 26/30

Page 27: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

νe and νµ Disappearance

sin22ϑee

∆m412

[e

V2 ]

10−2 10−1 110−1

1

10

+

νe DIS

3+1 − GLO

68.27% CL90.00% CL95.45% CL99.00% CL99.73% CL

νe DIS

95.45% CL (2σ)99.73% CL (3σ)

sin22ϑµµ

∆m412

[e

V2 ]

10−2 10−1 110−1

1

10

+

νµ DIS

3+1 − GLO

68.27% CL90.00% CL95.45% CL99.00% CL99.73% CL

νµ DIS

95.45% CL (2σ)99.73% CL (3σ)

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 27/30

Page 28: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

Neutrinoless Double-β Decay

mββ = |Ue1|2 m1 + |Ue2|

2 e iα21 m2 + |Ue3|2 e iα31 m3 + |Ue4|

2 e iα41 m40

24

68

10

mββ(4)

[eV]

∆χ2

10−3 10−2 10−1 1

GERDA, EXO, KLZ, CUOR90% CL

68.27%

90%

95.45%

99%

99.73%

SBL

3+1 Fit[Giunti, Laveder, Li, Long, 2014]

m(k)ββ = |Uek |

2mk

m1 ≪ m4

m(4)ββ ≃ |Ue4|

2√

∆m241

surprise:possible cancellation

with m(3ν)ββ

[Barry et al, JHEP 07 (2011) 091]

[Li, Liu, PLB 706 (2012) 406]

[Rodejohann, JPG 39 (2012) 124008]

[Girardi, Meroni, Petcov, JHEP 1311 (2013) 146]

[Giunti, Zavanin, JHEP 07 (2015) 171]

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 28/30

Page 29: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

Lightest mass: m1 [eV]

|Uek

|2 mk

[e

V]

10−4 10−3 10−2 10−1 110−4

10−3

10−2

10−1

1

|Ue1|2m1

|Ue2|2m2

|Ue3|2m3

|Ue4|2m4

Normal 3ν Ordering

1σ2σ3σ

ν4

1σ2σ3σ

Lightest mass: m1 [eV]

|mβ

β| [eV

]

10−4

10−3

10−2

10−1

1

10−4

10−3

10−2

10−1

1 3+1 − Normal 3ν Ordering

CPV

(+,+,+)

(+,+,−)

(+,−,+)

(+,−,−)

(−,+,+)

(−,+,−)

(−,−,+)

(−,−,−)

Lightest mass: m3 [eV]

|Uek

|2 mk

[e

V]

10−4 10−3 10−2 10−1 110−4

10−3

10−2

10−1

1

|Ue1|2m1

|Ue2|2m2

|Ue3|2m3

|Ue4|2m4

Inverted 3ν Ordering

1σ2σ3σ

ν4

1σ2σ3σ

Lightest mass: m3 [eV]

|mβ

β| [eV

]

10−3

10−2

10−1

1

10−4

10−3

10−2

10−1

1 3+1 − Inverted 3ν Ordering

CPV

(+,+,+)

(+,+,−)

(+,−,+)

(+,−,−)

(−,+,+)

(−,+,−)

(−,−,+)

(−,−,−)

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 29/30

Page 30: OVERVIEW OF NEUTRINO MASSES AND MIXING Carlo Giunti · C. Giunti −NEUTRINO MASSES AND MIXING −SFP 2015 −25 August 2015 −2/30. Standard Model: Massless Neutrinos 1st Generation

Conclusions

◮ Robust Three-Neutrino Mixing Paradigm.Open problems with exciting experimental program: ϑ23 ⋚ 45◦?, MassOrdering, CP Violation, Absolute Mass Scale, Dirac or Majorana?Determination of Mass Ordering is very important!

◮ Short-Baseline νe and νe Disappearance:◮ Experimental data agree on Reactor νe and Gallium νe anomalies.◮ Problem: unknown systematic uncertainties (Reactor νe flux).◮ Many promising projects to test unambiguously short-baseline νe and νe

disappearance in a few years with reactors and radioactive sources.◮ Independent tests through effect of m4 in β-decay and ββ0ν -decay.

◮ Short-Baseline νµ → νe LSND Signal:

◮ Not seen by other SBL(−)

νµ →(−)

νe experiments.◮ MiniBooNE experiment has been inconclusive.◮ Experiments with near detector are needed to check LSND signal!◮ Promising Fermilab program aimed at a conclusive solution of the mystery:

a near detector (LAr1-ND), an intermediate detector (MicroBooNE) and afar detector (ICARUS-WA104), all Liquid Argon Time Projection Chambers.

C. Giunti − NEUTRINO MASSES AND MIXING − SFP 2015 − 25 August 2015 − 30/30