particle interactions with modified dispersion relations yi ling (凌意) ihep,cas &...

38
Particle Interactions with Modified Dispersion Relations Yi Ling 凌凌凌 () IHEP,CAS & Nanchang University 2012 凌凌凌凌凌凌凌凌凌凌凌凌凌 , 凌凌 ,05/09/2012

Upload: ethel-hunter

Post on 13-Jan-2016

314 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

Particle Interactions with Modified Dispersion Relations

Yi Ling (凌意)

IHEP,CAS & Nanchang University2012两岸粒子物理与宇宙学研讨会 , 重庆 ,05/09/2012

Page 2: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

Outlines

• The fate of Lorentz symmetry at Planck scale

• Introduction to deformed special relativity

• What is the difference between Lorentz violation theory and deformed special relativity

• The composition law of particles with modified dispersion relations

Page 3: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The fate of Lorentz symmetry at Planck scale

• “Planck length paradox”: Lorentz contraction in special relativity:

Energy-momentum relation:

The existence of the minimal length that can be measured

2 201 /L v c L , 0v c L

2 2 2 2 4E p c m c

pL l2ˆ 8 ( 1)pj A j l j j

212

2 p px l p lp

2 2' , '

1 1

E vp p vEE p

v v

Page 4: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The fate of Lorentz symmetry at Planck scale

• The possibilities of Lorentz symmetry at high energy level

1. Keeping the original form

2. Manifestly broken

3. Deformed

• Deformed special relativity (Doubly special relativity) (DSR) was originally proposed in the context of quantum gravity phenomenology to reconcile the relativity principle and the existence of the minimal length scale which is uniform and

invariant to all observers.

Page 5: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

• The relativity of inertial frames, two universal constants:

1) In the limit , the speed of a photon goes to a

universal constant, .

2) in the above condition is also a universal constant.

/ 0plE E

plE

c

2 2 2 2 2/ , / ,pl plf E E E g E E p m

As a result, the energy-momentum relation is usually modified to

1pl pE l

Introduction to deformed special relativity

Page 6: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

Introduction to deformed special relativity• Lorentz transformation in standard special relativity (1+1 dim.)

• Lorentz transformation in deformed special relativity

' ( )

' ( )

E E vp

p p vE

2 2 2 2 2' 'm E p E p

, 010 ' '

, 01

E vvm E p E p E

E vv

1, ' 0, 1, ' .v E v E

2 22

2 2(1 ) (1 )

E pm

lE lE

2 2 2 2?2

2 2 2 2

' '

(1 ) (1 ) (1 ') (1 ')

E p E pm

lE lE lE lE

e.g.

Page 7: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

Introduction to deformed special relativity• Lorentz transformation in deformed special relativity

(1 )0, ' '

1 [ (1 ) 1]

v Em E p

l v E

( )'

1 [ ( ) ]

( )'

1 [ ( ) ]

E vpE

l E vp E

p vEp

l E vp E

1 1If , then 'E E

l l

1If , then 'v c E

l

Page 8: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

Introduction to deformed special relativity• Remark: the Lorentz transformation law depends on the form of

modified dispersion relation

' ( )2

' [ (( ( )( ))]2

lE E vp Evp

lp p vE Ep p vE E vP

2 2 2 2( )m E p lE p

Page 9: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

Two open problems in DSR

• Usually the standard dispersion relation in special relativity will be modified with correction terms

However, such a modification in theory would lead to some severe problems…

2 2 2 2( )npm E p l E p

Page 10: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

Two open problems in DSR

• A field theory with MDR is still absent. How to define the position space?

F

nonL

'p

px

1F'x

??px

Page 11: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

Two open problems in DSR

• The soccer problem

2 2 2 21, ( / )pn m E p E M p

This modified dispersion relation is not applicable to composite particles and macroscopic objects. Thus it is not universal but particle number dependent.

2 2 2 2

, E , P

E P (E / )Pp

M nm nE np

M nM

19 5:10 10pM Gev g

Page 12: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

the difference between Lorentz violation theory and deformed special relativity• Example: the derivation of the threshold value of the interaction

A. In standard special relativity

p p D

1 2 Dp p p p 2 21 2( ) ( )Dp p p p

Center-of-mass reference frame:

Laboratory reference frame:

2 2 2 2 21 2 1 2 1 2 1 1LHS ( ) ( ) =( ) 2 2p pE E p p E E p m m E

2 2 2 2D RHS ( ' ' ) ( ' ' ) =( ) ( )D D DE E p p E E m m

2 2

1

( ) 2

2D p

thp

m m mE

m

Laboratory reference frame:2 2 2 2

D

2 2 2

RHS ( ) ( ) = 2( )

= 2 ( )

D D D D

D D D

E E p p m m E E p p

m m m m m m

D D

p m

p m

Page 13: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

the difference between Lorentz violation theory and deformed special relativity

B. In Lorentz violation theory special relativity

Center-of-mass reference frame: No sense

Laboratory reference frame:

2 2 21 2 1 2 1 1LHS ( ) ( ) =2 2p p pE E p p m m E

2 2 2D

2 2

RHS ( ' ' ) ( ' ' ) =( ' ' )

' ' ( ) ( )( ) ( )

D D

DD D D

D

E E p p E E

m m m m m mm m

2 2

1

( ) 2 ( )( )

2

DD p D p

Dth

p

m m m m mm m

Em

2 2 2 2D

2

RHS ( ) ( ) = 2( )

=( ) ( )( )

D D D D D

DD D

D

E E p p m m E E p p

m m m mm m

D D

p m

p m

2 2 2 2 2( , ) ' ' ( ', ')'m E p E p E p E p

2 0p

Page 14: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

CMBp p

2pth

p GZK

m mE E

E

2 2 20E m p 2 2 2

0 ( , )E m p E p

42p

pp

thp

pm mE

E

m

m

E

410E ev 17 2 2 20 210 ( ) (10 )ev E ev

2110 10thp GZKE ev E

the difference between Lorentz violation theory and deformed special relativity

e.g.

Page 15: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

the difference between Lorentz violation theory and deformed special relativity

C. In deformed special relativity

Center-of-mass reference frame: the same result can be obtained

Laboratory reference frame:

2 2 21 2 1 1 2 2 1LHS ( ) ( 1 1 ) =2 2p pE E lE p lE p m m E

2 2

1

( ) 2

2D p

thp

m m mE

m

2 2D

2 2

2

RHS ( ) ( 1 1 )

= 2( 1 1 )

=( )

D D

D D D D

D

E E lE p lE p

m m E E lE p lE p

m m

1

1 DD D

lE p m

mlE p

2 2 2 2 2 2 2( ) ' ' ( ') 'm E p lE p E p lE p 2 0p

I.

Page 16: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

the difference between Lorentz violation theory and deformed special relativity

11

112

DSR thth

th

EE

lE

2 2 2 2 2 2 2( ) ' ' ( ') 'm E p lE E E p lE E II.

Page 17: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The composition law in special relativity revisited

• Consider two elementary particles which may have different masses

• We define a composite particle through a process in which the covariant momentum is conserved

2 2 2 2 2 21 1 1 2 2 2, m E p m E p

1 2 1 2( )p p p p

An invariant quantity of the composite particle is2

1 2 1 2 1 2 1 2

2 21 2 1 2

2 2 2 2 21 2 1 2 1 2 1 2

( ) ( ) ( )( )

( ) ( )

2 ( )

M p p p p p p p p

E E p p

m m m m p E E p

(1+1 dim.)

Page 18: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The composition law in SR revisited

Some remarks:

• If we define , we still have

• In general

• They are equal if and only if

• In general, the composite particle could not be elementary.

1 2M m m

1 2 1 2: , :c cE E E p p p 2 2 2

c cM E p

1 2v v

Universal

M

M

Page 19: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The composition law in SR revisited

It is straightforward to extend it to the composition of many particles:

• If we define , we still have

• In general

1 2 3 ...M m m m

1 2 1 2: ..., : ...t tE E E p p p

2 2 2t tM E p

1 2 3 1 2 3( ) ( )p p p p p p

Page 20: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The composition law in SR revisited

• The transformation law of the energy and momentum under

the Lorentz boost in 1+1 space time

Thus

It is easy to check that for a composite particle

[ , ] , [ , ]K E p K p E

2 2[ , ] 2 2 0K E p Ep pE

2 21 2 1 2[ , ] [ ,2( )] 0c cK E p K E E p p

2 2[ , ] 0t tK E p

Page 21: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The composition law in SR revisited

• An interaction involving n incoming particles and m outgoing particles

•The conservation law of momentum is preserved under the Lorentz boost in the sense that

1 2 1 2

1 2 1 2

[ , ( ... ) ( ' ' ... ')]

( ... ) ( ' ' ... ') 0n m

n m

K E E E E E E

p p p p p p

1 2 1 2... ' ' ... 'n mp p p p p p

1 2 1 2

1 2 1 2

[ , ( ... ) ( ' ' ... ')]

( ... ) ( ' ' ... ') 0n m

n m

K p p p p p p

E E E E E E

Page 22: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The composition law in DSR

• Consider an elementary particle with a modified dispersion relations as

• Obviously, it is not an invariant quantity under the standard Lorentz boost

• In DSR, a deformed boost generator is proposed so as to preserve it to be an invariant quantity up to the first order correction of the Planck length.

2 2 2 2( )m E p lE p

2 2 2 2 2[ , ( ) ] (2 ) 0K E p lE p lp E p

2 2[ , ] , [ , ] ( )2 2

l lK E p Ep K p E p E

2 2 2 2[ , ( ) ] 0 0( )K E p lE p l

2 2 2 2 2 2( ) ' ' ( ') 'E p lE p E p lE p

Page 23: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The composition law in DSR

• However, such a choice is not unique. An alternative deformation

When consider the composition law of particles, one need look for some specific laws of composition of momenta which are supposed to be compatible with the deformed boosts one has chosen. And in general, such choices would unavoidably lead to the relative-locality of the space of momenta.

2 2[ , ] , [ , ] ( 2 )2

lK E p K p E p E

1 2 1 2( )p p p p

1 2 1 2[ , ( ) ( ) ] 0K p p p p

1 2 0 1 2

1 2 1 1 1 22

( )

( )

p p E E

p lE pp p p

1 2 1 2[ , ( ) ( ) ] 0K p p p p

Page 24: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The composition law in DSR

• Our central goal in this talk

We intend to argue that if we input some rules on picking up one specific form for deformed boost among all the possible choices, then the relative-locality of the space of momenta may be a

voided.

Page 25: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The composition law in DSR

• We introduce a notion of effective momentum

1: 1 (1 )

2effp lE p lE p

2 2[ , ] , [ , ] ( )2 2

l lK E p Ep K p E p E

[ , ] , [ , ]eff effK E p K p E

2 2 2 2( )m E p lE p 2 2 2effm E p p p

0 1: , : effp E p p

Page 26: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The composition law in DSR

• We propose a composition law for two elementary particles

1 2 1 2( )p p p p

1 2 0 1 2

1 2 1 1 2 1 2 1 1 2 2

( )

( ) ( )2

c

eff eff eff

p p E E E

lp p P p p p p E p E p

21 2 1 2 1 2 1 2

2 21 2 1 1 2 2

2 21 2 1 2 1 1 2 2

2 21 2 1 2 1 2 1 1 1 1

( ) ( ) ( )( )

( ) ( 1 1 )

( ) [ ( )]2

=( ) ( ) ( )( )

M p p p p p p p p

E E lE p lE p

lE E p p E p E p

E E p p l p p E p E p

Remark: it is interesting to show that if and only if 1 2M m m

1 2v v

Page 27: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The composition law in DSR

• One can easily check the following identities for a composite particle

1 2 1 2[ , ( ) ( ) ] 0K p p p p

[ , ] , [ , ]c eff eff cK E P K P E

1 2 1 2[ , ( ) ] 0K p p p p

2 21 2 1 2 1 2 1 1 1 1

2 21 2 1 2 1 2 1 1 1 1

( ) ( ) ( )( )

=( ' ') ( ' ') ( ' ')( ' ' ' ')

E E p p l p p E p E p

E E p p l p p E p E p

Page 28: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The composition law in DSR

• It can be further written into a compact form which depends on the number of particles manifestly given that

1.

2. In the relativistic limit,

3. In the non-relativistic limit,

2 2 21 2 1 2 1 2 1 1 2 2=( ) ( ) ( )( )M E E p p l p p E p E p

1 2E E1 1 2 2,E p E p

1 1 2 2 1 2, ,E p E p m m

2 2 2 2

2= t

t t t

EM E p l p

1 2 1 2: ..., : ...t tE E E p p p

Page 29: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The composition law in DSR

• One can easily check

[ , ] , [ , ]c eff eff cK E P K P E

2: 1 (1 )

4eff t t t t

l lP E p E p

2 2 2 2

2= t

t t t

EM E p l p

2 2[ , ] , [ , ]4

( )4t t t t t t t t

l lK E p E p K p E p E

Page 30: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The composition law in DSR

• Extension to arbitrary composite particle or macroscopic object which is composed of n elementary particles

2 2 21 2 1 2

1 2 1 1 2 2

2 2t eff

=( ... ) ( ... )

( ... )( ... )

E P

n n

n n n

M E E E p p p

l p p p E p E p E p

t 1 2

eff 1 2 1 1 2 2

E := ...

P : ( ... ) ( ... )2

n

n n n

E E E

lp p p E p E p E p

[ , E ] P , [ , P ] Et eff eff tK K

Page 31: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The composition law in DSR

• For a macroscopic object with n particles in thermal equilibrium, it is reasonable to assume that

then

: 1 E P (1 E )P2eff t t t tn n

l lP

2 2 2 2E=E P Ptt t tM l

n

2 2[ , E ] P E P , [ , P ] E2

(P E )2t t t t t t t tn n

l lK K

1 2 ..... nE E E kT

Page 32: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The composition law in DSR

• A general interaction

P( ) P( ) (P( ) P( )) P( ') P( ')n m n m n m

E( ) E( ) E( ') E( ')

P( ) +P( ) P( ') +P( ')eff eff eff eff

n m n m

n m n m

t t t t

t t t tt t t t

E ( ) E ( ) E ( ') E ( ')

E ( ) E ( ) E ( ') E ( ')1 P ( )+ 1 P ( ) 1 P ( ')+ 1 P ( ')

' '

n m n m

l n l m l n l mn m n m

n m n m

Page 33: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The composition law for many sorts of elementary particles• Two elementary particles with different dispersion relations

• We introduce a notion of effective energy

2 2 2 2( )m E p lE p 2 2 2 20 1 0( )k k lk k

2 20 1 0 1 1 0 1 0[ , ] ( ), [ , ]

2 2

l lK k k k k K k k k k

1 0 1 0

1: 1 (1 )

2effE lk k lk k

1 1[ , ] , [ , ]eff effK k E K E k

(I) (II)

Page 34: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The composition law for many sorts of elementary particles

• One can easily check that

• The invariant quantity for the composite particle

[ , ] , [ , ]t t t teff eff eff effK P E K E P

2 2 20 1 0 1 0 1=( ) ( ) [ ( ) ( )]M E k p k l k k E k Ep p k

( )p k p k

1 2 0 1 0 0 1 0

1 2 1 1 1

( ) 12

( ) 12

teff

teff

lp p E E lk k E k k k

lp p P lE p k p k Ep

[ , ( ) ( ) ] 0K p k p k

Page 35: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The composition law for many sorts of elementary particles

• It can be further written into a compact form which depends on the number of particles manifestly if

1. In the relativistic limit

2. In an equilibrium state

0 1, E p k k

2 2 2

4= ( )t t t t t t

lM E p E p E p

0 1: ..., : ...t tE E k p p k

0 1, E k p k

2 2

2 2

[ , ] ( ), 8

, (8

[ ] )

t t t t t t

t t t t t t

lK E p E E p p

lK p E E E p p

Page 36: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

The composition law for many sorts of elementary particles• A composite particle which contains n elementary particles

with dispersion relation (I) and m elementary particles with dispersion relation (II)

2 2 2

4= ( )t t

t t t t

l E pM E p E

m np

0 1: ..., : ...t tE E k p p k

2 2

2 2

[ , ] ( ), 8

8

[ , ] ( )

t t t tt t

t t t tt t

l E p E pK E p

l E p E pK p E

m n

n m

Page 37: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

the difference between Lorentz violation theory and deformed special relativity• General modified dispersion relations

• A point of view from rainbow spacetime

2 2 2 2 2( , ) ( , )m f E p E g E p p

[ , ] , [ , ]eff eff eff effK P E K E P

( , ) , ( , )eff effE f E p E p g E p p

2 2 22 2

1 1

( , ) ( , )ds dt dx

f E p g E p

2 ( )m p p g E p p

0 1, p E p p

0 1, eff effp E p P

1 2 1 2 3 4( )p p p p p p

1 2 3 4p p p p

Page 38: Particle Interactions with Modified Dispersion Relations Yi Ling (凌意) IHEP,CAS & Nanchang University 2012 两岸粒子物理与宇宙学研讨会, 重庆,05/09/2012

Summary

• We propose a composition law of momenta for a multi-particle system in deformed special relativity. The form of modified dispersion relation for a composite particle or macroscopic object is not universal but dependent on the number of elementary particles it consists of.

• We introduce a notion of effective energy and momentum for particles such that a specific deformed Lorentz boost generator can be constructed. The benefits of such deformed Lorentz boosts are twofold.

i) A composition law of momenta compatible with the deformed Lorentz boost can be defined without introducing a notion of relative-locality of the space of momenta. ii) We provide a specific law of composition of momenta for interactions involving non-universal dispersion relations such that the invariance of the conservation law under the deformed Lorentz boost can be easily achieved.