poly condensation

2
Polycondensation a process for the production of polymers from bifunctional and polyfunctional compounds(monomers) , accompanied by the elimination of low-molecular weight by-products (for example,water, alcohols , and hydrogen halides). A typical example of polycondensation is the synthesis of acomplex polye ster: n HOAOH + n HOOCA′COOH [— OAOOCA′CO —] n +2n H 2 O where A and A′ are glycol and dicarboxylic acid groups, respectively. The process is calledhomopo lycondensation if the minimum possible number of monomer types for a given caseparticipates. This number is usually two, as in the reaction shown above, although it may be unity,for example: n H 2 NACOOH [— HNACO —] n + n H 2 O If at least one monomer more than the number required for the given reaction participates inpolyc ondensation, the process is called copolycondensation. Polycondensation in which onlybifunctional compounds participate leads to the formation of linear macromolecules and is calledlinear polycon densation. If molecules with three or more functional groups participate inpolycondensation, thre e-dimensional structures are formed and the process is called three-dimensional polycondensation. In cases where the degree of completion of polycondensation andthe mean length of the macromolecu les are limited by the equilibrium concentration of the reagentsand reaction products, the proces s is called equilibrium (reversible) polycondensation. If the limitingfactors are kinetic rather than thermodynamic, the process is called nonequilibrium (irreversible)polycondensation. Polycondensation is often complicated by side reactions, in which both the original monomers andt he polycondensation products (oligomers and polymers) may participate. Such reactions includethe reaction of monomer or oligomer with a mono-functional compound (which may be present as a nimpurity), intramolecular cyclization (ring closure), and degradation of the macromolecules of t heresultant polymer. The rate competition of polycondensation and the side reactions determines t hemolecular weight, yield, and molecular weight distribution of the polycondensation polymer. Polycondensation is characterized by disappearance of the monomer in the early stages of theproce ss and a sharp increase in molecular weight, in spite of a slight change in the extent ofconversi on in the region of greater than 95-percent conversion. A necessary condition for the formation of macro-molecular polymers in linear polycondensation i sthe equivalence of the initial functional groups that react with one another. Polycondensation is accomplished by one of three methods: (1) in a melt, when a mixture of theini tial compounds is heated for a long period to 10°-20°C above the melting (softening) point of the resultant polymer; (2) in solution, when the monomers are present in the same phase in the solute state; (3) on the phase boundary between two immiscible liquids, in which one of the initialcompo unds is found in each of the liquid phases (interphase polycondensation). Polycondensation processes play an important role in nature and technology. Polycondensation orsi milar reactions are the basis for the biosynthesis of the most important biopolymers— proteins,nu cleic acids, and cellulose. Polycondensation is widely used in industry for the production ofpoly esters (polyethylene terephthalate, polycarbonates, and alkyd resins), polyamides, phenol- formaldehyde resins, urea-formaldehyde resins, and certain silicones. In the period 1965– 70,polycondensation acquired great importance in connection with the development of industrialpro duction of a series of new polymers, including heat-resistant polymers (polyarylates, aromaticpol yimides, polyphe-nylene oxides, and polysulfones).

Upload: sougata-das

Post on 17-Jan-2016

17 views

Category:

Documents


0 download

DESCRIPTION

chemistry

TRANSCRIPT

Page 1: Poly Condensation

Polycondensation 

a process for the production of polymers from bifunctional and polyfunctional compounds(monomers), accompanied by the eliminati

on of low-molecular weight by-products (for example,water, alcohols, and hydrogen halides). A typical example of polycondensation 

is the synthesis of acomplex polyester:

n HOAOH + n HOOCA′COOH

⇄[— OAOOCA′CO —]n + 2n H2O

where A and A′ are glycol and dicarboxylic acid groups, respectively. The process is calledhomopolycondensation if the minimum p

ossible number of monomer types for a given caseparticipates. This number is usually two, as in the reaction shown above, althoug

h it may be unity,for example:

n H2NACOOH ⇄[— HNACO —]n + n H2O

If at least one monomer more than the number required for the given reaction participates inpolycondensation, the process is called 

copolycondensation. Polycondensation in which onlybifunctional compounds participate leads to the formation of linear macromolec

ules and is calledlinear polycondensation. If molecules with three or more functional groups participate inpolycondensation, three-

dimensional structures are formed and the process is called three-dimensional polycondensation. In cases where the degree of com

pletion of polycondensation andthe mean length of the macromolecules are limited by the equilibrium concentration of the reagentsa

nd reaction products, the process is called equilibrium (reversible) polycondensation. If the limitingfactors are kinetic rather than ther

modynamic, the process is called nonequilibrium (irreversible)polycondensation.

Polycondensation is often complicated by side reactions, in which both the original monomers andthe polycondensation products (ol

igomers and polymers) may participate. Such reactions includethe reaction of monomer or oligomer with a mono-functional compou

nd (which may be present as animpurity), intramolecular cyclization (ring closure), and degradation of the macromolecules of theres

ultant polymer. The rate competition of polycondensation and the side reactions determines themolecular weight, yield, and molecul

ar weight distribution of the polycondensation polymer.

Polycondensation is characterized by disappearance of the monomer in the early stages of theprocess and a sharp increase in mol

ecular weight, in spite of a slight change in the extent ofconversion in the region of greater than 95-percent conversion.

A necessary condition for the formation of macro-molecular polymers in linear polycondensation isthe equivalence of the initial functi

onal groups that react with one another.

Polycondensation is accomplished by one of three methods: (1) in a melt, when a mixture of theinitial compounds is heated for a lon

g period to 10°-20°C above the melting (softening) point of theresultant polymer; (2) in solution, when the monomers are present in t

he same phase in the solutestate; (3) on the phase boundary between two immiscible liquids, in which one of the initialcompounds i

s found in each of the liquid phases (interphase polycondensation).

Polycondensation processes play an important role in nature and technology. Polycondensation orsimilar reactions are the basis for 

the biosynthesis of the most important biopolymers— proteins,nucleic acids, and cellulose. Polycondensation is widely used in indu

stry for the production ofpolyesters (polyethylene terephthalate, polycarbonates, and alkyd resins), polyamides, phenol-

formaldehyde resins, urea-formaldehyde resins, and certain silicones. In the period 1965–70,polycondensation acquired great impor

tance in connection with the development of industrialproduction of a series of new polymers, including heat-resistant polymers (pol

yarylates, aromaticpolyimides, polyphe-nylene oxides, and polysulfones).