pos combustion

Upload: igrjaa

Post on 04-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Pos Combustion

    1/61

    Captura, transporte y

    almacenamiento de CO2Captura de CO2 por

    Prof. Vicente J. Corts

    post combusti nMaster en Ingeniera Ambiental

    Curso 2012-2013

  • 8/13/2019 Pos Combustion

    2/61

    Alternativas tecnolgicas para la captura de CO 2 Fundamentos

    Absorcin

    Adsorcin

    Indice

    Membranas Estado de desarrollo

    Principales retos Proyectos europeos de demostracin

  • 8/13/2019 Pos Combustion

    3/61

    Alternativas tecnolgicas para lacaptura de CO2

    Fundamentos Absorcin

    Presentation Outline

    sorc n Membranas

    Estado de desarrollo

    Principales retos

    Proyectos europeos de demostracin

  • 8/13/2019 Pos Combustion

    4/61

    CO2 3-15%

    Technology options

    CO2 40%

    CO2>95%

    Adapted from EPRI 2007

  • 8/13/2019 Pos Combustion

    5/61

    Post-combustion capture: separation CO 2-N2Pre-combustion capture: separation CO 2-H2Oxyfuel combustion (Denitrogenation): pre-separation O 2-N2

    - -

    Capture Routes: Classification

    .(flue gas)

    .(shifted syngas)

    .(exhaust)

    p (bar) ~1 bar 10-80 ~1 bar

    [CO 2] (%) 3-15% 20-40% 75-95%

    Partial pressure of CO 2 in the flue gases fromexisting power plants is very low

  • 8/13/2019 Pos Combustion

    6/61

    The challenge: huge scale of operation

    Coal feed : 164 x 103 kg/h

    Stack gas flow rate : 2.200 x103 kg/h ~ 54 x103 t/dCO2 flow rate : 370.000 kg/h ~ 8,9 x103 t/d

    *

    500 MW USC Coal Fired Power Station

    . ,

    *Cryogenic conditions typically 1,7 MPa, -30 oC

    Figures for a

    500 MW SC Coal Fired Power Station: 12% higher

  • 8/13/2019 Pos Combustion

    7/61

    Alternativas tecnolgicas para lacaptura de CO2

    Fundamentos Absorcin

    Presentation Outline

    sorc n Membranas

    Estado de desarrollo

    Principales retos

    Proyectos europeos de demostracin

  • 8/13/2019 Pos Combustion

    8/61

    Postcombustion: basic approach

    Compatible with low partial pressure of CO2 in flue gases CO2Deh dration

    CO2Deh dration

    CO2Deh dration

    CO2

    N2O2

    Air

    Coal

    CO2 SeparationPower & Heat

    CO2

    10-14%0.9 g CO2/kWh

    NGas CO2 4-5%0.35g CO2/kWh

    Suitable for retrofittings and capture-ready conceptsLeading candidate for gas-fired power plants, if required

    Learning by doing through easily scalable pilots processing slip streams

    Solvent technologies proven on a smaller scale at CPI*

    Learning by searching will lead to better solvents and process integration

    Applicable to other carbon-intensive industries: oil refining, cement

    andCompressionandCompressionandCompression

    *chemical process industries

  • 8/13/2019 Pos Combustion

    9/61

    Technology options for postcombustionCO2 capture

    CO2 Separation and Capture

    GasSeparation

    AdsorberBedsChemical

    Microbial/Algal

    SystemsMembranesCryogenicsAdsorptionAbsorption

    Activated carbonOther2PolyphenylenoxideAmines

    1Alumina PolyimidesAmmonia Zeolite, MOFs

    Gas

    Absorption

    Regeneration

    MethodsPhysical

    Ceramic BasedSystems

    PolypropyleneSelexol Pressure SwingRectisol Temperature SwingOther Washing

    1. Primary, secondary, tertiary, sterically hindered2. Alkaline compounds, Salts of aminoacids

  • 8/13/2019 Pos Combustion

    10/61

    Alternativas tecnolgicas para lacaptura de CO2

    Fundamentos Absorcin

    Presentation Outline

    sorc n Membranas

    Estado de desarrollo

    Principales retos

    Proyectos europeos de demostracin

  • 8/13/2019 Pos Combustion

    11/61

    CO CAPTURE SOLVENT

    VENT GAS TO STACK CO2 TO COMPRESSOR

    SOLVENTMAKE-UP

    LEAN SOLVENT

    Absorption schematics

    ABSORBER STRIPPING

    Uptake of CO2 into de bulk phase of a liquidsolution w/o chemical reaction

    ENTALPHY

    FLUE GAS (CO2)

    RICH SOLVENT(+ CO2)

    SPENT SOLVENT

    Flue gas contacted with a reagent-containing solventCO2 transfers from the gas phaseinto the liquid phaseCO2 selectively reacts with the

    reagent

    The CO2-loaded rich solution ispumped to a regenerator vessel to beheatedGaseous CO 2 is stripped (liberated)Lean solution is circulated back to the

    absorber

  • 8/13/2019 Pos Combustion

    12/61

    Chemical vs. Physical Absorption

    IEA GHG

  • 8/13/2019 Pos Combustion

    13/61

    Simplified flowsheet

    Source: SINTEF, 2010

  • 8/13/2019 Pos Combustion

    14/61

    Simplified flowsheet

  • 8/13/2019 Pos Combustion

    15/61

    Counter current flow through apacked column is most common

    Plate towers are also used,mainly in the stripping step*

    Types of columns

    *Image source: Mass Transfer Operations, R.E. Treybal, (1980) McGraw-Hill

  • 8/13/2019 Pos Combustion

    16/61

    1. Very high gas flow rates: large columns

    2. Large solvent flow rates: important auxiliaries consumption

    3. Steam extraction for solvent regeneration: parasitic load of 20-30% *

    Absorption technology issues

    . 2 3 ppmv required

    5. Solvent and reaction products may exit the absorber: potentialimpact on HS&E of nitramines and nitrosamines

    * CO2 compression included GCCSI

  • 8/13/2019 Pos Combustion

    17/61

    Near-term absorption technologies

    1. Currently emphasis on absorption on near-term technologies

    2. Industrys CO2 capture chemistry knowledge and overall process

    experience are both heavily slated towards absorption3. All near-term technologies are solvent based involving either

    proprietary amines or ammonia

    4. Distinction between these technologies are

    Specific capture chemistryProcess configuration and integration into the power plant

    5. Near-term technologies have been tested at scales on slipstreams no larger than 5-25 MWe from coal-fired power plants

    GCCSI

  • 8/13/2019 Pos Combustion

    18/61

  • 8/13/2019 Pos Combustion

    19/61

    Key characteristics

    Absorption solvents

    To reduce height requirements for theabsorber and/or

    Reduce solvent circulation flow rates

    High reactivity withrespect to CO 2

    Based on a low heat of reaction withLow re eneration

    Davidson

    CO2

    cost

    Which directly influences solventcirculation flow rate requirements

    High absorptioncapacity

  • 8/13/2019 Pos Combustion

    20/61

    Absorption solvents

    Reduced solvent waste due to thermaldegradation

    High thermalstability

    Reduced solvent waste due to chemicalReduced solvent

    Key characteristics

    Davidson

    degradation

    degradation

    Easy and cheap to produceLow solvent costs

    Low environmental impact

  • 8/13/2019 Pos Combustion

    21/61

    Primary and Secondary Amines

    2(R-NH2) + CO2 R-NH-COO- + R-NH3+

    Two solvent molecules required for each CO 2 molecule sorbedFast rate low ca acit

    Amine-based absorption processs

    Carbamate

    Low T

    Example: Mono-ethanol amine, MEA HOCH2CH2NH2

  • 8/13/2019 Pos Combustion

    22/61

    R3-N + CO2 +H2O R3-NH + HCO3-

    One solvent molecule required for each CO 2 molecule sorbedSlow rate romoters re uired hi h ca acit

    Bicarbonate

    Tertiary and Hindered Amines

    Amine-based absorption processs

    Example: MDEA ( HOCH2CH2)2NCH2

  • 8/13/2019 Pos Combustion

    23/61

    Block flow diagram of theEconamine FG+ process using MEA

  • 8/13/2019 Pos Combustion

    24/61

    Ammonia-based absorption processChilled ammonia

    Ammonium carbonate solution + CO2 Ammonium bicarbonate

    cooledflue gas

    CO2 (g) CO2 (g)

    T raise atrelatively high P

    A slurry consisting of a liquid in equilibrium with solid ammoniumbicarbonate (NH4HCO3) is produced in an absorber

    The slurry releases CO 2 at a relatively high pressure after beingheated in a desorber

    (NH4)2CO3 (aq) + CO2(aq) +H2O(l) 2(NH4)HCO3 (aq)(NH4)2CO3 (aq) (NH4)2CO3 (s)

  • 8/13/2019 Pos Combustion

    25/61

    Ammonia-based absorption process

  • 8/13/2019 Pos Combustion

    26/61

    High CO2 purity

    Tolerant to oxygen and flue gas impurities

    Solvents for Post Combustion

    Chilled ammonia advantages

    No emission of trace contaminants

    Low cost, globally available reagent

  • 8/13/2019 Pos Combustion

    27/61

    Simplified flow sheet ACAP process

  • 8/13/2019 Pos Combustion

    28/61

  • 8/13/2019 Pos Combustion

    29/61

    Comparison of Solvent Properties

    Cost(US$/lb)

    Volatility(atm x 103 at 40C)

    Degradation Corrosion

    Solvents for Post Combustion

    .

    MDEA 300 0.003 Moderate Moderate

    Ammonia 5 200 None High

    PotassiumCarbonate 40 0 None High

    Rochelle, 2007

  • 8/13/2019 Pos Combustion

    30/61

    FUEL100% CO2COMPRESSION

    NET OUTPUT34,2%

    Absorption technology: energy penalty

    Sankey diagram : Postcombustion USC pulverized coal PP

    COOLING53,0%

    AUXILIARIES3,4%

    CAPTURE PROCESS(Enthalpy&Electricity)5,7%

    ,

    0 10 20 30 40 50

    REFERENCEPLANTUSC PC

    WITH CCS

    EFFICIENCY, %

    Based on MIT data

  • 8/13/2019 Pos Combustion

    31/61

    Subcritical power plant50

    45

    40

    35 i e n c y ,

    %

    50

    45

    40

    35 n c y ,

    %

    USC power plant

    43.3

    34.134.3Amine unit(entalphy)

    -0.7

    -5.0

    -3.5Amine unit(entalphy)

    CO2Compressor

    Amine unit(power)

    Absorption technology: energy penalty

    Subcritical

    30

    25

    20

    E f f i

    Ultrasupercritical

    30

    25

    20

    E f f i c

    i

    USCno

    Capture

    USCwith

    CaptureNoCapture

    25.1

    WithCapture

    -5.0 CO2Compressor

    -3.5

    -0.7

    Amine unit(power)

  • 8/13/2019 Pos Combustion

    32/61

    CCQ: relative increase or decrease in the emission factor of asubstance due to a certain capture technology

    Carbon capture quotients

    CCQx,y,z < 1 indicates a decrease in emission factor as aconsequence of CCS

    yx,

    zy,x,zy,x,

    noCCSEF

    CCSEFCCQ === =

    CCQx,y,z Carbon capture quotient for air pollution substance 'x', given energy conversion technology 'y'and CO2 capture technology 'z

    EF CCSx,y,z Emission factor reported/estimated for air pollution substance 'x', energy conversion technology'y' and CO2 capture technology 'z

    EF noCCSx,y Emission factor for air pollution substance 'x' and energy conversion technology 'y'reported/estimated for the reference plant without CO 2 capture

    CCQx

    0150

    EEA, 2011

    Ai ll i i

  • 8/13/2019 Pos Combustion

    33/61

    Capture quotients for primary energy, CO 2, SO2, NOX, PM and NH3Postcombustion results in no NO X reduction and much higher

    emission of other nitrogen compounds

    Air pollution impacts

    CaptureTechnology

    Conversiontechnology

    Primary energynew capture CCQCO2 CCQSO2 CCQNOX CCQPM CCQNH3

    Post--combustion

    NGCC 1.11 0.13 - 1.00 - 1.25-30.30

    PC 1.22 0.10 0.15 0.94 0.71 17.50-45.25

    Pre-combustion IGCC 1.13 0.11 0.45 0.85 1.00 -

    Oxyfuelcombustion

    NGCC 1.20 0.02 - 0 - -

    PC 1.22 0.05 0.06 0.42 0.06 -

    EEA, 2011

    P i O li

  • 8/13/2019 Pos Combustion

    34/61

    Alternativas tecnolgicas para lacaptura de CO2

    Fundamentos Absorcin

    Presentation Outline

    sorc n

    Membranas

    Estado de desarrollo

    Principales retos

    Proyectos europeos de demostracin

    Ad ti h ti

  • 8/13/2019 Pos Combustion

    35/61

    VENT GAS TO STACK CO2 TO COMPRESSOR

    Adsorption schematics

    ADSORPTION DESORPTION

    Uptake of CO2 onto the surface of a solid sorbent viaphysisorption or chemisorption in packed or fluidized beds

    SORBENTREGENERATION

    FLUE GAS (CO2)

    SORBENTMAKE-UP

    RICH SORBENT(+ CO2)

    LEAN SORBENT

    SPENT SORBENT

    CO2 CAPTURESORBENT

    REGENERATION P

    ENTALPHY

    Ph i ti Ch i ti

  • 8/13/2019 Pos Combustion

    36/61

    Physisorption vs. Chemisorption

    Van der Waals: Weak forces

    Covalent bonding: Strong forces, sites necessary

    Adsorption beds

  • 8/13/2019 Pos Combustion

    37/61

    Adsorption beds

    Flue gas flows through voidspaces between adsorbentparticles

    Regeneration by heating the

    Packed beds

    2 - a en a sor en

    Flue gas diverted to a secondpacked bed

    At least two beds are needed

    GCCSI

    Adsorption beds

  • 8/13/2019 Pos Combustion

    38/61

    Adsorption bedsFluidized beds

    Flue gas flows upwardthrough a column

    Adsorbent particles aresuspended in the gas flow

    GCCSI

    Sorbent circulated betweenabsorber and regenerator

    At least two vessels areneeded

    Adsorbents characteristics

  • 8/13/2019 Pos Combustion

    39/61

    Solid (usually granular, beads, pellets) materialSelective for one or more components in the gas phase

    High accesible porosity

    Large internal surface area (up to 1000-3000 m2/g)

    Adsorbents characteristics

    Pore size distributions of common clases of adsorbents

    Micropores dp< 20 nm

    Mesopores 20 nm dp < 500 nm

    Macropores dp 500 nm

    CO 2collisiondiameter3.996 nm

    Adsorbent attributes

  • 8/13/2019 Pos Combustion

    40/61

    Capacity: the amount of adsorbate taken up by the adsorbent perunit mass ( or volume) of the adsorbentSelectivity: is the ratio of the capacity of one component to that of

    another at a given fluid concentrationRegenerability: Necessary to have the the adsorbent operating in sequential

    Adsorbent attributes

    cycles Related to the strenght of adsorption forces Affects the fraction of the original capacity that is retained :

    working capacity

    Mass transfer kinetics: fast diffusion of adsorbate requiredMechanically strong to withstand bulk handling and attrition

    Working capacity of adsorbents

  • 8/13/2019 Pos Combustion

    41/61

    Working capacity 1.3%wt 0.3 mole/kg adsorbent

    500 MWe Supercritical PS.

    160 kmol CO2/minAdsorbent circulation rate 530 t/min

    Working capacity of adsorbents

    The Achilles Heel of Adsorption processes

    Rotary Wheel contactor

    Wheel : diameter 10m, depth 1m

    1 minute regeneration time

    8 wheels in parallel

    Adsorbents

  • 8/13/2019 Pos Combustion

    42/61

    A cage-like structure which admits onlymolecules less than a certain size e.g.13X (pore diameter 7) will admit He,H2, H2O, CO, CO2, N2

    For CO2, there is also significant chemi-

    Molecular sieves: ZeolitesAdsorbents

    Type X or Y Zeolite

    Cations ( e.g. Na+)

    sorpt on to t e sur ace, w c g ves t erequired selectivity over other gases

    Adsorbents

  • 8/13/2019 Pos Combustion

    43/61

    Metal Oxide clusters connected by organic linkers

    MOF-177 soaks up 140% of its weight in CO2

    at roomtemperature and reasonable pressure (32 bar)

    Metal Organic Frameworks (MOFs)Adsorbents

    Li, J.R Coordination Chemistry Reviews 255 (2011) 17911823

    Regeneration Options

  • 8/13/2019 Pos Combustion

    44/61

    PSA : pressure swing adsorption Pressure is varied : high absorption,low desorption

    Rapid cycle easily achieved Short cycle times possible: seconds

    Regeneration Options

    TSA : temperature swing adsorption T is varied : low absorption,

    high desorption Rapid cycle requires very fast heat

    transfer: difficult to achieve Minimum cycle time: minutes

    Others VSA , vacuum swing adsorption:pressure is varied from a

    vacuum to value above Patm ESA, electrical swing adsorption: a current is applied

    cyclically to a conducting adsorbent such as a carbon

    Adsorption technology issues

  • 8/13/2019 Pos Combustion

    45/61

    Adsorption technology issues

    Regeneration energy should be lower relative to solvents buteffects such asHeat capacityWorking capacityHeats of reaction needs consideration

    Potential disadvantages:

    Particle attritionHandling of large volumes of sorbentThermal management of large-scale adsorber vessels

    Adsorption processes are still in the kW range of demonstrationCurrent development of new materials such as metal organicframeworks (MOFs), zeolites and zeolitic imidazolate frameworks(ZIFs) shows promising

    GCCSI

    Indice

  • 8/13/2019 Pos Combustion

    46/61

    Alternativas tecnolgicas para la captura de CO 2 Fundamentos

    Absorcin Adsorcin

    Membranas Estado de desarrollo

    Principales retos Proyectos europeos de demostracin

    Membrane technology schematics

  • 8/13/2019 Pos Combustion

    47/61

    gy

    VENT GAS CO2

    Separation of CO2 from flue gas by selectivelypermeating it through the membrane material

    High permeability High selectivity

    FLUE GAS GAS (CO2) POLYMER, METALLICOR CERAMIC MEMBRANE

    CO2 permeation requires CO 2 partial pressure gradient across the

    membraneOption 1: pressurizing the flue gas on one side of the membraneOption 2: applying a vacuum on the other side of the membrane

    Option 3: both

    Membrane technology issues

  • 8/13/2019 Pos Combustion

    48/61

    gy

    Claimed to potentially offer low energy capture processes

    Small foot print for the capture system

    Modular design that may allow for flexible operationTesting conducted at scales less than 1 t/day. No public results

    Potential fouling of the membrane surfaces from particulatematter

    Uncertainty about performance and cost of large-scale efficientvacuum pumps and compressors

    Ability to integrate the process into a power plant

    GCCSI

    Types of membranes for CO2 removal

  • 8/13/2019 Pos Combustion

    49/61

    1. First Generation:Cellulose acetate (Cynara, UOP, Grace)Polysulfone (Air Products Prism)

    Generally spiral wound ~ 3,000 m2 per m3 volume2. Second Generation:

    yp 2

    o y m es e, Most likely hollow fibers ~ 10,000 m2 per m3 volume Alternatively spiral wound modules

    3. Non selective membranes: gas liquid-contactorsLiquid solvent on one sideGas stream on the other side

    Membrane Technology

  • 8/13/2019 Pos Combustion

    50/61

    Spiral Wound Module

    ~ 3000 m2 per m3 volume

    Source: CO2CRC, 2009

    Membrane Technology

  • 8/13/2019 Pos Combustion

    51/61

    Hollow Fibre Modules

    ~ 10,000 m2 per m3 volume

    Fibre 0.1-0.5 mmSkin layer ~0.1 m thick

    Source: CO2CRC, 2009

    Membrane Technology

  • 8/13/2019 Pos Combustion

    52/61

    Liquid solvent on one side of the membrane and the gasstream on the other side of the membrane

    Gas-Liquid contactor

    Membrane is not selective; only separates gas and liquid phasesDiffusion through porous followed by chemical absorption in liquidSize of the pores:

    Flue GasMicroporousMembrane Absorption Liquid

    CO2

    CO2

    membrane Small enough so that the liquid will not wet the pores

    Membrane Technology

  • 8/13/2019 Pos Combustion

    53/61

    Gas-Liquid contactor

    Source: CO2CRC, 2009

    Indice

  • 8/13/2019 Pos Combustion

    54/61

    Alternativas tecnolgicas para la captura de CO 2 Fundamentos

    Absorcin Adsorcin

    Membranas Estado de desarrollo

    Principales retos Proyectos europeos de demostracin

    State of postcombustion development

  • 8/13/2019 Pos Combustion

    55/61

    Absorption Adsorption Membrane

    CommercialUsage in CPI* High Moderate Low/Niche

    Operational Hi h Hi h but com lex Low to moderate

    GCCSI* Chemical Process Industries

    on ence

    Primary Sourceof Energy Penalty

    Solventregeneration

    (thermal)

    Sorbentregeneration

    (thermal/vacuum)

    Compression onfeed and/or vacuum

    on permeate

    DevelopmentTrends

    New chemistry,

    thermalintegration

    New chemistry,

    processconfiguration

    New membrane,

    processconfiguration

    Indice

  • 8/13/2019 Pos Combustion

    56/61

    Alternativas tecnolgicas para la captura de CO 2 Fundamentos

    Absorcin Adsorcin

    Membranas Estado de desarrollo

    Principales retos

    Proyectos europeos de demostracin

    Major challenges for postcombustion

  • 8/13/2019 Pos Combustion

    57/61

    1. Reduction of the large parasitic load imposed on a power plantMostly derived from the energy needed to regenerate thesolventEnergy required for compression is less than that requiredfor capture

    2. Development of new chemistry, new process designs, and

    All aimed at reducing the energy penalty3. Capital cost reductions, solvent degradation, solvent volatility,

    and other

    Secondary to the prime issue of reduction in parasitic load4. Identification of amine derivatives and degradation products

    effects on HS&ECountermeasures to be developed

    GCCSI

    Indice

  • 8/13/2019 Pos Combustion

    58/61

    Alternativas tecnolgicas para la captura de CO 2 Fundamentos

    Absorcin Adsorcin

    Membranas Estado de desarrollo

    Principales retos

    Proyectos europeos de demostracin

    European demo projects

  • 8/13/2019 Pos Combustion

    59/61

    BelchatowRotterdam 2

    Post180 MDon Valley

    180 M

    JanschwaldeOxy-PC180 M

    COMPOSTILLA

    Oxy-CFB180 M

    Pre180 M

    Porto Tolle

    Post100 M

    x

    ? ?

    European demo projects

  • 8/13/2019 Pos Combustion

    60/61

    European demo projects

  • 8/13/2019 Pos Combustion

    61/61

    Rotterdam Capture: 1.2 MMt CO2/y Storage : depleted gas fields, N.Sea Industrial partners: EON/Electrabel