[ppt]powerpoint プレゼンテーション · web viewjet central engine links with other fields...

39
Kunihito IOKA (Osaka Univ.) 1. Observation 2. Fireball 3. Internal shock 4. Afterglow 5. Jet 6. Central engine 7. Links with other fields 8. Luminosity-lag 9. X-ray flash 10.Summary

Upload: dangquynh

Post on 18-Jun-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Kunihito IOKA (Osaka Univ.)1. Observation2. Fireball3. Internal shock4. Afterglow5. Jet

6. Central engine7. Links with other fields8. Luminosity-lag9. X-ray flash10. Summary

1. ObservationGamma-Ray Burst

Brightest object 15210 s ergsVela satellites in 1967

Origin has been a puzzle

                                                

                         

~ 1000 events/yr

Angular distributionIsotropic

Spatial distribution

3 2N P P Homogeneous in Euclidean

max 0.330 0.010V V

Inhomogeneous

DurationLong-softShort-hard

Long burstShort burst

SpectrumBand spectrum

Non-thermal

AfterglowBeppo-SAX in 1997

X-ray

Radio

Optical → RedshiftRedshift

Luminosity

Time

GRB

Summary of observation

~ 1000 events/yrIsotropic, Inhomogeneous~ 200 keV10-3s ~ 103s : short, long

AfterglowX-rayOpticalRadio

Redshift

>msec

2. FireballCompactness problem

810 10ms cmR c T T 2 49

7 2810 ergE FD F D e e 2 22

133 2 7 210

10 erg cm 3Gpc 10msTe

FD F D TRR m c

Optically thick Non-thermal

MeVE

1Relativistic motion

2R E

N

MeV MeV

4 6.5B

210

FireballiRE

1 4 3 452 ,710 MeVi iT E R

3 3entropy const constT R

2exp 20keV:thine B pn m c k T T

9 1 4 1 452 ,76 10 cmi p i iR T T R E R

4 3energy const const iT R R R obs iT T T +Baryon

3bn R 14 1 2 1 2

52 21 10 cmthinR E

2E Mc

92 ,71 10 cm : Matter dominantmatter i iR R R 2E Mc

10 5 10

5

10 : Pure radiation 10 < <10 : Electron dominated1< <10 : Relativistic baryon <1: Newtonian

Thermal

Central engine

Optically thick region

Internal shocks

External shocks

?ISM

1Γ 1Γ eeγγ

Internal-External shock model

time

Luminosity Kinetic energy

Shock dissipation

3. Internal shock

r

Two shell collision

s m

rm sm mm

2 2

2

1 1

1

r r s s r s m m

r r s s

r s m m

m m m m E

m m

m m E

efficiency : 1 r s m

r r s s

m mm m

: 0.5 when 13.9r s r sm m

Kobayashi,Piran&Sari(97)

Many shell

Time scale

2

c T

2 1310 cmR c T 1

2R

2

R Tc

Pulse width

22

c T

Pulse intervalT

Nakar&Piran(02)

4. Afterglow

r

External shock

m

rm sm mm

2m r s r rm m 34

3s pm R nm

2 3 2 243r r p rE m c R nm c

16 1 3 2 3 1 351 2 010 cmR E n

Hydrodynamics3 2 24

3 pE R nm c n

R3 8T

2T R

① Electron Fermi acceleration 2.21 , (Fermi acc.)e e e eU U O N

1B BU U O ② Magnetic field

Relativistic shock

n2 ,n U

2

2

4 3

1 p

n n

U nm c

Jump condition

Electron synchrotron emission1/3

F

22 2

22

43 8e T e

e ee

BF c

qBm c

Spectrum

,max

, , ,

, , ,

e B

a m c

E n

F

52

3

10 erg

0.1 50cm0.10.01

e

B

E

n

Collapsar, Hypernova

reverse shockforward shock

Shock emission

Optical flash

5. JetJet & Relativistic beaming

1・ Relativistic beaming・ Jet

Jet in afterglow11 ΓθΓθθ ii :sideways expansion

Energy, Event rate, Model

3 2 2 243 pE R nm c

2 2T R

Total

Break in afterglowPolarizationA few %

Total energy

5110 ergE

6. Central engine① Collapse of massive star

② Mergers of compact objects・Baryon free

・Location within host galaxies・GRB - Supernova (e . g . ,SN1998bw)?High ambient gas density

????

Collapsar, Hypernova

Host galaxy

SN1998bw-GRB980425 46 65.5 0.7 10 erg/s : 10 dimL

Lightcurve Fe line

7. Links with other fieldsCR, HE, HE

44 3

19 21

10 erg/Mpc /yr

UHECR (10 - 10 eV)

Cosmology

8. Luminosity-lag

X

Luminosity

Time

Time

peakL

TΔ Lpeak ・Standard candle ?・Brighter than SNe Ia・Less extinction

ApJ,554,L163(01)

Viewing angle of a single jet

??

⇒ Luminosity - lag relation ?

Thin jet

’’ ’

0 0 0ν

vv

v

j r, t A f ν t t r r

cos θ cosθ cosθH θ θ θ H cossinθ sinθ

EmissivityθΔ

Bβ -α /sα s’ ’

’’ ’0 0

ν νf ν =ν ν

BB1+

1+

~Band spectrum

B B1, 1, 2.5, s 1

Spectrum ’’fνν

’ν Bαν

2’

Bβν

2’

20 0

ν 22 2

00

Δ T2cA r γF T = f νγ 1 βcosθ TD γ 1 βcosθ T

cβwhere 1 βcosθ T = T Tr

Luminosity-Lag Relationv 0 1

v 2

1v

Lag:

Pulse profile

Luminosity-width

FRED(Fast Rise Exponential Decay)

8232

.

obs

BκFWHM

peakν

κ: nobservatioακ where WFν

Viewing angle① Peak luminosity - spectral lag relation② Peak luminosity - variability relation③ Luminosity - width relation

GRB980425A typical GRB⇒ Association of GRBs with SNe

9. X-ray flash

Off-axis GRB

Flux/Fluence RatioApJ,571,L31(02)

3 1 3 2 2 110 yr 5 3 10 yr Volume Viewing angle

10. SummaryGRB : Internal shockAfterglow : External shockJetViewing angle

Various relations, X-ray flashCentral engine ???

Collapsar? Merger?CR, HE, HE, GW, Cosmology