precision measurement in atomic physics - nctu institute of physics ... ·  · 2011-06-07li-bang...

47
Li-Bang Wang, 王立邦 National Tsing Hua University Precision Measurement in Atomic Physics NCTU IOP Colloquium 5/12/2011 NCTU IOP Colloquium 5/12/2011

Upload: trankiet

Post on 08-May-2018

221 views

Category:

Documents


4 download

TRANSCRIPT

  • Li-Bang Wang, National Tsing Hua University

    Precision Measurement in Atomic Physics

    NCTU IOP Colloquium 5/12/2011NCTU IOP Colloquium 5/12/2011

  • On Growth and Form, 1917

    numerical precision is the

    very soul of science

    Thompson, D'Arcy Wentworth

  • How precise?How precise?

    Magnetic moment of electron,

    ge (exp) = 2.0023193043617(15)

    Rydberg constant =

    = 109,737.31568639(91)

    Electric dipole moment of electron

    |de| < 1.61027 ecm

    Time variation of fine structure constant

    / = (-6.2 6.5)x10-17/year

    cheme

    3

    422

    [1] G. Gabrielse et al., Phys. Rev Lett. 97, 30802 (2006)[2] Th. Udem et al., Phys. Rev. Lett. 79, 2646 (1997)[3] B. C. Regan et al., Phys. Rev. Lett. 88: 071805 (2002)[4] T. M. Fortier et al., Phys. Rev. Lett. 98, 070801 (2007)

    13712 c

    e

  • OutlineOutline

    Historical Review:

    Precision measurement lead to new physics

    Selected topics

    Atomic spectroscopy: techniques utilizing

    resonance, frequency measurement very

    precise

    Precision spectroscopy in our lab @NTHU

  • New Physics Discovered by Atomic SpectroscopyNew Physics Discovered by Atomic Spectroscopy

    microwave region

    Detector

    A magnet B magnet

    source

    NMR for Deuteron

    Isidor Isaac Rabi

    Norman F. Ramsey

    First Motivated by Stern-Gerlach experiment, 1922 First atomic spectroscopy by resonance method

    NMR, Rabi and Ramsey, 1934-1939

  • Electric Electric QuadrupoleQuadrupole Moment of DeuteronMoment of Deuteron

    J. M. Kellogg, I. I. Rabi, N. F. Ramsey, and J. R. Zacharias Phys. Rev. 57, 677 (1940)

    Electric Quadrupole moment of Deuteron discovered Nuclear force is Non-central! Tensor force

  • The Lamb ShiftThe Lamb Shift

    Willis Eugene LambNobel Prize in 1955"for his discoveries concerning the fine structure of the hydrogen spectrum"

    H2source

    1 S1/2

    2 S1/22 P1/2

    e- gun

    Microwave region

    2 P3/2

    1947 by Lamb ~1060 MHznow: 1057.846(4) MHz

    Detector

    e+

    e-

    p

    p e-

    e-

    p

    pe-

    e-

    LS QED

    p

    pe-

    e-

  • QEDQED

    Sin-Ichiro Tomonaga ( ), Julian Schwinger, Richard P. FeynmanNobel Prize in Physics 1965

    "for their fundamental work in quantum electrodynamics, with deep-ploughing consequences for the physics of elementary particles"

    Quantum Electrodynamics

    The most precisely tested theory

  • Selected topics in precision measurementSelected topics in precision measurement

    Test QED: the g-2 of electron and muonNew source of CP violation: electric dipole

    moment of electron and nucleon Strong interaction: size of proton Time and frequency standard: making a better

    clock Constancy of fundamental constant: can speed of

    light change?Weak interaction: parity violation in atom Spectroscopy of simple atom

  • gg--2 of electron2 of electron

    sg

    B

    What is g-factor?The magnetic moment of the electron is proportional to the electron spin

    Classical non-relativistic g=1

    In QM, Dirac Theory predict g=2

    In reality, g= 2.002319304

  • Why measure g factorWhy measure g factor

    Test QED

    Search for structure of electrons

    g can be expanded as a function of

    weakhadronic aaa

    CCCg

    ......1

    2

    3

    6

    2

    42

    -1 = 137.035 999 070 (98)Gabrielse, Hanneke, Kinoshita, Nio, and Odom, Phys Rev Lett 97, 30802 (2006)

    13712 c

    e

  • How to measure gHow to measure g

    Spin precession (Larmor) frequency

    Bgm BsL Calibration of magnetic field by cyclotron frequency:

    BMq

    C

    C

    L

    C

    L

    Mm

    eqg

    22

    Measurement performed on a single electron in Penning trap

    me

    B 2

  • Current statusCurrent status

    g-2 experiment of electron and muon:

    ge (exp) = 2.0023193043617(15), ge (th) to determine fundamental constant

    g (exp) = 2.0023318416(12)*g (th) = 2.0023318367(13)*

    5 deviation

    G.W. Bennett et al., Phys Rev Lett 92, 1618102 (2004)

  • Permanent electric dipole momentPermanent electric dipole moment

    1957 Landau first pointed out the electric dipole moment (EDM) of a fundamental particle would suggest P and T violation

    d: electric dipole moment = vectoru: spin or magnetic moment = pseudo-vector, (like r x p)

    figure from Wikipedia

  • Neutron EDM: historyNeutron EDM: history

    By Ramsey

    figure from Wikipedia

  • CP violation without strangenessCP violation without strangeness

    Matterantimatter asymmetry suggest

    another source of CP violationElectron: intrinsic ?Quark: intrinsic ?Neutron/proton:

    from quark EDM ? New interaction?Atoms, molecules:

    large enhancement factors

    Atoms: Tl, Cs, Hg, Xe, Rn, Ra, FrMolecule: PbO, YbF, TlFIons, solid state systems, etc

  • How to measure EDMHow to measure EDM

    Problem: reverse E field cause leakage current,huge noise from B field

    figure from M. Romalis, Princeton

  • Current statusCurrent status

    Typical valueE ~ 10 kV/cm~ 10Hz, ~ nHz

    Sensitivity approachingsome Standard Model extension

    figure from M. Romalis, Princeton

    What if someone observes EDM?Theories ready with many parameters

  • Size of protonSize of proton

    Fundamental quantity bothering for decades Very important for nuclear calculation Lattice QCD not able to calculate precisely

    )2/(tan)(2

    41

    )(4

    )(222

    2

    2

    2

    2

    222

    222

    QGMQ

    MQ

    QGMQQG

    dd

    dd

    M

    ME

    MottRosenbluth

    02

    22

    2

    )(6

    Q

    Ec dQ

    QdGr

    Charge radius of proton by electron scattering

    Simon et al, (1980) Rrms = 0.862(12) fm

    I. Sick, (2003). Rrms = 0.895(18) fm

  • Laser spectroscopy methodLaser spectroscopy method

    Measure H transition frequency 1s 2s at 121nm,

    uncertainty: (th) 16kHz, (exp) 22kHz

    charge radius of proton Rrms = 0.883(14) fm

    Lack of precision (only1~2%) very annoying!

    Kirill Melnikov and Timo van Ritbergen, Phys. Rev. Lett. 84, 1673(2000)

  • MuonicMuonic hydrogenhydrogen

    muon decay e

    proton -

    m/me ~ 200 Bohr radius

    Energy level

    Wave function

    Energy shift due to nuclear size~

    Sensitivity ~ (m/me)2

    2

    20

    04

    ema

    e

    220

    4

    )4(2 nmeE en

    220 r

    0/2/30~ arear

    at PSI, aiming 0.1% measurementRrms = 0.84184(67)fm

    The size of the proton, Nature 466, 213216, 2010

  • Frequency standardFrequency standard

    Figure: S.A. Diddams et al.,Science 306, 1318, 2004

  • Why better clock?Why better clock?

    When you measure something very precisely,

    new physics will come out by itself!

    Applications:

    GPS

    Test special relativity, gravitational red-shift

    Gravitational wave radiation in binary pulsar

    Test linearality of quantum mechanics

    Variation of fundamental constant

  • Results From Searches for dResults From Searches for d/dt/dt

    refquantitymethod

    11

    10

    9

    8

    7

    6

    5

    43

    2

    1

    Quasar spectra(6.4 1.4) 10-16

    (m/qcd)0.5Oklo nuclear reactor-(2.3 +0.7/-0.3) 10-17

    (m/qcd)0.5Oklo nuclear reactor < 0.8 10-17

    gCs/gRb0.44Rb Cs(0.02 0.7) 10-15

    gCsme/mp2.8Opt-H Cs(-0.9 2.9) 10-15

    gCsme/mp6.0Opt-Hg+ Cs(-6.2 6.5) 10-17

    gCsme/mp1.9Opt-Yb+ Cs(0.3 2.0) 10-15

    Dy atomic beam(-2.7 2.6) 10-15Quasar spectra(4.4 1.6) 10-16Quasar spectra(0.6 0.6) 10-16

    Quasar spectra(7.2 1.8) 10-16

    / per year

    [1] S. K. Lamoreaux and J. R. Torgerson, Phys. Rev. D 69, 121701R (2004).[2] Y. Fujii et al., Nuclear Physics B 573, 377 (2000).[3] J. K. Webb et al., Phys. Rev. Lett. 87, 091301 (2001).[4] M. T. Murphy, J. K. Webb, and V. V. Flambaum, Mon. Not. R. Astron. Soc. 345,609 (2003).[5] R. Srianand et al., Phys. Rev. Lett. 92, 121302 (2004).[6] M. T. Murphy, J. K. Webb, and V. V. Flambaum, astro-ph/0612407 (2006).[7] A. Cingz et al., Phys. Rev. Lett. 98, 040801 (2007).[8] M. Fischer et al., Phys. Rev. Lett. 92, 230802 (2004).[9] E. Peik et al., Phys. Rev. Lett. 93, 170801 (2004).[10] H. Marion et al., Phys. Rev. Lett. 90, 150801 (2003).[11] T. M. Fortier et al., Phys. Rev. Lett. 98, 070801 (2007).

  • Parity violation in atomParity violation in atom

    interaction between nucleus and electron involves coherent sum of neutral weak and electromagnetic amplitudes

    e N e N

    Z0+

    2

    |M|2

    opposite parity states (e.g. 2s and 2p of H)

    are mixed by weak interaction

  • In HydrogenIn Hydrogen

    111080/122

    ~ L

    HzL

    QE

    pHs Wweak

    conventional characterization in atomic

    physics: weak charge

    NZ4sin1NZ,Q W2W Mixing between 2s and 2p state

    Measure asymmetry in transition rate under

    reversed E, B field

    Weak mixing angle SinW

  • Weinberg angleWeinberg angle

    Only success: Cs APV by C. WiemanRecently, D. Budker, large APV effect in Yb

    Bismuth: M. Macpherson et al, PRL 67, 2684 (1991)Lead: D. Meekhof et al, PRL 71, 3442 (1993)Thallium: P. Vetter et al, PRL 74, 2658 (1995) Cesium: C. Wieman et al, PRL 82, 2484 (1999)Ytterbium: K. Tsigutkin et al, PRL. 103, 071601 (2009)

  • Hydrogen energy levelHydrogen energy level

    2222 6.13

    21

    neV

    nmcEn

    23

    )2/1(2

    41

    224

    ln

    nmc

    )2/1)(2/1(1),(

    41

    325

    ljlnk

    nmc

    23

    )2/1(2

    41

    224

    jn

    nmc

    2/3)1(34

    224

    ff

    nmc

    mm p

    p

    protonrZe 222 )0(

    32

    non-relativistic

    relativistic correction

    spin-orbit interaction(LS, fine structure)QED effect (Lamb shift)

    nuclear magnetic moment (hyperfine structure)nuclear size effect

  • Nuclear size effectNuclear size effect

    transition from s to p state decrease transition frequency

    rE

    s

    pr

    E

    p

    s

    b) finite size nucleusa) point nucleusV ~ - 1/r

  • Result for hydrogenResult for hydrogen

    Measure total transition frequency:uncertainty: theory 16kHz, experiment 22kHz charge radius of proton = 0.883(14) fmMeasure isotope shift, 1s 2s 121 nm = 670 994.33464(15) MHz

    nuclear mass

    nuclear sizenuclear polarizability

    nuclear magnetic susceptibility

    Reference: [1] Kirill Melnikov and Timo van Ritbergen, Phys. Rev. Lett. 84, 1673(2000)[2] A. Huber, Th. Udem, B. Gross, J. Reichert, M. Kourogi, K. Pachucki, M. Weitz, and T.W. Hnsch. Phys. Rev. Lett. 80, 468 (1998)

  • Isotope shiftIsotope shift

    Mass shift: due to nucleus recoil

    Isotope Shift = MS + FS

    Field shift: due to nuclear size

    MS ''

    AAAA FS

    [(0)]2 < rc2 >

    Nuclear mass precisely known Atomic structure (0) calculable,H, He, Li.

    This method widely used in H-D, 4He-3He, and 6Li-7Li

    and determine the difference in the nuclear size

  • Summary of QED uncertaintySummary of QED uncertainty

    H: 10 kHz, He: 1 MHz, Li: > 10 MHz

    Typical nuclear effect: several MHz

    Except for H, precise measurement of total

    transition frequency cannot get nuclear effect

    First pointed out by G. Drake, QED uncertainty

    largely cancel in isotope shift measurement

    Uncertainty in IS:

    H:

  • Previous attempt for heliumPrevious attempt for helium

    Theory

    23P1-2

    150 160 170 180 190

    Pachucki '06 [4]

    Drake '02 [5]

    Frequency - 2291000 kHz

    Harvard '05

    York '00

    N. Texas '00

    940 945 950 955 960

    Pachucki '06 [4]

    Drake '02 [5]

    LENS '04

    Harvard '05

    York '01

    Frewquency - 29616000 kHz

    23P0-1

    Experiment Theory Experiment

    uncertainty of theory and exp < 1kHzdifference = 10kHz and 20kHz

  • Discrepancy in lithiumDiscrepancy in lithium

    0 1 2 3 4 5 6 7 8 9 10 11 12 130.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Austria

    Austria

    India

    D2

    York

    York

    R

    2 (6 L

    i-7Li

    ) fm

    2

    Measurement #

    electron scattering

    laser spectroscopy

    GSI two photon

    D1

    Test QED calculation, but discrepancy exist

  • Neutral Li and Li ionNeutral Li and Li ion

    Neutral Li D1 and D2 line by atomic beam Li+ in discharge and ion trap for better theoretical

    calculation

    metastable

  • Our approachOur approach

    Diode Laser 1@ 670 nm

    Diode Laser 2@ 670 nm

    lock to I2 transition or Li hollow cathode lamp

    Measure beat frequencyTo atomic beam for spectroscopy

  • ResultsResults

    150 200 250 300 350

    0

    20

    40

    60

    80

    100

    120

    140

    160

    Atom

    ic s

    igna

    l (A

    rb. U

    nit)

    Frequency (Arb. Unit)

    atomic signal laser PZT scan

    92 MHzS/N ~ 50

    0 1000 2000 3000 4000 5000

    0

    20

    40

    60

    80

    100

    120

    140

    Ato

    mic

    sig

    nal (

    Arb

    . Uni

    t)

    Frequency (Arb. Unit)

    atomic signal laser PZT scan

    800 MHz

    S/N ~ 40

    D1 line: both ground state and excited state hyperfine structure are resolved

    D2 line: only the excited state hyperfine structure is resolved

  • Reference laserReference laser

    Relative Frequency (GHz)100 6

    7Li D1I26Li D2 7Li D2

    -10

    6Li D1

    -23

    I2I2

    weak

    Error signal by frequency modulation Magnetic field shielding by mu-metal ~ 10 mG

    160 240 320

    -60

    0

    60

    Sign

    al (A

    rb. U

    nit)

    Frequency (MHz)

  • Iodine frequency standardIodine frequency standard

    RF~10 MHz

    PBS

    HWP

    lock in EOM

    40 MHz

    PD

    LIR

    LIR

    highpass

    chopped at ~10 kHz

    low pass

    signal out

    I2 vapor cell at 100oC

    I2 cold finger at 25oC

    DBM

    RF

    DL1

    RF Amplifier

    AOM

  • LiLi+ + for its better theory for its better theory

    Previous attempt: using accelerated ion beam Strathclyde UK, York Canada (still working) Bothered by asymmetric line shape Approach: saturation absorption in discharge cell

    548.5 nmoutput

    Diode Laser @ 1097nm

    FiberAmplifier

    FrequencydoublingAOM

    Heated discharge cell

    Frequency modulatedsaturation absorption

    548.5 nm ready at several mW, referenced to Iodine

  • 548.5 nm light source548.5 nm light source

    Referenced to I2 Power > 10 mW

  • Ion Trap DevelopmentIon Trap Development

    yx

    z0 cos( )V t

    1U 2U

    z

    02Z

    D=6m m, d=2.54mm, R=1.8mm, =1mm, L=42mm, 2Z0=13mm

  • In trap developmentIn trap development

    ICurrent supply with biased voltage

    Electron-emitting filament

    Trap

    Oven for atomic beam

    collimator

    collimator

    e-

    RF

    Ground

  • Ion Trap BasicsIon Trap Basics Trapping of charged particles by electric field

    Required: 3-dimensional force towards center

    Convenience: harmonic force

    Laplace equation:

    a,b,c can not be all positive

    UeF

    222 czbyaxU

    02 U

    Solutions: Apply RF field: dynamical trapping: Paul trapDC voltage + magnetic field: Penning trap

  • Paul Trap BasicsPaul Trap BasicsIdeal Paul Trap Potential: =(U0+V0cost)(x2+y2-2z2)/d02: RF frequency typically /2 = 1MHz ~ 100MHzd0: trap size U0,V0: strength of DC and RF field

    2/,

    24

    28

    220

    0

    220

    0

    tzru

    qmd

    eVq

    amd

    eUa

    rz

    rz

    equation of motion:

    0)2cos2(22

    uqadt

    ud

    This is the Mathieu equationWhen u remains finite :stable solutionsWhen u goes to infinity: unstable solutions

    Approximate solution for a,q

  • Optical detectionOptical detection

    Ca+ trap being the easiest for laser cooling397 nm cooling laser +

    866 nm repump795 nm input

    397nmoutput LBO crystal

    PDPD

    DCM

  • Conclusion and OutlookConclusion and Outlook

    Precision atomic measurement keeps

    producing interesting physics

    Our direction in NTHU: Precision

    spectroscopy on simple atoms, Li and Li+

    with aid of optical frequency comb

    Ion trap development

    People involved: Post-doc:Graduate students: , , , Supported by NSC