presentasi iciast 2010

Upload: iqbalgoh

Post on 07-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 Presentasi ICIAST 2010

    1/40

    ExtractInformationofPolarizationImagingfromLocalMatchingStereo

    MohammadIqbalMohammadIqbal

    OlivierMorelOlivierMorel

    FabriceMeriaudeauFabriceMeriaudeau

    International Conference on Intelligent & Advanced Systems 2010

  • 8/6/2019 Presentasi ICIAST 2010

    2/40

    Content

    Background

    Polarization+StereoImagingSystemResultandConclusionFutureWork

    2

    3

    1

    3

    3

    4

  • 8/6/2019 Presentasi ICIAST 2010

    3/40

    Background:WhatisPolarization? Polarization (alsopolarisation)isa

    propertyofwavesthatdescr ibes theor ien ta t ion o f the i r osc i l l a t ion

    Lightcanbepolarizedbyseveraldifferentprocesses Absorption Polaroidfilter Reflection Brewstersangle Scattering Lightfromthesky

    Unpolarized Light

    has E field at any

    instant can have E

    in any direction.

    Polarized Light

    has E field in a

    certain direction

    3

    1

  • 8/6/2019 Presentasi ICIAST 2010

    4/40

    Background:WhatisPolarization? PolarizationlightInformation:

    TotalIntensity AngleofPolarization:isadirectionofEfieldon

    electromagneticwave/lightafterpolarized DegreeofPolarization:isaquantityusedto

    describetheportionofanelectromagneticwavewhich

    is

    polarized.

    Perfectlypolarizedwave=DOPof100%, unpolarizedwave=aDOPof0%. Partiallypolarized,=DOPsomewhereinbetween0

    and100%. ApplicationsofPolarizedlight:

    Polaroidsunglasses,3DMovies,Photography Polarizationmicroscopy,Liquidcrystaldisplay ComputerVision:segmentation,navigation

    AoP

    31

  • 8/6/2019 Presentasi ICIAST 2010

    5/40

    Background:WhatisStereoSystem? Stereosystemwillprovide

    expandedviewsofanobject. Obtaininformationnotonlyin

    2D,butalsogetthedepthofanobject(3D).

    Geta

    distance

    information

    from

    twoormoreimagestakenfromdifferentpointofview(viewpoint).

    scene pointscene point

    optical centeroptical center

    imageplane

    imageplane

    31

  • 8/6/2019 Presentasi ICIAST 2010

    6/40

    Polarization+StereoImagingImage

    Acquisition

    Calibration

    Photometric

    Calibration

    Stereo

    Geometric

    Calibration

    Extract

    Polarization

    Information

    Remove

    Outlier

    Application

    Feature Detection

    Rectifying Image

    Stereo

    Matching

    2

  • 8/6/2019 Presentasi ICIAST 2010

    7/40

    OurSystem:ImageAcquisition2

  • 8/6/2019 Presentasi ICIAST 2010

    8/40

    OurSystem:PhotometricCalibrationMethod of Acquisition:

    1. Left

    2. Right

    1. LC 0

    2. LC 90

    2

  • 8/6/2019 Presentasi ICIAST 2010

    9/40

    OurSystem:PhotometricCalibration2

    2

    1 cos 2 sin 2 0

    cos 2 cos 2 sin 2 cos 2 01 M ( )

    sin 2 sin 2 cos 2 sin 2 020 0 0 0

    =

    Based on Mueller Matrice for Linear Polarizer

    s = Mpol1.s

    s = Mpol2.s = Mpol2.Mpol1.s

    Target Polarizer0-180

    s s s

    Mpol1 Mpol2

    s0

    s1s

    s2

    s3

    =

    Stokes Vector :

    1 Ip( ) ( s0 cos2 .s1 sin2 .s2 )

    2 = + +

    1. Mueller Matrix to get scalar from

    2. Least Square for get a s0, s1 and s2

    For =0-180 Matrix My=M.x

    x=(MtM)-1Mt.y

    H=(MtM)-1Mt Matrix 3x3

    For =0-180s0 = s0+H(1, )*Ip()s1 = s1+H(2, )*Ip()s2 = s2+H(3, )*Ip()

    Ip = a s0 + b s1 + c s2

    3. Get a predicted intensity Verify with the intensity of

    real Image from acquisition (Image Observe)

    4. For every pixel in status alpha =0-180 :

    Ipred= a s0 + b s1 + c s2

    Verify = Ipred-Iobs

    result 0 is ideal

    result 1-2 is toleranceresult >2 is to much noise

    2

  • 8/6/2019 Presentasi ICIAST 2010

    10/40

    OurSystem:VisualResultofPhotometricCalibration

    Left Polarizer

    2 pixel : A(270,497)

    B(198,501)

    Right Polarizer

    2 pixel : A(270,497)

    B(198,501)

    A BLC 0 for 2 pixel : A(270,497)

    B(198,501)

    LC 90 for 2 pixel :

    A(270,497) B(198,501)

    A B

    2

  • 8/6/2019 Presentasi ICIAST 2010

    11/40

    OurSystem:GeometricCalibrationandImageRectifying

    Left Right

    Calibration use aBouguet Toolbox, toget a camera :- Internal parameter- External parameter

    Images rectifying use all parameter to transform geometrically

    2

  • 8/6/2019 Presentasi ICIAST 2010

    12/40

    OurSystem:FeatureDetector,StereoMatchingandRemoveOutliers

    Sparse Feature DetectorWe use Harris corner detector

    method, detector based-on the imagegradient.

    Harris and Stephens Method :

    1. R = det(M)- ktr(M)2

    2. E = min (Eigenvalue of M)

    1 1 2 2

    2 2u ,v

    1 1 2 2

    u ,v u ,v

    I ( u,v ) I I ( u d ,v ) I NSSD

    I ( u,v ) I I ( u d ,v ) I

    + = +

    Dense Stereo Matching AlgorithmWe use Normalized SSD (Sum of Squared

    Differences) because this algorithm gave bettermatching results when applied to our polarized

    images, compared to other local matching

    algorithms (NCC, SSD, SAD, census and rank).

    ((I0+I90)/2) I45

    2

    DetailDetail

  • 8/6/2019 Presentasi ICIAST 2010

    13/40

    OurSystem:DenseStereoMatchingandRemoveOutliers

    Remove Outliers

    We use RANSAC. it is an iterativemethod to estimate parameters ofa mathematical model from a setof observed data which containsoutliers. This algorithm was firstpublished by Fischler and Bolles in1981.

    Putative Match Inlying Matches

    2

    DetailDetail

  • 8/6/2019 Presentasi ICIAST 2010

    14/40

    OurSystem:ExtractPolarizationInfoBasic technique to obtain the state of polarization of incident light is to capturethree different intensity images through a set of polarization filters. If we have I0,I45

    and I90

    (representation of the image intensity measurements taken at an

    angle of polarizer of 0, 45and 90), we can compute : angle of polarization,degree of polarization and total intensity.

    totI

    I ( 1 cos( 2 2 ))2

    = +

    tot0

    tot45

    tot90

    I I ( 1 cos 2 )

    2

    I I ( 1 sin 2 )

    2

    I

    I ( 1 cos 2 )2

    = +

    =

    =

    45

    tot

    90

    tot

    2Isin 2 1

    I

    2Icos 2 1

    I

    =

    =

    45

    tot

    90

    tot

    2I1I

    a tan / 22I

    1I

    =

    45

    tot

    45

    tot

    90

    tot

    2I1I

    2I1

    Isin( a tan )

    2I

    1 I

    =

    I = Imin+ Imax

    Angle ofpolarization

    Degree ofpolarization

    Total

    Intensity

    = Angle of polarizer rotation

    2

  • 8/6/2019 Presentasi ICIAST 2010

    15/40

    OurSystem:ImageAcquisitionforVerifyPolarizationInfo

    55mm

    400mm

    Pol1Pol2

    LC

    2 State Liquid CrystalPolarizer : 0, 90

    5 State Incident light :0, 10, 20, 30, 45

    Object

    right : 45

    2

  • 8/6/2019 Presentasi ICIAST 2010

    16/40

    OurSystem:ExtractPolarizationInfo

    IncidentIncident

    LightLight

    angleangle

    IntensityIntensity

    OfPolOfPol

    MeanofMeanof

    AOPAOP

    MeanofMeanof

    DOPDOP

    %ofAverage%ofAverage

    ErrorofErrorof

    AOPAOP

    0 0.3863 2.1586 0.7470 0.021610 0.3674 8.7851 0.6139 0.187920 0.3409 16.0545 0.5019 0.360530 0.4062 26.6184 0.4561 0.566245 0.4042 39.7027 0.4437 0.8470

    0and 90

    45

    Open Image left 0 and 90

    and right 45

    Get a graylevel value on

    every pixel founded by

    Local Matching Algorithm

    Compute Angle of

    Polarization (AoP)

    Compute Degree ofPolarization (AoP)

    Compute Intensity ofPolarization

    Visualization Polarization

    Based Stereo Matching

    AOPAOP = Angle of PolAngle of Pol

    DOPDOP = Degree of PolDegree of Pol

    33

  • 8/6/2019 Presentasi ICIAST 2010

    17/40

    OurSystem:VizualizePolarizationInfo(x,y)

    AOP /AOP /

    Angle of

    Polarization

    DOP /DOP /

    Degree of

    Polarization

    (x2,y2)

    (x1,y1)

    33

    10

    20

    30

  • 8/6/2019 Presentasi ICIAST 2010

    18/40

    ResumeResult11 2233

    44

    55

    the polarization information is

    extracted from the inlier pixelsand visualized.

    Each source image :

    Left :(i(0)+i(90))/2 Right : i(45)

    Extract Harris features

    Stereo matching by NSSD

    Each pixel match found in thewrong place is rejected byRANSAC method

    11

    22

    33

    44

    55

    33

    DetailDetail

  • 8/6/2019 Presentasi ICIAST 2010

    19/40

    Conclusion Inthiswork,wehavedone:

    Implemented

    of

    polarization

    visionImplemented

    of

    polarization

    vision systemin

    stereo

    imaging.

    SetupdesignofImagingsystemSetupdesignofImagingsystem withliquidcrystalpolarizerinonesideandafixedpolarizerintheothersidethatcansensepartiallinearlypolarizedlightandcomputationallyprocesspolarizationcomponent.

    VisualizeapolarizationVisualizeapolarization componentintheoutput. Experimentsshowthatourmethodexhibitsgood

    performanceincomplexbackground,especiallywhenthereissomelightreflectedfromspecularparts.

    33

  • 8/6/2019 Presentasi ICIAST 2010

    20/40

    FutureWorkImage

    Acquisition

    Calibration

    Photometric

    Calibration

    Stereo

    Geometric

    Calibration

    Extract

    Polarization

    Information

    Remove

    Outlier

    Feature Detection

    Rectifying Image

    Stereo

    Matching

    Water region

    Segmentation

    3D

    Recontruction

    SelfCalibration

    Improvement

    Photometric Invariant

    Feature Detector

    4

  • 8/6/2019 Presentasi ICIAST 2010

    21/40

    Remerciement Thisworkwassupportedby:

    BureauofPlanningandForeignCooperation,MinistryofNationalEducation,RepublicofIndonesia.

    GunadarmaUniversity,IndonesiaOpticsandallresearchequipmentsarecourtesy

    ofLE2IIUTLeCreusot,France.

  • 8/6/2019 Presentasi ICIAST 2010

    22/40

    Terima Kasih

    Thank You

    Question?Question?

  • 8/6/2019 Presentasi ICIAST 2010

    23/40

    DetailVisualResultDetailVisualResult

  • 8/6/2019 Presentasi ICIAST 2010

    24/40

    Scene 10 :SourceImages(Rectified)Epipolar

    line

    33

  • 8/6/2019 Presentasi ICIAST 2010

    25/40

    Scene 10 :HarrisFeature33

  • 8/6/2019 Presentasi ICIAST 2010

    26/40

    Scene 10 :NSSDMatching33

  • 8/6/2019 Presentasi ICIAST 2010

    27/40

    Scene 10 :NSSDMatchingPixelPixel CorrespondenceCorrespondence

    0 100 200 300 400 500 600 7000

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    1st Pixel1st Pixel 2nd Pixel2nd Pixel LastLast PixelPixel

    0 200 400 600 8000

    0.5

    1

    1.5

    2

    2.5

    3

    0 200 400 600 8000

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    Compare to

    Find the lowest(NSSD)

    12..

    .

    n

    1 2 . . . n12..

    .

    n

    1 2 . . . n

    Windows11x11

    Left Right

    33

  • 8/6/2019 Presentasi ICIAST 2010

    28/40

    Scene 10 :Remove OutliersPutative Match

    Number of inliers was 110 (61%)Number of putative matches was 180

    Inlying Matches

    33

  • 8/6/2019 Presentasi ICIAST 2010

    29/40

    Scene 10 :Visualisasi Polarization33

  • 8/6/2019 Presentasi ICIAST 2010

    30/40

    Visualization forall Scene33

  • 8/6/2019 Presentasi ICIAST 2010

    31/40

    Visualization forall SceneScene 0

    (Yellow Box)

    Scene 10

    (Green Box)

    33

  • 8/6/2019 Presentasi ICIAST 2010

    32/40

    Visualization forall SceneScene 20(Blue Box)

    Scene 30

    (Red Box)

    33

  • 8/6/2019 Presentasi ICIAST 2010

    33/40

    Visualization forall SceneScene 45(Cyan Box)

    33BackBack

  • 8/6/2019 Presentasi ICIAST 2010

    34/40

    AppendixAppendix

  • 8/6/2019 Presentasi ICIAST 2010

    35/40

    HarriscornerdetectorThere is many possibility detector to get a feature point fromimages. One of well-known method is Harris corner detector.

    This method based on the use of the image gradient.

    The squared image derivatives

    should be smoothed by convolving

    them with a Gaussian filter g.2 2

    x x I g I =

    Defined autocorrelation matrix M

    for every pixel:2

    x x y

    w w

    2

    x y y

    w w

    I I I

    M I I I

    =

    where Wis a 33 neighborhood

    around the point.

    Compute the derivatives of the

    intensity image in the x and y

    directions for every pixel.

    x

    II

    x

    =

    y

    II

    y

    =

    2 2

    x y

    I ,I

    M is for derive a

    measure of

    cornerness

    rank M = 0 : the

    pixel belongs to an

    homogeneous regionrank M = 1 : an edge

    (significant gradients

    in one directions),

    rank M = 2 : a

    corner (significant

    gradients in both

    directions).

    Harris and Stephens Method :1. R = det(M)- k tr(M)2

    2. E = min (Eigenvalue of M)

    use of the determinant

    and the trace (sum of

    the diagonalelements ) of M to

    detect corners

    Use the smaller

    eigenvalue of M for

    detect a corner.

    2BackBack

  • 8/6/2019 Presentasi ICIAST 2010

    36/40

    RANSAC(RAndom

    SAmple

    Consensus)

    InlyingMatches

    2BackBack

  • 8/6/2019 Presentasi ICIAST 2010

    37/40

    ComputePolarizationInfoPartial linear polarization can be measured at a pixel level

    by the transmitted radiance through a polarization filter.The radiance varies sinusoidally with filter orientation. This

    is based on the work of Wolff et al. :

    Total Intensity

    I = Imin

    + Imax

    = I0

    + I90

    Angle of Polarization :

    = 0.5 * arctan ( ( I0 + I90 - 2I45 ) / I90 - I0If I90 < I0 [ if (I45 < I0 ) = +90

    else = +90

    Partial Polarization or degree of polarization :

    = ( I90 - I0 ) / ( I90 - I0 ) cos 2

    StepStep :: Open Image left 0 and 90and right 45

    Get a graylevel value onevery pixel founded by

    Local Matching Algorithm

    Compute Angle of

    Polarization (AoP)

    Compute Degree of

    Polarization (AoP)

    Compute Intensity of

    Polarization

    Visualization Polarization

    Based Stereo Matching

    2

  • 8/6/2019 Presentasi ICIAST 2010

    38/40

    ComputePolarizationInfo1

    2 2 2

    1 2 3

    s1arccos

    2 s s s

    =

    + +s0 =Itots1 =Ipol cos 2

    s2 =Ipol sin 2cos

    s3 =Ipol sin 2sin

    3

    2

    sarctan

    s

    =

    Angle of Polarization Phase of Polarization

    We use a linear polarizer, so we can simplified polarization imaging without use

    S3 and phase of polarization. So, Stokes vector of partially linearly polarized wave

    can be written :

    s0 =Itots1 = Ipol cos 2s2 = Ipol sin 2

    s3 = 0

    0 1 2

    1 I( ) ( S S cos 2 S sin 2 )

    2

    = + +

    totI I( ) (1 cos( 2 2 ))2

    = +

    = Angle of polarizer rotation

    Degree of Polarization2 2 2

    pol 1 2 3

    tol 0

    I s s s

    I s

    + += =

    2

  • 8/6/2019 Presentasi ICIAST 2010

    39/40

    ComputePolarization

    Info

    totI I (1 cos( 2 2 ))

    2 = +

    tot0

    tot45

    tot90

    I I (1 cos 2 )

    2

    I I (1 sin 2 )

    2I

    I (1 cos 2 )2

    = +

    =

    =

    45

    tot

    90

    tot

    2Isin 2 1 ( a )I

    2Icos 2 1 ( b )

    I

    =

    =

    45

    tot

    90

    tot

    2I1

    Ia tan / 22I

    1I

    =

    45

    tot

    45

    tot

    90

    tot

    2I1

    I

    2I1I

    sin( a tan )2I

    1I

    =

    2BackBack

  • 8/6/2019 Presentasi ICIAST 2010

    40/40

    VizualizePolarization

    Info

    Cosinus Law

    (x,y)

    x1=(x+b)

    y1 = (y-c)

    y2=(y+c)

    x2=(x-b)

    (x,y)AOP /AOP /

    Angle of

    Polarization

    DOP /DOP /

    Degree of

    Polarization

    (x2,y2)

    (x1,y1)Length = DOP/2

    b=length*cos(AOP)c=length*sin(AOP)

    x1=x+b;y1=y-c

    x2=x-b;y2=y+c(x,y) ((x+b),y)

    ((x+b),(y-c))

    x(col)

    y(row)

    a

    b = a cos

    = a sin c

    2BackBack