professor felipe são perturbações periódicas, ou oscilações de partículas ou do espaço, por...

45
Professor Felipe Técnico de Operações P-25 Petrobras Contatos : Felipe da Silva Cardoso [email protected] www.professorfelipecardoso.blogspot.com skype para aula particular online: felipedasilvacardoso

Upload: vantu

Post on 18-Nov-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Professor Felipe

Técnico de Operações – P-25

Petrobras

Contatos

• : Felipe da Silva Cardoso

[email protected]

• www.professorfelipecardoso.blogspot.com

• skype para aula particular online:

felipedasilvacardoso

A Física das Radiações Eletromagnéticas

Ondas eletromagnéticas fazem parte do nosso dia-a-dia. Iniciando pelo

Sol, a maior e mais importante fonte para os seres terrestres, cuja vida

depende do calor e da luz recebidos através de ondas eletromagnéticas,

algumas delas com potencial nocivo.

A Física das Radiações Eletromagnéticas

O que nos interessa aqui são as fontes terrestres de radiação

eletromagnética (estações de rádio e de TV, o sistema de

telecomunicações à base de microondas, e muitas outras). O

benefício dessas tecnologias é imenso – custo x riscos potencias!

A Física das Radiações

Eletromagnéticas

Campo eletromagnético (EMF) é caracterizado pela sua freqüência ou

comprimento de onda correspondente (wavelength). Essas ondas são

carregadas por partículas denominadas “quanta” que carregam maior energia

quanto maior a freqüência da onda.

A Física das Radiações

Eletromagnéticas

Radiações ionizantes são radiações eletromagnéticas de alta freqüênciae que carregam energia suficiente para quebrar ligações químicas.

Radiações eletromagnéticas na faixa da comunicação celular tem muito

menor energia e são incapazes de quebrar ligações químicas -> não

ionizantes! A energia de um fóton na radiação de RF é menor que 0.1% da

energia cinética de ligação (1,6x10-19J).

Esta questão foi elucidada por Albert Einstein, ao afirmar que

a radiação solar se propaga por meio de pequenos pulsos ou

feixes de fótons – quanta (plural de quantum) – individuais.

Essa teoria foi denominada corpuscular.

Planck descobriu que os quanta associados a uma

determinada freqüência (v) da radiação possuem todos a

mesma energia e que esta energia (E) é diretamente

proporcional à freqüência.

Natureza da Radiação Solar

Esquema mostrando a emissão de fótons

CONCLUSÃO

a) Quanto maior a energia, menor será o comprimento de

onda

b) Quanto maior o comprimento de onda, menor será a

freqüência da radiação

Hoje, sabe-se, pela teoria quântica, que um elétron quando

absorve energia do meio salta de um nível de energia (camada

ou subcamada orbital) mais próximo do núcleo para um outro

mais afastado, tornando-se o átomo instável e carregado

negativamente. Para voltar à sua estabilidade, o elétron transfere

esta energia para outros átomos ou para o meio, por um processo

de transferência de energia.

hE

c

chE

Em que:

v = freqüência, em HZ;

h = constante de Planck, de 6,63 x 10-34 Js-1;

c = velocidade da luz, de 3 x 108 ms-1;

λ = comprimento de onda , em m;

E = energia, em J.

hE c

chE

Em que:

v = freqüência, em Hz;

h = constante de Planck, de 6,63 x 10-34 Js-1;

c = velocidade da luz, de 3 x 108 ms-1;

λ = comprimento de onda , em m;

E = energia, em J.

Ondas são perturbações periódicas, ou oscilações de

partículas ou do espaço, por meio das quais muitas

formas de energia se propagam a partir de suas fontes

Se a energia se propaga no espaço, de

que maneira ocorre essa propagação?

Esse fato pode ser elucidado pela teoria ondulatória,

segundo a qual, a radiação solar se propaga em

linha reta, por meio de um campo eletromagnético

em movimento ondulatório.

A) Uma onda não propaga matéria;

B) As ondas propagam apenas energia, que é transferida por meio de

átomos e moléculas da matéria.

C) De modo geral as ondas necessitam de um meio material para se

propagarem, exceto as eletromagnéticas, que se propagam no vácuo;

Ondas Eletromagnéticas

Entre duas cargas elétricas em movimento existem o

campo elétrico e o magnético perpendiculares entre

si, ou seja, criam-se um campo elétrico e um campo

magnético

Esquema de uma onda

eletromagnética: campo

elétrico (E), campo

magnético (M) e sentido de

propagação (C)

Radiação visível (luz)

Conjunto de radiações eletromagnéticas

compreendidas entre 0,39 e 0,70 micrômetros. As

radiações contidas nesta faixa de comprimento de

onda, ao incidirem no sistema visual humano, são

capazes de provocar uma sensação de cor no

cérebro.

Decomposição da luz branca

através de um prisma

Separação das cores

Radiação visível (luz)

0,620 a 0,700620 a 700Vermelha

0,592 a 0,620592 a 620Laranja

0,578 a 0,592578 a 592Amarela

0,500 a 0,578500 a 578Verde

0,446 a 0,500446 a 500Azul

0,400 a 0,446400 a 446Violeta

Micrômetro ( m)Nanômetro (nm)

Comprimento de ondaCor

m

RADIAÇÃO ULTRAVIOLETA: conjunto de radiações compreendidas na faixa de 0,01 a

0,38 micrômetros. Estas radiações são muito produzidas durante as reações nucleares

no Sol. Entretanto, ao atingir o topo da atmosfera terrestre, são quase totalmente

absorvidas pelo gás ozônio (O3). O espectro do UV é dividido em três bandas: UV

próximo (0,3 a 0,38 micrômetros), UV distante (0,2 a 0,3 micrômetro) e UV máximo (0,1

a 0,2 micrômetro).

RAIOS X: radiações cujas freqüências de onda estão acima das da radiação

ultravioleta, ou seja, possuem comprimentos de ondas menores. São muitos

usados em radiografias e em estudos de estruturas cristalinas de sólidos. Os raios X

provenientes do Sol são absorvidos pelos gases na alta atmosfera.

RADIAÇÃO GAMA: emitida por materiais radiativos e pelo Sol. Localiza-se no

espectro eletromagnético antes dos raios X, ou seja, aquém de 1 ângstrom. Possui

altas freqüências e, por isso, é muito penetrante (alta energia). Na prática tem

aplicação na medicina (radioterapia) e em processos industriais, principalmente na

conservação de alimentos.

Microondas

Radiação Infravermelha (IV)Conjunto de radiações eletromagnéticas cujos comprimentos de onda

variam de 0,7 a 1.000 micrômetros. Situam-se no espectro

eletromagnético entre a luz vermelha e as microondas; às vezes recebem

a denominação de radiação térmica.

Radiações eletromagnéticas que se estendem pela região do espectro de

1.000 micrômetros até cerca de 1 x 10-6 micrômetros (1 m). São

comumente referenciadas em Hertz e seus múltiplos, estando, neste

caso, compreendidas entre 300 GHz a 300 MHz.

Ondas de rádioConjunto de radiações eletromagnéticas com frequências menores que

300 MHz (comprimento de onda maio que 1 m). Estas ondas são

utilizadas principalmente em telecomunicação e radiodifusão.

Conjunto de todas as radiações, desde os raios gama até as ondas de

rádio, que nada mais é do que a ordenação das radiações em função

do comprimento de onda e da frequência.

Espectro eletromagnéticoCONCLUÃO

Espectro Eletromagnético

Esquema do espectro eletromagnético

Leis de Stefan - BoltzmannDefine as relações entre o total da radiação emitida (E) em watts/m2 e a

temperatura (T) expressa em graus kelvin (oK):

4TE

Em que:

E = radiaância total emitido pela superfície (W/m2);

= constante de Stefan-Boltzmann = 5,6693 x 10 -8 Wm-2 K-4;

T = temperatura em Kelvin emitida pelo material;

= emissividade

Emissão máxima de algumas estrelas Esquema mostrando a radiação

emitida pela superfície

A energia de um fóton de radiação eletromagnética de freqüência f é dada por:

E = h . fOnde:

E = energia de um fóton

h = constante de Planck

h= 6,63 x 10-34 Js ou h= 4,14 x 10-15 eV . s

f= Freqüência da radiação emitida

Note que a frequência emitida é diretamente proporcional a energia, ou seja, quanto maior for a frequência da radiação, maior é a energia de seus fótons.

Pela teoria proposta pela física clássica, a luz era considerada uma radiação eletromagnética, portanto ela se comportava como uma onda

I – O efeito fotoelétrico só ocorre a partir de uma determinada frequência fmín.

II – A partir do momento que o fenômenotem início, a quantidade de cargasemitidas (fotoelétrons) da placa édiretamente proporcional à intensidadeda luz.

III – Para frequências menores quefmín, o fenômeno não existe.

Segundo Einstein, as partículas de luz deveriamse chocar contra os elétrons, transferindo energiapara eles durante a colisão. Só que o elétron estápreso no material e, para libertar-se de sua ”prisãoenergética” precisa receber uma certa dose deenergia que, fisicamente corresponde a um trabalho aser realizado. Essa dose de energia para arrancar oelétron é chamada de função trabalho ( ).f

O elétron recebe um quanta de energia :

Ec = h.f -

I) Se a energia (h.f) for menor que a função trabalho ( ), não haverá energia mínima suficiente para liberar o elétron e nada ocorre.

II) Se a energia (h.f) for maior que a função trabalho ( ), haverá energia suficiente para liberar o elétron com “sobra”. Esse excedente de energia (hf - ), será igual a energia cinética (Ec) adquirida pelo elétron(Ec = hf - ).

f

f

f

f

f

III) Se a energia (hf) for igual a funçãotrabalho ( ), haverá energia suficienteapenas para liberar o elétron, mas nãoteremos “sobra”. Nesse caso, Ec = 0.Essa hipótese corresponde o caso limitea partir do qual o elétron passa a serliberado do metal. A frequência naexpressão hf = corresponde ao valormínimo (fmin) a partir do qual o efeitofotoelétrico começa ocorrer. Assim:hfmin=

f

f

f

Tenha quantidade mínima de energia, Para vencer o choque os átomos vizinhos e a atração dos núcleos desses átomos

Para o elétron conseguir escapar é necessário que:

A energia mínima para esse elétron escapar do metalcorresponde a uma função trabalho (f), que é característico

de cada metal.

Quando o elétron recebe energia hf, essa deve sersuperior a função trabalho (f) para que o elétron possa escapar,

O excesso de energia é conservado pelo fotoelétronem forma de energia cinética.

Observação:

Ec = hf - f

y = ax + b

Analogia:

Frequência de corte (fmin):

- para acharmos a frequência de corte ( fmin),

- hf0 = f , note que se isso ocorre se, Ec = 0

A emissão de fotoelétrons pela placa não depende daintensidade de radiação incidente, mas sim da freqüênciada radiação (essa freqüência é a freqüência de corte fmin).

A intensidade de radiação incidente tem haver com o

número de elétrons arrancados, maior intensidade

corresponde a um maior número de elétrons arrancados.

Observação:

Petrobras 2010 março TO prova 4039

Com relação à Radiação Eletromagnética, considere as afirmativas abaixo.

I - São ondas eletromagnéticas produzidas por cargas elétricas aceleradas e

classificadas por ordem crescente de frequência.

II - São ondas longitudinais que necessitam de um meio material para se

propagar.

III - Transportam energia e quantidade de movimento e se deslocam, no

vácuo, a uma velocidade aproximada de 300.000 km/s, independente da

frequência.

É(São) correta(s) APENAS a(s) afirmativa(s)

(A) I. (B) II. (C) III. (D) I e II. (E) I e III.

Petrobras 2010 março TQ prova 52

12

Com relação às ondas eletromagnéticas, analise as

afirmações abaixo.

I - É uma onda constituída de campos elétricos e magnéticos

que podem se propagar no vácuo, sem a necessidade de

um meio material para dar suporte a elas.

II - A luz visível, o infravermelho, o ultravioleta, o Raio-X e o

Raio Y são exemplos de ondas eletromagnéticas.

III - O espectro das ondas eletromagnéticas é classificado

pela frequência, sendo que quanto maior a frequência da

onda, menor é a energia que ela transporta.

Está(ão) correta(s) APENAS a(s) afirmação(ões)

(A) I. (B) II. (C) III. (D) I e II. (E) II e III.

Petrobras 2010 TPP prova 0232

Com relação à radiação eletromagnética, considere as afirmativas abaixo.

I - Radiação eletromagnética é uma onda na qual um campo magnético

variável induz um campo elétrico também variável no tempo que, por sua

vez, produz um campo magnético variável e assim sucessivamente se

propagam as ondas eletromagnéticas.

II - Radiação eletromagnética é uma onda eletromagnética de natureza

mecânica que necessita de um meio material condutor para se propagar,

uma vez que no vácuo, ou seja, na ausência de matéria, não há

propagação.

III - Radiação eletromagnética é uma onda de campos elétricos e magnéticos

que oscilam longitudinalmente, ou seja na mesma direção de

propagação, possuindo as mesmas características das ondas sonoras,

que se propagam no vácuo a uma velocidade de 300 km/h.

Está(ão) correta(s) APENAS a(s) afirmativa(s)

(A) I. (B) II. (C) III. (D) I e II. (E) II e III.

Petrobras 2010.2 TO prova 41

26

Uma radiação eletromagnética, propagando-se no ar, sofre

refração ao penetrar em um meio mais refringente. Nesta

mudança de meio, é mantida constante a seguinte

característica física da onda:

(A) velocidade.

(B) massa.

(C) frequência.

(D) comprimento.

(E) momento de dipolo magnético

Petrobras 2011 TIE prova 29

49 -Com respeito às ondas eletromagnéticas, analise as afirmações a

seguir.

I - É uma onda composta por um campo elétrico e um magnético, que

se pode propagar no vácuo, portanto, sem a necessidade de um

meio material para lhe dar suporte.

II - A luz visível, o infravermelho, o ultravioleta e o Raio X são exemplos

de ondas eletromagnéticas.

III - Quanto maior a frequência da onda, menor é a energia que ela

transporta.

Está correto o que se afirma em

(A) I, apenas.

(B) II, apenas.

(C) III, apenas.

(D) I e II, apenas.

(E) I, II e III.

Petrobras 2001.1 TO prova 3625 - A radiação eletromagnética é um fenômeno ondulatório no qual um campo

elétrico e outro magnético oscilam periodicamente enquanto a onda se propaga

num determinado meio. A velocidade de propagação das onda

eletromagnéticas no vácuo, é c 3,0 x 108 m/s.

Qual das opções abaixo descreve a características físicas de uma onda

eletromagnética?

(A) Necessita de um meio material para se propagar. É uma onda do tipo

transversal, ou seja, os campos elétrico e magnético oscilam perpendiculares à

direção de propagação.

(B) Necessita de um meio material para se propagar. É uma onda do tipo

longitudinal, ou seja, os campos elétrico e magnético oscilam na mesma

direção da propagação.

(C) Não necessita de um meio material para se propagar. É uma onda do tipo

transversal, ou seja, os camposelétrico e magnético oscilam perpendiculares à

direção de propagação.

(D) Não necessita de um meio material para se propagar. É uma onda do tipo

transversal, ou seja, os campos elétrico e magnético oscilam na mesma direção

da propagação.

(E) Não necessita de um meio material para se propagar. É uma onda do tipo

longitudinal, ou seja, os campos elétrico e magnético oscilam na mesma

direção da propagação.

Petrobras 2011.2 TPP prova 0956- A luz visível é apenas uma pequena parte do espectro da radiação

eletromagnética. Observe as afirmativas a seguir concernentes às

radiações eletromagnéticas.

I – O calor proveniente do sol é resultado da radiação infravermelha, que é

invisível.

II – A radiação emitida por uma lâmpada incandescente acesa apresenta um

espectro aproximadamente igual ao de um corpo negro.

III – As estrelas que vemos no céu na cor branca emitem um espectro

contínuo de radiação cobrindo toda a faixa do visível.

IV – De acordo com a relação de Planck, quanto maior o comprimento de

onda de uma radiação eletromagnética, mais energética ela é.

São corretas APENAS as afirmativas

(A) I e II

(B) I e III

(C) I e IV

(D) II e IV

(E) III e IV

Petrobras

2012 TIE

prova 39

Petrobras 2008 TO prova 17

37 - Considere as afirmações abaixo, sobre radiações

eletromagnéticas.

I - As radiações eletromagnéticas, tais como ondas de rádio, luz

visível, raios X e raios , têm em comum, no vácuo, a velocidade.

II - Os raios X são radiações eletromagnéticas de freqüência maior

do que a luz visível.

III - Elétrons em movimento vibratório podem fazer surgir ondas

mecânicas e eletromagnéticas.

É (São) correta(s) APENAS a(s) afirmativa(s)

(A) I (B) II (C) III (D) I e II (E) I e III

Petrobras 2011.2 TPP prova 0956

A luz visível é apenas uma pequena parte do espectro da radiação eletromagnética. Observe as afirmativas a seguir concernentes às radiações eletromagnéticas.

I – O calor proveniente do sol é resultado da radiação infravermelha, que é invisível.

II – A radiação emitida por uma lâmpada incandescente acesa apresenta um espectro aproximadamente igual ao de um corpo negro.

III – As estrelas que vemos no céu na cor branca emitem um espectro contínuo de radiação cobrindo toda a faixa do visível.

IV – De acordo com a relação de Planck, quanto maior o comprimento de onda de uma radiação eletromagnética, mais energética ela é.

São corretas APENAS as afirmativas

(A) I e II

(B) I e III

(C) I e IV

(D) II e IV

(E) III e IV

Transpetro 2011 TO prova 29

56

A radiação eletromagnética sensível ao olho humano definida como luz visível. A faixa de comprimento de onda da luz visível varia de 400 x 10-9 m a 700 x 10-9 m. A frequência que está dentro do espectro visível é

Dado: A velocidade da luz no vácuo é de 300 x 106 m/s.

(A) 60 x 1017 Hz

(B) 60 x 1016 Hz

(C) 60 x 1015 Hz

(D) 60 x 1014 Hz

(E) 60 x 1013 Hz

Transpetro 2012 TO prova 25

Petrobras 2011 TIE prova 29

Petrobras 2012 – TPP- prova48

Petrobras 2005 TO 41 - A radiação eletromagnética é formada por um campo elétrico e um

campo magnético que oscilam perpendicularmente entre si e

perpendicularmente à direção de propagação da radiação, como mostra a

figura abaixo.

A onda eletromagnética se move com a velocidade da luz e pode ser definida em

termos da sua freqüência de oscilação ou da distância entre picos sucessivos

(comprimento da onda). A respeito das propriedades da radiação eletromagnética, é

correto afirmar que:

(A) a região de luz visível se situa no espectro eletromagnético entre as regiões de

radiação infravermelha e ultravioleta.

(B) as ondas de rádio possuem comprimento de onda inferior ao dos raios ultravioleta.

(C) os raios gama e os raios-X possuem energia inferior à da radiação de microondas.

(D) seu comprimento de onda é diretamente proporcional à sua freqüência.

(E) só se propaga em meios materiais e, portanto, não se propaga no vácuo.

Petrobras 2005 TO

32 -Para que uma radiação consiga extrair elétrons de uma

placa de tungstênio, é necessário que sua frequência seja, no

mínimo, de 1,50 x 1015 Hz. Sendo assim, a energia cinética

máxima, em elétron-volts, dos elétrons emitidos pelo tungstênio,

no vácuo, quando nele incide uma radiação de comprimento de

onda igual a 150 nm, é, aproximadamente, igual a

Dados:

- constante de Planck h = 6,63 x 10–34 J.s

- velocidade das ondas eletromagnéticas no vácuo c = 3,0 x 108 m/s

- massa do elétron m = 9,1 x 10–31 kg

- 1 eV = 1,6 x 10–19 J

(A) 2,1 (B) 4,8 (C) 6,9 (D) 11,5 (E) 18,5

Petrobras 2012 TO38

A lâmpada de vapor de sódio, à baixa pressão, emite luz

amarela praticamente monocromática. O comprimento de onda

dessa luz no vácuo é de, aproximadamente, 588 nm.

A luz emitida por essa lâmpada se propaga dentro do vidro

com comprimento de onda, em nm, aproximadamente igual a

Dados: velocidade da luz no vácuo: 3,0 x 108 m/s

velocidade da luz no vidro: 2,0 x 108 m/s

(A) 196 (B) 294 (C) 392 (D) 882 (E) 1.176