pure fulde-ferrel-larkin-ovchinnikov state in optical lattices of off-diagonal confinement

51
Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement 高先龙 2011.8.5 兰州 Collaborators: Reza Asgari, 汪泾泾,陈阿海

Upload: dionne

Post on 25-Jan-2016

17 views

Category:

Documents


0 download

DESCRIPTION

Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement. 高先龙. Collaborators: Reza Asgari, 汪泾泾,陈阿海. 2011.8.5 兰州. 金华. 八月. 五月. 框架. Intro: 1D system of FFLO phase Confinement: Diagonal confinement versus Off-diagonal confinement - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

高先龙

2011.8.5 兰州

Collaborators: Reza Asgari, 汪泾泾,陈阿海

Page 2: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

金华

八月 五月

Page 3: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

框架• Intro: 1D system of FFLO phase

• Confinement: Diagonal confinement versus Off-diagonal confinement

• Results: Pure FFLO state

• Conclusions

Page 4: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

1D system of FFLO phase

Introduction

Page 5: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

实验物理学家

Page 6: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

理论物理工作者

2 2

121 1 1

( )2

fN N N

D i ji i ji

H g x xm x

external potential

Page 7: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Why 1D: Non-Fermi liquid

1D

Page 8: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

BCS: Δ(r) const∝FF: Δ(r) exp(iq r)∝ ⋅LO: Δ(r) cos(q r)∝ ⋅

Hunt for the Elusive FFLO State

Attractive Fermi systems, spin polarization and superfluidity are enemies

Conventional: a partially polarized Fermi gas undergoes macroscopic phaseseparation into a polarized normal region and an unpolarized superfluid region

FFLO state: Unconventional superfluid state when , in which fermion pairs with nonzero momentum form a spatially modulated inhomogeneous superfluid phase,

[Fulde & Ferrell (1964); Larkin & Ovchinnikov (1964)]

FFkk

Page 9: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

1D Exotic phase:FFLO

Bosonization: Yang Phys. Rev. B 63, 140511 (2001); Zhao & Liu PRA (2008)

Bethe-ansatz: Orso, PRL98 (2007); Hu, Liu, Drummond, PRL98 (2007); Guan, Batchelor, Lee, Bortz, PRB (2007)

DMRG: E. Feiguin and F. Heidrich-Meisner, PRB (2007); M. Tezuka and M. Ueda, PRL (2008); M. Rizzi, et al, PRB (2008)

QMC: M. Casula, D. M. Ceperley, and E. J. Mueller, PRA (2008)

DFT: Gao Xianlong & Reza Asgari, PRA (2008)

Related: mass imbalanced Fermi Hubbard model, B Wang, et al., PRA (2009) SJ Gu, PRB (200?); Cazalilla and Giamarchi, PRL (2005)

Page 10: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Why FFLO in cold atom?

Condensed matter systems: FFLO physics is obscured by impurities, orbital effects, and spin-orbit coupling.

Ultracold atomic systems: the interaction, lattice, and polarization can be chosen at will.

Page 11: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Characterization of the FFLO phase

• Pairing at finite k; nonzero pairing momentum,

q0= kF ≠ 0

• oscillating pairing function, F~cos(kFx).

oscillations in order parameter Δ(r)

• Fulde-Ferrell vs Larkin-Ovchinnikov

• Translational & rotational invariance broken

Page 12: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Suggestions for the experimental observationof the FFLO state

• Image density profiles of : search for oscillations,

absorption imaging; phase-contrast imaging technique

• RF-spectroscopy: Kinunnen et al. PRL 96, 110403 (2006)

• Rapid-sweep-method, time-of-flight: peaks at finite velocities.

• Noise correlations:

• density of states: RF spectroscopy

Greiner et al. PRL 94, 110401 (2005)Altman et al. Phys. Rev. A 70, 013603 (2004) Luescher et al. PRA (2009)Yang, PRB (2001)

nn ,

kkkkkk nnnnn ,

Page 13: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Inhomogeneous FFLO state in 1D

Page 14: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement
Page 15: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

The 1D attractive Hubbard model: Phase diagram

Bethe ansatz, Phases:

I. Empty lattice

II. (n < 1, p = 1): Fully polarized

III. (n = 1, p = 1): Fully polarized

IV. (n < 1, p < 1): Less than half-filled,

partially polarized: FFLO

V. (n < 1, p = 0): no polarization, fully paired

Essler’s Book, The One-Dimensional Hubbard Model, 2005

Page 16: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Diagonal confinement versus Off-diagonal confinement

Confinement:

Page 17: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

DC: 1D-Pairing at finite Q & Spatial decay

Page 18: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

DC: Power-law decay of correlations, spatial oscillations

Page 19: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

The asymmetric Hubbard model

“BCS”

“FFLO”

( cf. B. Wang et al., PRA79, 2009 )

1 component gas

Spin-independent hopping

Page 20: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

The asymmetric Hubbard model

0.0 0.1 0.2 0.3 0.4

10-6

10-5

10-4

10-3

10-2

x/L

x/L

|(x)|

superconducting correlations

‘incommensurate’ densities

unequal hoppings: the model is no longer integrable, hence use DMRG

‘commensurate’ densities

Page 21: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

The attractive Gaudin model

Yang Phys. Rev. B 63, 140511 (2001); Orso, Phys. Rev. Lett. 98, 070402 (2007).

Page 22: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

The attractive Gaudin model

Yang Phys. Rev. B 63, 140511 (2001); Orso, Phys. Rev. Lett. 98, 070402 (2007) ; XW Guan, PRA

Page 23: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Predictions from field theory and LDA

The attractive Gaudin model: in a trap

Partially-polarized phase associated with FFLO state Yang Phys. Rev. B 63, 140511 (2001);

Bethe-Ansatz + local density approximation:

Two-phase structures: centre partially polarized; edge either fully paired or fully polarized.

Orso, PRL 98, 070402 (2007)Hu, Liu & Drummond, PRL 98, 070403 (2007)Guan, Batchelor, Lee & Bortz, PRB 76, 085120 (2007).

Page 24: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Predictions from BA and LDA

The attractive Gaudin model: in a trap

Mean field theory vs. exact solution

Page 25: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

The attractive Gaudin model: in a trap

Page 26: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

The attractive Gaudin model: in a trap

Page 27: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

FFLO---Experimental Results 6Li

Liao et al., Nature 467, 567 (2010)

Page 28: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

FFLO---Experimental Results 6Li

No unambiguous demonstration for FFLO state is obtained in cold atomic systems until now!

Page 29: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Liao et al., Nature 467, 567(2010)

一维系统

Page 30: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Phases induced by external potential

M. Rigol et al., PRL (2003) ; G. Xianlong et al., PRL (2007)

U< 0 U >0

Page 31: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Pure state possible? through different designing

harmonic trapping

Page 32: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Results

Pure FFLO state

Page 33: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Predictions from Bethe-ansatz based DFT: N=36

Page 34: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Predictions from Bethe-ansatz based DFT: N=36

Page 35: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Predictions from Bethe-ansatz based DFT: N=36

Page 36: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Critical FFLO state in a 1D attractive Fermi gas

Pure FFLO state occurs only at the critical polarization!

Page 37: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

The effect of disorder on the 1D attractive Fermi gas

Wang Jingjing, Gao Xianlong, JPB (2011)

Page 38: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

speckle intensity

the spatial (auto)correlation

FFLO-BCS phase could change to FFLO-N phase while increasing disorder

The effect of disorder on the 1D attractive Fermi gas

Page 39: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Off-diagonal confinement

harmonic trapping

t=0t=0

Page 40: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Phase diagram in DC system

M.P.A. Fisher et al.,PRB 40,546 (1989)

Phase Diagram

Page 41: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

The model

Page 42: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Phase diagram

Page 43: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Particle-hole symmetry

Page 44: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Pairing correlations

均匀体系

非均匀体系

Page 45: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

N=80

Page 46: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

N=70

Page 47: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Spin-spin correlations

detectable in a non-destructive way via spatially resolved quantum polarization spectroscopy.

Page 48: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Spin-spin correlations.

Page 49: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Conclusions

• We show that the off-diagonal confinement supports a region of pure FFLO state, thus provides an ideal system to detect the FFLO state in 1D systems.

• deviates from linear relations

• Magnetic structure factor shows a kink related to finite FFLO momentum

Note for helpful ALPS (Algorithms and Libraries for Physics Simulations) http://alps.comp-phys.org/

Page 50: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Team

感谢: NSFC 的支持

Page 51: Pure Fulde-Ferrel-Larkin-Ovchinnikov state in optical lattices of off-diagonal confinement

Thanks for your attention