quantum computer meets blackhole and quantum...

33
Quantum Computer Meets Blackhole and Quantum Chaos Workshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属 光量子科学研究センター JST さきがけ 量子情報とOTO

Upload: others

Post on 04-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Quantum Computer Meets

Blackhole and Quantum Chaos

Workshop on OTO correlators

藤井 啓祐 東京大学 大学院 工学系研究科付属 光量子科学研究センター

JST さきがけ

量子情報とOTO

Page 2: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

2008年4月~2011年3月 京都大学 工学研究科 原子核工学専攻 博士課程 日本学術振興会特別研究員 DC1

2011年4月~2013年3月 大阪大学 基礎工学研究科 物質創成専攻 井元研 特任研究員

2013年4月~2015年3月 京都大学 白眉センター (情報学研究科 通信情報システム専攻 岩間研 特定助教)

2015年4月~2016年3月 京都大学 白眉センター (理学研究科 物理学宇宙物理学専攻 高橋研 特定助教)

2016年4月~ 東京大学 工学系研究科 光量子科学研究センター 小芦研 助教 (物理工学専攻 兼担)

2016年10月~ JSTさきがけ「量子の状態制御と機能化」さきがけ研究員兼任

自己紹介:藤井 啓祐工学

基礎工学

情報

物理

物理工学

Page 3: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Outline• Quantum information perspective of random unitary:

blackhole as a mirror

• Random unitary and OTOC

• Quantum computational supremacy benchmark on a quantum computer

• How to characterize random unitary operation: quantum chaos

• Toward random unitary with a translation invariant system using universality (simulate random unitary on a quantum simulator)

All these are about complex unitary operations, which is now becoming experimentally accessible!

Page 4: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Blackhole as a mirrorHayden-Preskill ’07

Alice’s information

Initial stateof black hole

Scrambling dynamics

=random unitary

Bob (observer with an unlimited computational power)

Hawking radiation

Where is Alice’s information?

Page 5: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Classical toy modelHayden-Preskill ’07

Alice’s information

Initial stateof blackhole

random permutationover 2n n-bit

strings Hawking radiation

00101011

00000000(n-k bit string)

(k bit string)

1101…(s bit string)

Bob wants to decode Alice’s information from HR. How many bits in HR is required to do this task?

→Channel capacity

Page 6: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Classical toy modelHayden-Preskill ’07

Alice’s information

Initial stateof blackhole

random permutation

over 2n n-bit strings HR

00101011

00000000(n-k bit string)

(k bit string)

1101…(s bit string)

source of information

encoding to an error

correction code

channel output

erased

eraser channel

The random permutation is an encoding to achieve the optimal channel capacity! s=k is enough to decode!

Page 7: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Classical toy modelHayden-Preskill ’07

source of information

00000 000…0 00001 000…0 00010 000…0

11111 000…0

Alice

{2k

Bob has a table of the random permutation,and decode what’s Alice’s information from HR.

10110 110…1 01001 101…0 01010 100…0

11010 010…1…

HR erased

{s bits

pfail = 2k2�s

probability to have the same bit strings in HR for different Alice’s message.

Total number of Alice’s bit strings

If s=k+c, pfail is sufficiently small.

encoding to an error

correction code

random permutation

over 2n bit strings

Page 8: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Entanglement assisted quantum eraser channel capacity

Alice’s information

Initial stateof blackhole R

maximally entangled state

BobE

B’

reference

maximally entangled state

NScrambling dynamics

=random unitary

V B

maximally entangled state?

Page 9: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Alice

black hole R

Bob

MES

E

B’

N

VB

MES

⇢NB(VB) = (IN ⌦ VB)⇢NB(IN ⌦ V †B)

Entanglement assisted quantum eraser channel capacity

⇢NB0(VB) = TrR[⇢NB(VB)]

⇢N (VB) = TrB0 [⇢NB0(VB)]

F (VB) = h�|⇢M̃N |�i = 1� k⇢NB0(VB)� ⇢N (VB)⌦ I 0Bk1

s=k+c qubit is enough to decode Alice’s info.

Decoupling theorem [Hayden et al ‘07]:Z

dVBk⇢NB0(VB)� ⇢N (VB)⌦ IB0k1 |NB||R|2 Tr[⇢2NB ] = 22(k�s)

kAk1 = Tr[pAA†]

2

⇢NB = TrE [⇢NBE ]

Page 10: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Outline• Quantum information perspective of random unitary:

blackhole as a mirror

• Random unitary and OTOC

• Quantum computational supremacy benchmark on a quantum computer

• How to characterize random unitary operation: quantum chaos

• Toward random unitary with a translation invariant system using universality (simulate random unitary on a quantum simulator)

All these are about complex unitary operations, which is now becoming experimentally accessible!

Page 11: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Random unitaryExact Haar random unitary: not efficient, exponential time is required

Approximated t-design (Dankert et al., ‘06):X

i

piU⌦ti ⇢(U †

i )⌦t '

Z

Haar

U⌦t⇢(U †)⌦tdU

(using operator 1-norm or diamondnorm as a map)

decoupling theorem & approximated 2-design:X

i

pik⇢NB0(Vi)� ⇢N (Vi)⌦ I 0Bk21 22(k�s) + ✏

approximated 2-design is efficiently achievable(Dankert et al., ’06):

O(log(n) log(1/✏))time O(

pn log(n) log(1/✏))

localitycircuit depth circuit depth

Page 12: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Random unitary & OTOCRandom unitary → delocalization of quantum information:

2-norm of commutator

k[A(0), B(t)]k22kWk2 = (Tr[WW †])1/2

OTOC:

[A,B] = 0 $ hABABi = 1

{A,B} = 0 $ hABABi = �1

hABABi = 1

dTr[ABAB]

OTOC & 2-norm of commutator:

( A2 = B2 = I is assumed, e.g. Pauli operators)

k[A,B]k22 = 2Tr[I �ABAB]= 2d(1� hABABi)

Page 13: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

2-design & 4-point OTOCScrambling (unitary 2-design) implies decay of OTOC

Unitary 2-design and Haar random unitary both result in the same 4-point OTOC!

4-point (2k-point) OTOC is a good witness (related to frame potential) of random unitary of 2-design (k-design).(Roberts-Yoshida ’16)

Wswap ⌘X

ij

|ii|jihj|hi|

Tr[AB(t)AB(t)⇢]

= Tr[(A⌦A)(Ut ⌦ Ut)(B ⌦B)(Ut ⌦ Ut)†Wswap]

Tr[AB(t)AB(t)]

Page 14: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Outline• Quantum information perspective of random unitary:

blackhole as a mirror

• Random unitary and OTOC

• Quantum computational supremacy benchmark on a quantum computer

• How to characterize random unitary operation: quantum chaos

• Toward random unitary with a translation invariant system using universality (simulate random unitary on a quantum simulator)

All these are about complex unitary operations, which is now becoming experimentally accessible!

Page 15: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Quantum “computational” supremacy

Google’s Milestone Chip Can Achieve Quantum Supremacy By The End Of 2017https://fossbytes.com/google-quantum-chip-50-qubit/

IBM’s First Commercial “Universal Quantum Computer” Can Be The New Future Of AIhttps://fossbytes.com/ibm-q-quantum-computing-50-qubit-computer/

22qubits-> 50qubits 16,17qubits

50qubits, d=250=1015 → O(100 peta bit)

Page 16: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

What is quantum computer?“Nature isn't classical, dammit, and if you want to make a simulation of Nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy.” R. Feynman, Simulating Physics with Computers, Int. J. Theor. Phys. 21, 467 (1982).

→quantum computer, quantum simulator

W. S. Bakr et al., Nature 462, 74 (2009)

Kelly et al., Nature 519, 66 (2015)

Is there a quantum machine that can simulate physics universally?

Page 17: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

What is quantum computer?

・・・

time evolution

unitary operator (dim = 2n)

measurement・・・ single-qubit

unitary operator

2qubit unitary operator

quantum circuit

|0i|0i|0i

|0i

initial state

・・・{N

qubi

t

qubit

Page 18: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Universal quantum computer|0i|0i|0i

|0i

initial state time evolution 測定

・・・

・・・

unitary operator

・・・{N qu

bit

Is there a quantum machine that can simulate physics universally?

H =1p2

✓1 11 �1

Hadamard

e�i(⇡/8)Z =

✓e�i⇡/8 0

0 ei⇡/8

π/8 (T gate)

UCNOT = |0ih0|⌦ I + |1ih1|⌦X

=

0

BB@

1 0 0 00 1 0 00 0 0 10 0 1 0

1

CCA

CNOT

Universal gate set

universal quantum computer=can implement an arbitrary unitary operator

R. P. Feynman, Quantum Mechanical Computers, Optics News (1985)

Page 19: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Outline• Quantum information perspective of random unitary:

blackhole as a mirror

• Random unitary and OTOC

• Quantum computational supremacy benchmark on a quantum computer

• How to characterize random unitary operation: quantum chaos

• Toward random unitary with a translation invariant system using universality (simulate random unitary on a quantum simulator)

All these are about complex unitary operations, which is now becoming experimentally accessible!

Page 20: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

How to characterize the quantum machine

Boixo et al., arXiv:1608.00263

random unitary circuit

APS march meeting 20179 qubit, depth 10, error per gate 0.3%,

total fidelity 98%

How can we characterize complex many-body quantum dynamics universally?

Page 21: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Neutron scattering and quantum chaos (random unitary)

resonance level spacing: Wigner-Dyson distributionresonance strength: Porter-Thomas distribution

“Handbook of Nuclear Engineering - Chapter3”Evaluated Nuclear Data

P. Oblozinsky, M. Herman and S.F. Mughabghab

The scattering strength is proportional to which diagonalizes the Hamiltonian H.

|Uij |2

Page 22: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

How to characterize the quantum machine

Boixo et al., arXiv:1608.00263

random unitary circuit

}Porter-Thomas distribution

| i =2nX

i=1

ci|ii

p(c1, c2, ..., c2n) / �

1�

X

i

|ci|2!

p(|c|2) / e�|c|2/ ¯|c|2

randomly chosen

Page 23: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Boixo et al., arXiv:1608.00263

How to characterize the quantum machine

probability × dim

prob

abilit

y de

nsity

noise less

uniform distribution PT entropy

42qubit

36qubit

PT entropy

How are OTOC decay and convergence of PT distribution related?

Page 24: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Outline• Quantum information perspective of random unitary:

blackhole as a mirror

• Random unitary and OTOC

• Quantum computational supremacy benchmark on a quantum computer

• How to characterize random unitary operation: quantum chaos

• Toward random unitary with a translation invariant system using universality (simulate random unitary on a quantum simulator)

All these are about complex unitary operations, which is now becoming experimentally accessible!

Page 25: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Universal quantum computer

|0i|0i|0i

|0i

initial state time evolution measurement

・・・

・・・unitary operator

・・・{n qu

bit

H1

H2

H1,2

on

off

quantum circuit = spatiotemporal modulationof Hamiltonian

Kelly et al., Nature 519, 66 (2015)

Can we achieve universality with more natural dynamics?

Page 26: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Feynman quantum computer R. Feynman, Quantum mechanical computers, Opt. News, vol. 11, pp. 11–46, 1985

H =TX

t=1

Ut ⌦ |tiht� 1|+ U†t ⌦ |t� 1iht|

working space clock

initial state

working space clock| ini|0i

time evolution TX

t=0

ct(⌧)UtUt�1 · · ·U1| ini|tie�iH⌧

(history state)

Hamiltonian dynamics with time-independent Hamiltonian can implement universal quantum computation!

Page 27: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

様々な万能量子計算モデル

量子回路型

万能計算を埋め込むために利用する自由度

時間・空間的にハミルトニアンを変動

Feynman型 定常ハミルトニアン

断熱型Aharonov et al, ‘04

(QMA-hardness経由)

定常ハミルトニアン+断熱操作(横磁場イジングはダメ Bravyi et al ‘06)

オートマトン型 定常並進対称ハミルトニアン+初期状態

[4-local: Feynman’85, 2-local: Nagaj ’10&12]

[5-local: Kitaev ‘02, 3-local: Kempe-Kitaev-Regev’06; 2D 2-local Oliveira-Terhal ’08; 2D fermions: Schuch-Verstraete ’09, 1D 2-local: Aharonov et al ‘09; 2D XY: Cubitt-Montanaro ’13, and many more]

量子ウォーク型 定常ハミルトニアン[adjacency matrix: Childs’09,bosons&fermions: Childs-Gosset-Webb’13, and many more]

定常並進対称ハミルトニアン+時間的に変動 [2D local: Janzig-Wocjan ‘04]

[1D local: Raussendorf ‘05]

Page 28: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Scrambling (random unitary)with translation invariant system

ZZ X Z ZZ X Z

{

mea

sure

simul

tane

ously

Hzz

= g

N�1X

i=1

�z

i

�z

i+1, Hz

= hz

NX

i=1

�z

i

, Hx

= hx

NX

i=1

�x

i

{ { { { {

Time intervals are chosen randomly.

Page 29: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Convergence to PT distribution#

of c

ount

s

probability × dim

8 qubit, depth 300

0.01

0.1

1

10

100

0 1 2 3 4 5 6 7 8 9 10

depth=3depth=15depth=30

depth=300

Page 30: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Convergence to PT distribution

depth

entro

py

4 qubit

5 qubit

6 qubit

7 qubit

1.5 2

2.5 3

3.5 4

4.5 5

5.5 6

0 50 100 150 200 250 300

4 qubit5 qubit6 qubit7 qubit8 qubit9 qubit

PT entropy

8 qubit

9 qubit

S = log(2

n)� 1 + �

PT entropy:

Euler’s constant

Page 31: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Convergence of PT entropy and decay of OTO correlator

entro

pyO

TOC

More systematic understanding

would be required!-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

1 2 3 4 5 6 7 8 9

0 20 40 60 80 100 120 140

entropyPT entropy

Higher moment of PT distribution?

9qubit

Page 32: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Sensitivity of PT distribution against decoherence

0.01

0.1

1

10

100

1000

0 1 2 3 4 5 6 7 8 9 10 0.01

0.1

1

10

100

1000

0 1 2 3 4 5 6 7 8 9 10 0.01

0.1

1

10

100

1000

0 1 2 3 4 5 6 7 8 9 10

0.01

0.1

1

10

100

1000

0 1 2 3 4 5 6 7 8 9 10 0.01

0.1

1

10

100

1000

0 1 2 3 4 5 6 7 8 9 10 0.01

0.1

1

10

100

1000

0 1 2 3 4 5 6 7 8 9 10

0.01

0.1

1

10

100

1000

0 1 2 3 4 5 6 7 8 9 10 0.01

0.1

1

10

100

1000

0 1 2 3 4 5 6 7 8 9 10

p=0.001 p=0.002 p=0.005

p=0.01 p=0.02 p=0.03

p=0.05 p=0.1 Depolarizing error with prob. p.

PT distribution rapidly converges to uniform distribution.

Page 33: Quantum Computer Meets Blackhole and Quantum Chaoskabuto.phys.sci.osaka-u.ac.jp/~koji/workshop/oto/fujii.pdfWorkshop on OTO correlators 藤井 啓祐 東京大学 大学院 工学系研究科付属

Summary & Discussion• Random unitary (universal computation) connects quantum

computer, quantum chaos, and blackhole.

• OTOC is a good witness of “randomness” of unitary, which seems to be sensitive to delocalization.

• PT distribution is directly measurable from the output of random unitary.

• PT distribution is sensitive to decoherence.

• Experimental realization with cold atom quantum simulator.

• Integrable v.s. quantum chaotic system (random free-fermionic dynamics→ random matchgate)?