radial equilribrium

Upload: alberto-cau

Post on 05-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Radial Equilribrium

    1/23

    Radial Equilibrium Theory

    P M V Subbarao

    Professor

    Mechanical Engineering Department

    Long Blades are more complex in shape .

  • 7/31/2019 Radial Equilribrium

    2/23

    Geometrical Details along Radial Direction

    True flow through a turbo-machinery is three-dimensional.

    The effect of the strong centrifugal forces are exerted by/on

    blades in radial direction.

    The centrifugal field distorts the flow velocity profiles

    considerably.

    Fluid particles tend to move outwards rather than passing

    along cylindrical stream surfaces as classically assumed.

    Particularly in low hub: tip ratio designs.

    An approach known as the radial equilibrium method, widely

    used for three-dimensional design calculations.

  • 7/31/2019 Radial Equilribrium

    3/23

    Radial Variation Blade Geometry

  • 7/31/2019 Radial Equilribrium

    4/23

    Radial Equilibrium Theory

    Assumes that flow is in radial equilibrium before and aftera blade row.

    Radial adjustment takes place through the row.

    More important for Axial Flow Machines.

  • 7/31/2019 Radial Equilribrium

    5/23

    Radial Equilibrium Analysis

    The centrifugal force = (rrdrdq)w2r

    Vq= r

    The centrifugal force is

    The pressure force on the element

    qr q drdVF lcentrifuga2

    qrdpdFpressure

  • 7/31/2019 Radial Equilribrium

    6/23

    If the two forces are the only ones acting (viscous and

    other effects neglected), the particle will move at

    constant radius if:

    lcentrifugapressure FF

    rV

    drdp

    2

    qr

    rdrVdp 2q

    r

  • 7/31/2019 Radial Equilribrium

    7/23

    Radial Equilibrium Analysis of Compressible

    Machines

    An equivalent equation for compressible flow can be

    developed by using the following thermodynamic relation:

    0r

    dpdhvdpdhTds

    r

    dpdh

  • 7/31/2019 Radial Equilribrium

    8/23

    2222

    2222

    0

    qVVVhVhh r

    f

    r

    drV

    dp 2q

    r

    0222

    222

    0

    qVVVhddh rf

    No Interactions: Conservation of Stagnation Enthalpy

    r

    dpdh

  • 7/31/2019 Radial Equilribrium

    9/23

    0222

    2222

    0

    qqVVV

    dr

    drVdh r

    f

    0

    222

    2222

    0

    qqVVV

    dr

    d

    r

    V

    dr

    dh rf

  • 7/31/2019 Radial Equilribrium

    10/23

    02

    0 dr

    dVV

    dr

    dVV

    dr

    dVVr

    V

    dr

    dh rr

    f

    fq

    qq

    Radial component of velocity should be constant (zero)

    along radial direction for radial equilibrium of flow

    02

    0 dr

    dVV

    dr

    dVVr

    V

    dr

    dh ff

    qq

    q

  • 7/31/2019 Radial Equilribrium

    11/23

    021

    2

    00

    drrVd

    rV

    drdV

    drdh

    drTcd fp qq

    For inert Gas

    02

    12

    0

    dr

    rVd

    r

    V

    dr

    dV

    dr

    dT

    c

    f

    p

    qq

  • 7/31/2019 Radial Equilribrium

    12/23

    0

    0

    0

    0

    1 T

    dT

    p

    dp

    For an isentropic process:

    0

    2

    112

    0

    0

    0

    dr

    rVd

    r

    V

    dr

    dV

    dr

    dp

    p

    T

    c

    x

    p

    qq

  • 7/31/2019 Radial Equilribrium

    13/23

    01 0 dr

    rVd

    r

    V

    dr

    dVV

    dr

    dp xx

    qq

    r

    Radial Equilibrium Equation for

    Incompressible Fluid Machine

  • 7/31/2019 Radial Equilribrium

    14/23

    gzUVhU

    hIRothalpy bladeblade

    rel q0

    2

    ,02

    :

    Constant in a turbo-machine along meridonial Plane

    02

    12

    00

    dr

    rVd

    r

    V

    dr

    dV

    dr

    dh

    dr

    Tcd fp qq

    Stagnation enthalpy is Constant in a turbo-machine

    along radial direction at intake and discharge.

  • 7/31/2019 Radial Equilribrium

    15/23

    Lessons from Nature

    In the case of a vortex, the flow field is purely tangential.

    ziiW ln2

    The complex potential function:

    THE VORTEX

  • 7/31/2019 Radial Equilribrium

    16/23

    Free Vortex Whirl:

    Forced Vortex Whirl :

    General Rules for Selection of Whirl Component

    r

    CV q

    constantfV

    rCV q

    2

    21C rCVf

    0

    q

    q fV

    r

    rV

  • 7/31/2019 Radial Equilribrium

    17/23

    Twisted Blades for Large Turbines

  • 7/31/2019 Radial Equilribrium

    18/23

    Radial Variation of Flow Velocity

    100

    120

    140

    160

    180

    200

    220

    240

    260

    280

    300

    0.75 0.85 0.95 1.05 1.15 1.25

    Flowvelocities(m

    /s)

    Radius ( in m)

    Intake

    Discharge

  • 7/31/2019 Radial Equilribrium

    19/23

    Radial Variation of Whirl Velocity

    -100

    0

    100

    200

    300

    400

    500

    0.75 0.85 0.95 1.05 1.15 1.25

    whirlvelocities(m

    /s)

    Radius ( in m)

    Intake

    Discharge

  • 7/31/2019 Radial Equilribrium

    20/23

    Radial Variation of Mass flow rate

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    0.750 0.850 0.950 1.050 1.150 1.250

    massfowrate

    Radius ( in m)

    Intake

    Discharge

  • 7/31/2019 Radial Equilribrium

    21/23

    Kaplan Turbine

  • 7/31/2019 Radial Equilribrium

    22/23

    DESIGN OF THE BLADE

    Two different views of a blade

    90% or better inefficiency

  • 7/31/2019 Radial Equilribrium

    23/23