rational numbers ppt

18
RATIONAL NUMBERS SHIVANI MATHUR SANJEEVANI SETHI ARCHIT SINGHAL

Upload: zyphergiest

Post on 26-Dec-2015

105 views

Category:

Documents


9 download

DESCRIPTION

A good ppt on rational numbers ( class 10) to submit as your project... its worth the price.

TRANSCRIPT

Page 1: Rational Numbers PPT

RATIONAL NUMBERS

SH

IVA

NI M

ATH

UR

SA

NJE

EVA

NI SETH

IA

RC

HIT

SIN

GH

AL

Page 2: Rational Numbers PPT

In mathematics, a real number is a value that represents a quantity along a continuous line. 

The real numbers include all the rational numbers, such as the integer −5 and the fraction 4/3, and all the irrational 

numbers such as √2 (1.41421356… the square root of two, an irrational algebraic number) and π (3.14159265…, a transcendental 

number). Real numbers can be thought of as points on an infinitely long line called 

the number line or real line, where the points corresponding to integers are equally spaced. Any real number can be determined by a 

possibly infinite decimal representation such as that of 8.632, where each consecutive digit is measured in units one tenth the size of the previous one. The real line can be thought of 

as a part of the complex plane, and correspondingly, complex numbers include 

real numbers as a special case.

A symbol of the set of real numbers ( )ℝ

Real numbers can be thought of as points on an infinitely long number line.

INTRODUCTION

Page 3: Rational Numbers PPT
Page 4: Rational Numbers PPT

Euclid’s division lemma, states that for any two positive integers ‘a’ and ‘b’ we can find two whole numbers ‘q’ and ‘r’ such that

Euclid’s division lemma can be used to: Find the highest common factor of any two positive integers and to

show the common properties of numbers.Finding H.C.F  using Euclid’s division lemma:

Suppose, we have two positive integers ‘a’ and ‘b’ such that ‘a’ is greater than ‘b’. Apply Euclid’s division lemma to the given integers ‘a’ and ‘b’

to find two whole numbers ‘q’ and ‘r’ such that, ‘a’ is equal to ‘b’ multiplied by ‘q’ plus ‘r’.

Check the value of ‘r’. If ‘r’ is equal to zero then ‘b’ is the HCF of the given numbers. If ‘r’ is not equal to zero, apply Euclid’s division

lemma to the new divisor ‘b’ and remainder ‘r’. Continue this process till the remainder ‘r’ becomes zero. The value of the divisor ‘b’ in that case

is the HCF of the two given numbers.Euclid’s division algorithm can also be used to find some common

properties of numbers.

EUCLID’S DIVISION LEMMA

Page 5: Rational Numbers PPT

To obtain the HCF of two positive integers, say c and d, with c > d, followthe steps below:

Step 1 : Apply Euclid’s division lemma, to c and d. So, we find whole numbers, q andr such that c = dq + r, 0 ≤ r < d.

Step 2 : If r = 0, d is the HCF of c and d. If r ≠ 0, apply the division lemma to d and r.Step 3 : Continue the process till the remainder is zero. The divisor at this stage will

be the required HCF.This algorithm works because HCF (c, d) = HCF (d, r) where the symbol

HCF (c, d) denotes the HCF of c and d, etc.

Example : Use Euclid’s algorithm to find the HCF of 4052 and 12576.Solution :

Step 1 : Since 12576 > 4052, we apply the division lemma to 12576 and 4052, to get12576 = 4052 × 3 + 420

Step 2 : Since the remainder 420 ≠ 0, we apply the division lemma to 4052 and 420, toget

4052 = 420 × 9 + 272Step 3 : We consider the new divisor 420 and the new remainder 272, and apply the

division lemma to get420 = 272 × 1 + 148

EXAMPLE

Page 6: Rational Numbers PPT

We consider the new divisor 272 and the new remainder 148, and apply the divisionlemma to get

272 = 148 × 1 + 124We consider the new divisor 148 and the new remainder 124, and apply the division

lemma to get148 = 124 × 1 + 24

We consider the new divisor 124 and the new remainder 24, and apply the divisionlemma to get124 = 24 × 5 + 4

We consider the new divisor 24 and the new remainder 4, and apply the divisionlemma to get24 = 4 × 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at thisstage is 4, the HCF of 12576 and 4052 is 4.

Notice that 4 = HCF (24, 4) = HCF (124, 24) = HCF (148, 124) =HCF (272, 148) = HCF (420, 272) = HCF (4052, 420) = HCF (12576, 4052).

Euclid’s division algorithm is not only useful for calculating the HCF of verylarge numbers, but also because it is one of the earliest examples of an algorithm that

a computer had been programmed to carry out.

Page 7: Rational Numbers PPT

Euclid’s division lemma/algorithm has several applications related to findingproperties of numbers. We give some examples of these applications below:

Example 1 : Show that every positive even integer is of the form 2q, and that everypositive odd integer is of the form 2q + 1, where q is some integer.

Solution : Let a be any positive integer and b = 2. Then, by Euclid’s algorithm,a = 2q + r, for some integer q ≥ 0, and r = 0 or r = 1, because 0 ≤ r < 2. So,

a = 2q or 2q + 1.If a is of the form 2q, then a is an even integer. Also, a positive integer can beeither even or odd. Therefore, any positive odd integer is of the form 2q + 1.

EXAMPLES

Example 2 : Show that any positive odd integer is of the form 4q + 1 or 4q + 3, whereq is some integer.

Solution : Let us start with taking a, where a is a positive odd integer. We apply thedivision algorithm with a and b = 4.

Since 0 ≤ r < 4, the possible remainders are 0, 1, 2 and 3.That is, a can be 4q, or 4q + 1, or 4q + 2, or 4q + 3, where q is the quotient.

However, since a is odd, a cannot be 4q or 4q + 2 (since they are both divisible by 2).Therefore, any odd integer is of the form 4q + 1 or 4q + 3.

Page 8: Rational Numbers PPT

In number theory, the fundamental theorem of arithmetic, also called the unique factorization theorem or the unique-prime-factorization theorem, states that every integer greater than 1 either is prime itself or is the product 

ofprime numbers, and that, although the order of the primes in the second case is arbitrary, the primes themselves are not. For example,

The theorem is stating two things: first, that 1200 can be represented as a product of primes, and second, no matter how this is done, there will always be 

four 2s, one 3, two 5s, and no other primes in the product.The requirement that the factors be prime is necessary: factorizations 

containing composite numbers may not be unique (e.g. 12 = 2 × 6 = 3 × 4).

FUNDAMENTAL THEORUM OF

ARITHMETIC

Page 9: Rational Numbers PPT

The Fundamental Theorem of Arithmetic says that every composite numbercan be factorised as a product of primes. Actually it says more. It says that givenany composite number it can be factorised as a product of prime numbers in a

‘unique’ way, except for the order in which the primes occur. That is, given anycomposite number there is one and only one way to write it as a product of primes,as long as we are not particular about the order in which the primes occur. So, for

example, we regard 2 × 3 × 5 × 7 as the same as 3 × 5 × 7 × 2, or any otherpossible order in which these primes are written. This fact is also stated in the

following form:

The prime factorisation of a natural number is unique, except for the orderof its factors.

In general, given a composite number x, we factorise it as x = p1p2 ... pn, wherep1, p2,..., pn are primes and written in ascending order, i.e., p 1 ≤ p2

≤ . . . ≤ pn. If we combine the same primes, we will get powers of primes. For example,32760 = 2 × 2 × 2 × 3 × 3 × 5 × 7 × 13 = 23 × 32 × 5 × 7 × 13

Once we have decided that the order will be ascending, then the way the numberis factorised, is unique.

The Fundamental Theorem of Arithmetic has many applications, both withinmathematics and in other fields.

Page 10: Rational Numbers PPT

EXAMPLESExample 1 : Consider the numbers 4n, where n is a natural number. Check whether

there is any value of n for which 4n ends with the digit zero.Solution : If the number 4n, for any n, were to end with the digit zero, then it would bedivisible by 5. That is, the prime factorisation of 4n would contain the prime 5. This is not 

possible because 4n = (2)2n; so the only prime in the factorisation of 4n is 2. So, theuniqueness of the Fundamental Theorem of Arithmetic guarantees that there are noother primes in the factorisation of 4n. So, there is no natural number n for which 4n

ends with the digit zero.

Example 6 : Find the LCM and HCF of 6 and 20 by the prime factorisation method.Solution : We have : 6 = 21 × 31 and 20 = 2 × 2 × 5 = 22 × 51.

You can find HCF(6, 20) = 2 and LCM(6, 20) = 2 × 2 × 3 × 5 = 60, as done in yourearlier classes.

Note that HCF(6, 20) = 21 = Product of the smallest power of each commonprime factor in the numbers.

LCM (6, 20) = 22 × 31 × 51 = Product of the greatest power of each prime factor,involved in the numbers.

From the example above, you might have noticed that HCF(6, 20) × LCM(6, 20)= 6 × 20. In fact, we can verify that for any two positive integers a and b,

HCF (a, b) × LCM (a, b) = a × b. We can use this result to find the LCM of twopositive integers, if we have already found the HCF of the two positive integers.

Page 11: Rational Numbers PPT

IRRATIONAL NUMBERSA number ‘s’ is called irrational if it cannot be written in the form p/q ,

where p and q are integers and q ≠ 0. Some examples of irrational numbers, with which you are already familiar, are :

π , etc.Before we prove that 2 is irrational, we need the following theorem, whose

proof is based on the Fundamental Theorem of Arithmetic.

√2 , √3 , √15 , π,0.10110111011110

Page 12: Rational Numbers PPT

Example : Prove that √3 is irrational.Solution : Let us assume, to the contrary, that √3 is rational.That is, we can find integers a and b (≠ 0) such that √3 = a/b

Suppose a and b have a common factor other than 1, then we can divide by thecommon factor, and assume that a and b are coprime.

So, b√3 = a⋅

Squaring on both sides, and rearranging, we get 3b2 = a2.Therefore, a2 is divisible by 3, and by Theorem 1.3, it follows that a is also divisible

by 3.So, we can write a = 3c for some integer c.

Substituting for a, we get 3b2 = 9c2, that is, b2 = 3c2.This means that b2 is divisible by 3, and so b is also divisible by 3 (using Theorem 1.3

with p = 3).Therefore, a and b have at least 3 as a common factor.But this contradicts the fact that a and b are coprime.

This contradiction has arisen because of our incorrect assumption that √3 is rational. So, we conclude that √3 is irrational.

EXAMPLE

Page 13: Rational Numbers PPT

RATIONAL NUMBERS AND

THEIR DECIMAL EXPANSIONS

 Rational numbers have either a terminating decimal expansion or a non-terminating 

repeating decimal expansion. In this section, we are going to consider a rational number, say 

p/q (q ≠ 0), and explore exactly when the decimal expansion of p/q is terminating and when it is non-terminating repeating (or 

recurring).

In mathematics, a rational number is any number that can be expressed as the quotient or fraction p/q of two integers, with the denominator q not equal to zero. Since q may be equal to 1, every integer is a rational number. The set of all rational numbers is usually denoted by a boldface Q (or blackboard bold , Unicode  ); it was thus named in 1895 ℚ

by Peano after quoziente, Italian for "quotient".

Page 14: Rational Numbers PPT

EXAMPLESLet us consider the following rational numbers : 

(i) 0.375 (ii) 0.104 (iii) 0.0875 (iv) 23.3408  Now 

(i) 0.375 = 375/1000 = 375 /103  (ii) 0.104 = 104/1000 = 104 /103  (iii) 0.0875 = 875/10000 = 875 /104 

(iv) 23.3408 = 233408/10000 = 233408 /104

As one would expect, they can all be expressed as rational numbers whose denominators are powers of 10. Let us try and cancel the common factors between the numerator and 

denominator and see what we get : (i) 0.375 = 375 /103 = (3x53) / (23x53) = 3 / 23   (ii) 0.104 = 104 /103 = (13x23) / (23x53) = 13 / 53 

(iii) 0.0875 = 875 /104 = 7 / (24x5)        (iv) 23.3408 = 233408 /104 = (22x7x521) / 54

Do you see any pattern? It appears that, we have converted a real number whose decimal expansion terminates into a rational number of the form p/q, where p and q are coprime, and the prime factorisation of the denominator (that is, q) has only powers of 2, or powers of 5, or both. We should expect the denominator to look like this, since powers of 10 can only have 

powers of 2 and 5 as factors.Even though, we have worked only with a few examples, you can see that any real number 

which has a decimal expansion that terminates can be expressed as a rational number whose denominator is a power of 10. Also the only prime fators of 10 are 2 and 5. So, cancelling out the common factors between the numerator and the denominator, we find that this real number is a rational number of the form p/q, where the prime factorisation of q is of the form 2n5m, and n, m 

are some non-negative integers.

Page 15: Rational Numbers PPT

THEORUMSTheorem 1 (Euclid’s Division Lemma): Given positive integers a and b, there exist unique integers q and r satisfying a = bq + r, 0 ≤ r < b.

Theorem 2 (Fundamental Theorem of Arithmetic) : Every composite number can be expressed ( factorised) as a product of primes, and this factorisation is unique, apart from the

order in which the prime factors occur.

Theorem 3 : Let p be a prime number. If p divides a2, then p divides a, where a is a positive 

integer.Proof : Let the prime factorisation of a be as follows : 

a = p1p2 ... pn, where p1,p2, ..., pn are primes, not necessarily distinct. 

, a∴ 2 = ( p1p2 ... pn)( p1p2 ... pn) = p12 p2

2 ... pn2.

Page 16: Rational Numbers PPT

Theorem 5 : Let x be a rational number whose decimal expansion terminates. Then x can be expressed in the form p/q , where p and q are coprime, and the prime factorisation of q is of the form 2n5m, where n, m are non-negative integers.

Theorem 6 : Let x = p/q be a rational number, such that the prime factorisation of q is of the form 2n5m, where n, m are non-negative integers. Then x has a decimal expansion which terminates.

Theorem 7 : Let x = p/q be a rational number, such that the prime factorisation of q is not of the form 2n5m, where n, m are non-negative integers. Then, x has a decimal expansion which is non-terminating repeating (recurring).

Page 17: Rational Numbers PPT

SUMMARY1. Euclid’s division lemma :  Given positive integers a and b, there exist whole numbers q and r satisfying a = bq + r, 0 ≤ r < b.2. Euclid’s division algorithm : This is based on Euclid’s division lemma. According to this, the HCF of any two positive integers a and b, with a > b, is obtained as follows: Step 1 : Apply the division lemma to find q and r where a = bq + r, 0 ≤ r < b. Step 2 : If r = 0, the HCF is b. If r ≠ 0, apply Euclid’s lemma to b and r. Step 3 : Continue the process till the remainder is zero. The divisor at this stage will be HCF (a, b). Also, HCF(a, b) = HCF(b, r).3. The Fundamental Theorem of Arithmetic :  Every composite number can be expressed (factorised) as a product of primes, and this factorisation is unique, apart from the order in which the prime factors occur.4. If p is a prime and p divides a2, then p divides q, where a is a positive integer.5. To prove that √2, √3 are irrationals.6. Let x be a rational number whose decimal expansion terminates. Then we can express x in the form p/q , where p and q are coprime, and the prime factorisation of q is of the form 2n5m, where n, m are non-negative integers.7. Let x = p/q be a rational number, such that the prime factorisation of q is of the form 2n5m, where n, m are non-negative integers. Then x has a decimal expansion which terminates.8. Let x = p/q be a rational number, such that the prime factorisation of q is not of the form 2n5m, where n, m are non-negative integers. Then x has a decimal expansion which is non-terminating repeating (recurring).

Page 18: Rational Numbers PPT

THANKS FOR WATCHING