rc pier taba

Upload: abera-mamo

Post on 14-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 RC Pier Taba

    1/20

    RC PIER

    NOTE:- DO NOT CHANGE VALUES IN BLACK

    1) DESIGN DATA AND SPECIFICATION

    1.1.MATERIAL PROPERTIES:

    Concrete :- Grade C-30 concrete ( section 9.3)

    fc'= = 24 MPa fc' cylinder )

    fc=0.4*fc' = 9.6 MPa

    Ec=4800sqrt(fc') 23,515 MPa

    Reinforcement steel:

    Grade 420 steel: For rebars diam. 20mm and above

    fy = 420 MPa

    fs = 165 MPa

    Es = 200,000 MPa

    Grade 300 steel: For rebars less than diam. 20

    fy = 300 MPa

    fs = 140 MPa

    Es = 200,000 MPa

    Modular rati Ec / Es = 8.51 Use n = 9

    Live Loading: (1) Design Truck : AASHTO HS20 - 44 live load+ 25% increment

    (2) Design Tandem

    Bearing Capacity(s)= 3.5 kg/cm2

    Allowable Bearing Capacity (1.5*s)= 5.25 kg/cm2

    1.2. REFERENCES: -ERA BRIDGE DESIGN MANUAL 2002

    -AASHTO STANDARD SPECIFICATION FOR HIGHWAY BRIDGES,1998 EDITION.

    1.3.DESIGN METHOD: LRFD

    2) LOADING

    2.1. Dead Loads2.1.1. From Superstructure

    CLN

    exterior gi rder interior girder

    LEFT GIRDER SUPSTR. RIGHT GIRDER SUPSTR.12 mtr. span 12 mtr. span

    Exterior Interior Exterior Interior

    X-sectional

    (kN/m) 27.86 20.94 27.86 20.94

    Diaphrams-

    middle(No.) 1 1 1 1

    (kN) 4.86 4.86 4.86 4.86 Final level = 2410.76 mends(kN) 2.43 2.43 2.43 2.43 Found. level 2398.12 m

    Support Wearing surf. 0.10 mReaction(kN) 178.99 135.74 178.99 135.74 Girder depth 0.95 m

    REINFORCED CONCRETE COULMN PIER DESIGN FOR FIVE GIRDER

    SUPERSTRUCTURE

  • 7/30/2019 RC Pier Taba

    2/20

    RC PIER

    2.1.2. Selfweight

    0.25

    L F

    0.5

    W

    A

    G

    W

    H

    C E

    D

    B J

    A B C D E F

    1.00 9.00 0.00 1.00 9.59 1.00

    G H J L W

    1.1 0.00 3.00 9.35 1.00

    Pier Cap w1(kN/m)=(A*L*F+2*0.25*0.50*F)*24/L= 24.64

    Bracing w2(kN/m)=C*H*24= 0

    Pier Column P(kN)=P/4*W2*E*24= 180.77

    Summary of Dead Loads

    178.99 135.74 135.74 135.74 178.99 (Left Supstr.)

    178.99 135.74 135.74 135.74 178.99 (Right Supstr.)

    c a a a a c

    24.64

    where

    aLt.= 2.00 m c= 0.675 m

    aRt.= 2.00 m c= 0.675 m

    0

    Enter

    values for

    dimensions

  • 7/30/2019 RC Pier Taba

    3/20

    RC PIER

    2.2 Live Loads

    a) Design Truck Load : HS 20-44 + 25% increment

    P/4 P P P P14ft

    (4.267m)

    P = wheel load = 1.25(71.20KN)= 89 KN

    LONGITUDINAL ARRANGEMENT TRANSVERSE ARRANGEMENT

    b) Design Tandem

    P P P P

    1.20m 1.80m

    P = wheel load = 1/2*110KN = 55 KN

    LONGITUDINAL ARRANGEMENT TRANSVERSE ARRANGEMENT

    2.2.1 Dynamic Load Allowance

    Section 3.13, the vehicular dynamic load allowance IM

    IM = 33% There fore IM 33%

    The live loads shall be factored by 1+IM/100 = 1.33

    A) Longitudinal Arrangement

    case 1: Maximum Axial Load on pier

    P/4 P P

    4.267

    x x= 0.46Rp2 Rp1

    Rp1= 1.659 P

    Rp2= 0.174 P

    Axial Load: Rp=Rp1+Rp2= 1.833 P

    Moment about CLN of pier: MCL= 0.341 P

    case 2: Maximum Bending Moment

    P P P/4

    4.267

    Rp1

    Rp1= 1.738 P

    Axial Load: Rp=Rp1= 1.738 P

    Moment about CLN of pier: MCL= 0.400 P

    2.2.2 Transverse Load Distribution

    In designing sidewalks, slabs and supporting members, a wheel load located on the sidewalk shall be 1 foot from the face of the rail.

    Distribution Factor for Shear (Sec. 13.4: Table 13-7 & 13-8)

    Exterior Girder:

    Case-1: One Design lane loaded

    The lever rule is applied assuming that the slab is simply supported over the longitudinal beams (Table 13-8)

    14 - 30ft

    (4.267- 9.144m)

    6ft

    (1.80m)

    0.16

    50

    0.2

    0

    0.2

    0

    0.25

    0.20

    0.

    40

    0.9

    0

    0.15

    d1

    1.830.30

    d2

    0.2

    5

  • 7/30/2019 RC Pier Taba

    4/20

    RC PIER

    P P TRWW= 10.3 m

    1.83 SW= 1.5 m

    a= 2.00 m

    d1= 0.600 m

    RA RB d2= 0.770 md1 a - d1 d2 c= 1.15 m

    no.of girders= 5

    The distribution coefficient to the exterior girder for shear bw= 0.38 mREX1 (shear) = 1/a*P*(a+d1+d2) 1.685 P

    Case-2: Two or more design lanes loaded

    The distribution of live load per lane for shear in exterior girder is determined according to the formulas given in Table 13-8.

    REX2 (shear) = (0.60+de/3 0.920 per lane de=c-bw/2= 0.96 m

    This factor is for one lane load which is equivalent to two lines of wheels, and thus multiplied by 2

    REX2 (shear) = (0.60+de/3 1.840 P

    There fore, REX (shear) in exterior girder is maximum of the above two values, REX1 or REX2

    REX (shear) = 1.840 P

    Interior Girder:

    Case-1: One Design lane loaded

    The distribution of live load per lane for shear in interior girder is determined according to the formulas given in Table 13-7.

    RINT 1 (shear) = 0.36 + 0.623 where 1100

  • 7/30/2019 RC Pier Taba

    5/20

    RC PIER

    b)Design Tandem

    A) Longitudinal Arrangement

    case 1: Maximum Axial Load on pier

    P P

    1.2

    x x= 0.46

    Rp2 Rp1

    Rp1= 0.941 P

    Rp2= 1.000 P

    Axial Load: Rp=Rp1+Rp2= 1.941 P

    Moment about CLN of pier: MCL= 0.014 P

    Moment about CLN of pier: MCL= 1.212 kN

    case 2: Maximum Bending Moment

    P P1.2

    Rp1

    Rp1= 1.904 P

    Axial Load: Rp=Rp1= 1.904 P

    Moment about CLN of pier: MCL= 0.438 P

    Moment about CLN of pier: MCL= 38.97 kN

    B) Transverse Arrangement (Distribution factors are same as Truck Load)

    Case-I: One Design lane loaded

    a) For maximum Axial load case (from longitudinal arrangement case 1)RA=RP/2*RA= 89.93 kN

    RB=RP/2*RB= 65.26 kN

    b) For maximum Moment case (from longitudinal arrangement case 2)

    RA=RP/2*RA= 88.23 kN

    RB=RP/2*RB= 65.26 kN

    Case-II: Two or more design lanes are loaded

    a) For maximum Axial load case (from longitudinal arrangement case 1)

    RA=RP/2*RA= 98.20 kN

    RB=RP/2*RB= 76.92 kN

    RC=RP/2*RC= 76.92 kN

    RD=RP/2*RD= 76.92 kNRE=RP/2*RE= 98.20 kN

    b) For maximum Moment case (from longitudinal arrangement case 2)

    RA=RP/2*RA= 96.34 kN

    RB=RP/2*RB= 75.46 kN

    RC=RP/2*RD= 75.46 kN

    RD=RP/2*RD= 75.46 kN

    RE=RP/2*RE= 96.34 kN

    2.3. Wind LoadsWind Load on structure - WS

    2.3.1. Wind Load on superstructure - W

    a) Transverse Direction W=50lb/ft2

    = 2.44 kN/m2

    Arm (m) AiYi (m )

    Girder web & Curb = 21.84 2.68 58.53

    Railing = 3.9 3.38 13.18

    Posts = 1.32 2.96 3.90

    27.06 75.61

    FWT= 66.03 kN

    Line of Action (about Pier Cap bottom) = 2.79 m

    Area (m2)

  • 7/30/2019 RC Pier Taba

    6/20

    RC PIER

    2.3.2. Wind Load on Live Load - WL

    a) Transverse Direction: WL=100lb/ft= 1.49 kN/m

    Length of exposed surface= 12.8 m

    FWLT= 19.072 kN (6ft above the deck surface)

    (about pier cap bottom) = 4.51 m

    b) Longitudinal Direction: WL=40lb/ft = 0.596 kN/m

    Length of exposed surface= 12.8 m

    FWLL= 7.629 kN (6ft above the deck surface)

    (about pier cap bottom) = 4.51 m

    2.3.3. Wind Load on substructure

    a) Transverse Direction: W=40lb/ft2= 1.955 kN/m

    2

    per linear meter = 1.955 kN/m

    b) Longitudinal Direction: W=40lb/ft

    Pier cap = 1.955 kN/mBracing = 0 kN/m

    Columns = 1.955 kN/m

    2.3.4. Forces of Stream Current,WA v = 5.6 ft/sec2, k=2/3

    P = kv2= 20.907 lb/ft

    2= 1.02 kN/m

    2

    per linear meter = 1.02 kN/m

    2.3.5. Breaking/Longitudinal Force,BR

    Taken 5% of the live load in all lanes

    (lane load w=9.3kN/m plus the concentrated load P=81.72kN for moment)

    LF= 20.26 kN (6ft above the deck surface)

    (about pier cap bottom) = 4.51 m

    2.3.6 Seismic Force Effects,EQ

    Earthquake zones: EBCS Zone -1

    Site Coefficient: Type I = 1

    Acceleration coefficient(A): = 0.06

    The horizontal seismic force is the product of the site coefficient, the acceleration coefficient and the permanent loads

    772.70 KN

    Footing = 648.00 KN

    Sum Wp 1420.70 KN

    Horizontal earthquake force FH = site coeff.*A* Wp = 85.24 KN

    This force is transferred to the substructure at jointsThe proportion of this load at the two levels is as in the following:

    At bracing level = 0.00 KN

    At pier cap level = 85.24 KN

    3) STABILITY ANALYSIS

    Assume a combined footing with dimensions(m):

    Width W = 3 Length L = 9 Depth D = 1

    3.1. CHECK FOR STRENGTHI =DL+(LL+I)+BR+WA

    Case-I: One Design lane loaded

    i) Dead Load

    Superstructure

    Left = 765.18 kN

    Right = 765.18 kN

    1530.35

    Substructure

    Pi

    Pier cap,

    Bracing & Columns =

  • 7/30/2019 RC Pier Taba

    7/20

    RC PIER

    Case I: a) RA+RB= 478.08 aavg*RA = 549.62 MCL = 60.79

    b) RA+RB= 453.41 " 521.27 " 71.15

    Case II: a)RA+B+C+D+E 1305.34 a*(RA-RE)= 0.00 2*MCL = 121.57

    b)RA+B+C+D+E 1238.00 " 0.00 " 142.30

    ii) Breaking/Longitudinal Force, BR

    FLF= 20.26 kN MLF= 305.96 kNm/m

    iii)Stream current Force,WA

    FTF= 1.83 kN MTF= 1.64 kNm/m

    A) Stability against OVERTURNING:

    MREST.= 4426.58 kN/mMDRIV.= MLL+MBR+MWA= 828.87 kN/m

    S.F.= 5.34 > 2.0 OK!

    B) Stability against BEARING PRESSURE:

    case (a) case (b) case (a) case (b)

    Ptot(kN)= 3429.13 3404.46 4256.40 4189.05

    MT(kN/m)= 549.62 521.27 0.00 0.00

    ML(kN/m)= 60.79 71.15 121.57 142.30

    eT=MT/Ptot= 0.160 0.153 0.000 0.000

    eL=ML/Ptot= 0.018 0.021 0.029 0.034

    145.08 144.23 166.65 165.69< sall OK!

    C) Stability against SLIDING:

    FTDRIV=FTWA= 1.83

    FLDRIV=FLBR= 20.26

    FDRIV=(FTDRIV +FLDRIV )= 20.34

    FRESIST=SVtan f=SV*0.7= 2065.74

    S.F.=FREST./FDRIV.= 101.54 > 1.5 OK!

    Case-II: Two or more design lanes are loaded

    A) Stability against OVERTURNING:

    MREST.= 3454.81 kNm/m

    MDRIV.= MBR+MWA= 307.60 kNm/m

    S.F.= 11.23 > 2.0 OK!

    3.2. CHECK FOR STRENGTHIII =DL+WS+WA

    a) Dead Load DL

    PDL= 2951.05 kN

    MTDL= 0 kN/m

    MLDL= 0.00 kN/m

    c) Wind Load on Structures W

    superstructure

    FTW= 66.03 kN MTW= 883.72 kN/m

    FLW= 15.86 kN MLW= 212.24 "

    smax (kN/m2) =(Ptot/A)*

    (1+6*eT/L+6*eL/W)=

    Case I: Case II:

  • 7/30/2019 RC Pier Taba

    8/20

    RC PIER

    FTWL= 19.07 kN MTWL= 287.99 kN/m

    FLWL= 7.63 kN MLWL= 115.19 "

    e)Stream current Force,WA

    FTF= 1.83 kN MTF= 1.64 kNm/m

    A) Stability against OVERTURNING:

    MREST.= 4426.58 kNm/m

    MDRIV.= MLL+MWS+MWA= 633.89 kNm/m

    S.F.= 6.98 > 2.0 OK!

    B) Stability against BEARING PRESSURE:

    Ptot=PDL= 2951.05

    MT=MTDL+MTWS+MTWA= 1102.66

    ML=MLDL+MLWS+MLWA= 632.25

    eT=MT/Ptot= 0.374 OK!

    eL=ML/Ptot= 0.214 OK!

    smax= 183.36

    sall OK!C) Stability against SLIDING:

    FTDRIV=FTWS+FTWA= 105.35FLDRIV=FLWS= 71.63

    FDRIV=(FTDRIV2+FLDRIV

    2)= 127.40

    FRESIST=SVtan f=SV*0.7= 2065.74

    S.F.=FREST./FDRIV.= 16.21 > 1.5 OK!

    3.3. CHECK FOR STRENGTHV =DL+(LL+I)+BR+WS+WL+WA

    Case-I: One Design lane loaded

    a) Dead Load DL

    PDL= 2951.05 kN

    MTDL= 0 kN/m

    MLDL= 0.00 kN/m

    b) Live Load LL

    PLLI MTLL MLLL

    Case I: 478.08 549.62 60.79

    453.41 521.27 71.15

    Case II: 1305.34 0.00 121.57

    1238.00 0.00 142.30

    c) Wind Load on Structures WS

    superstructureFTW= 37.50 kN MTW= 883.72 kN/m

    FLW= 15.86 kN MLW= 212.24 "

    substructure

    FTW= 37.50 kN MTW= 217.29 kN/m

    FLW= 55.78 kN MLW= 420.01 "

    Total

  • 7/30/2019 RC Pier Taba

    9/20

    RC PIER

    f)Stream current Force,WA

    FTF= 1.83 kN MTF= 1.64 kNm/m

    A) Stability against OVERTURNING:

    MREST.= 4426.58 kNm/m

    MDRIV.= MLL+MWS+MWA= 1352.17 kNm/m

    S.F.= 3.27 > 2.0 OK!

    B) Stability against BEARING PRESSURE:

    (b)case I: (b)case II:

    Ptot=PDL+PLLI= 3404.46 4189.05

    MT=MTDL+MTLL+MTBR+MTWL+MTWS+MTWA= 2199.90 1678.63

    ML=MLDL+MLLL+MLBR+MLWL+MLWS+MLWA= 818.60 774.55

    eT=MT/Ptot= 0.646 0.401 OK!

    eL=ML/Ptot= 0.240 0.185 OK!

    smax= 241.05 253.97

    > sall OK!C) Stability against SLIDING:

    FTDRIV=FTBR+FTWL+FTWS+FTWA= 143.50

    FLDRIV=FLWS+FLWL= 79.26

    FDRIV=(FTDRIV2+FLDRIV

    2)= 163.93

    FRESIST=SVtan f=SV*0.7= 2400.39

    S.F.=FREST./FDRIV.= 14.64 > 1.5 OK!

    Case-II: Two or more design lanes are loaded

    A) Stability against OVERTURNING:

    MREST.= 4426.58 kNm/m

    MDRIV.= MBR+MWA= 1352.17 kNm/m

    S.F.= 3.27 > 2.0 OK!

    C) Stability against SLIDING:

    FTDRIV=FTBR+FTWL+FTWS+FTWA= 143.50

    FLDRIV=FLWS+FLWL= 79.26

    FDRIV=(FTDRIV2+FLDRIV

    2)= 163.93

    FRESIST=SVtan f=SV*0.7= 2979.48

    S.F.=FREST./FDRIV.= 18.17 > 1.5 OK!

    3.4. CHECK FOR EXTREME EVENTI =DL+(LL+I)+WA+EQ

    Case-I: One Design lane loaded

    a) Dead Load DL

    PDL= 2951.05 kN

    MTDL= 0 kN/m

    MLDL= 0.00 kN/m

  • 7/30/2019 RC Pier Taba

    10/20

    RC PIER

    At bracing level = FTF= 0.00 kN MTF= 0.00 kNm/m

    At pier cap level = FTF= 85.24 kN MTF= 817.47 kNm/m

    At bracing level = FLF= 0.00 kN MLF= 0.00 kNm/m

    At pier cap level = FLF= 85.24 kN MLF= 817.47 kNm/m

    A) Stability against OVERTURNING:

    MREST.= 4426.58 kNm/m

    MDRIV.= MLL+MEQ+MWA= 1340.38 kNm/m

    S.F.= 3.30 > 2.0 OK!

    B) Stability against BEARING PRESSURE:

    (b)case I: (b)case II:

    Ptot=PDL+PLLI= 3404.46 4189.05

    MT=MTDL+MTLL+MTEQ+MTWA= 1340.38 819.12

    ML=MLDL+MLLL+MLEQ+MLWA= 888.62 959.78

    eT=MT/Ptot= 0.394 0.196 OK!

    eL=ML/Ptot= 0.261 0.229 OK!

    smax= 247.32 239.52

    > sall OK!C) Stability against SLIDING:

    FTDRIV=FTEQ+FTWA= 87.07

    FLDRIV=FLEQ+FLWA= 85.24

    FDRIV=(FTDRIV +FLDRIV )= 121.85

    FRESIST=SVtan f=SV*0.7= 2400.39

    S.F.=FREST./FDRIV.= 19.70 > 1.5 OK!

    Case-II: Two or more design lanes are loaded

    A) Stability against OVERTURNING:

    MREST.= 4426.58 kNm/m

    MDRIV.= MLL+MEQ+MWA= 819.12 kNm/mS.F.= 5.40 > 2.0 OK!

    C) Stability against SLIDING:

    FTDRIV=FTEQ+FTWA= 87.07

    FLDRIV=FLEQ+FLWA= 85.24

    FDRIV=(FTDRIV +FLDRIV )= 121.85

    FRESIST=SVtan f=SV*0.7= 2979.48

    S.F.=FREST./FDRIV.= 24.45 > 1.5 OK!

  • 7/30/2019 RC Pier Taba

    11/20

    RC PIER

  • 7/30/2019 RC Pier Taba

    12/20

    RC PIER LOAD

    SUMMARY OF LOADS

    DL(Lt.Sup.) 178.99 135.74 135.74 135.74 178.99

    DL(Rt.Sup.) 178.99 135.74 135.74 135.74 178.99

    LL(HL-93) FLLRt FLLCt FLLCt FLLCt FLLLt FWLt= 19.07 FWLl= 7.63 FLF=

    FWt= 66.03 FWl= 15.86

    0.675 a a a= 2 a

    24.00 2.79

    FEQT= 85.24 MLONGT FEQL= 85.24

    MTRANS

    2.73 2.73

    5.295

    0

    FEQT= 0.00 FEQL= 0.00

    FWl= 1.96

    0.00 (bracing)

    1.96 (pier cap)FWt= 1.96 FWt= 1.96 4.80

    FWAt= 1.02 FWAt= 1.02

    1.6 6.15 1.6

    HL-93/ case I: a) 274.81 89.93 203.26 65.26 0.00 0.00 549.62 179.86 60.79 1.21

    Design

    Tandem b) 260.63 88.23 192.78 65.26 0.00 0.00 521.27 176.45 71.15 38.97

    case II: a) 300.09 98.20 235.05 76.92 235.05 76.92 0.00 0.00 121.57 2.42

    b) 284.61 96.34 222.93 75.46 222.93 75.46 0.00 0.00 142.30 77.95

    MLONGT. (kN/m)FRt(kN) FCt (kN) FLt (kN) MTRANS.(kN/m)

    CDSCo-CWCE

  • 7/30/2019 RC Pier Taba

    13/20

    Pier section capacity analysis

    Ultimate facored loads from load combinations(from STAAD)

    Mux= 361.51

    Muy= 119.38

    Nominal moment strength of the section in the direction of the x- and y- axis(from STAAD)

    Mnx= 8253.79

    Mny= 1179.11

    = 0.65

    Mux + Muy < 1.0

    Mnx Mny

    0.223 < 1.0 OK!

  • 7/30/2019 RC Pier Taba

    14/20

    CONTENTS

    STABILITY OF THE WHOLE STRUCTURE

    LOADING SUMMARY

    ANALYSIS RESULT

    BEAM & COLUMN SECTION DESIGN RESULT

    FOOTING DESIGN

  • 7/30/2019 RC Pier Taba

    15/20

    RC PIER

    RC FOOTING DESIGN FOR COLUMN PIER

    Loading Case Summary

    Group Fy(kN) Mx(kNm) Mz(kNm) Fy(kN) Mx(kNm) Mz(kNm) Fy(kN) Mx(kN Mz(kNm)

    I 1620 67.55 97.65 1030 69.42 34.08 1550 67.6 -36.38

    II 1690 67.55 96.59 1130 69.42 35.49 1640 67.6 -34.65

    III 1030 344.71 13.4 660.74 355.76 -15.17 1000 345 -80.75

    V 1710 111.61 53.72 1080 119.64 -17.32 1670 112 -99.62E.EVE. I 1100 351.76 -73.18 668.84 361.51 -119.37 922.1 352 -156.99

    Bearing Capacity = 3.5 kg/cm2

    = 350 kN/m2

    Allowable Bearing Capacity = 5.25 kg/cm2

    = 525 kN/m2

    Design ConstantsConcrete :- Grade C-30 concrete ( section 9.3)

    f'c= = 24.00 Mpa

    fc= (0.4*f'c) = 9.60 "

    Reinforcement steel:

    Grade 420 steel: For rebars diam. 20mm and above Mpa

    fy = 420 MPa "

    fs = 165 MPa

    Es = 200,000 MPa

    Grade 300 steel: For rebars less than diam. 20

    fy = 300 MPa

    fs = 140 MPa

    Es = 200,000 MPa kN/m2

    FyR x R FyL

    6.15

    3.075y

    f(m)= 1.00 D=x 1

    B C

    x

    W=

    z 3.0

    A D

    B= 9.00

    Self Weight W (kN)= 648

    Location of Resultant R & Eccentricity e

    Group I II III V E.EVE. I

    x(m)= 3.046 3.062 3.010 3.033 2.742

    ex(m)= 0.029 0.013 0.065 0.042 0.333 < B/6 OK!

    ez(m)= 0.049 0.046 0.388 0.077 0.396 < W/6 OK!

    smax= 200.460 208.129 225.077 223.538 249.022 < sall OK!

    Design Load = 249.02 kN/m2

    ex= 0.013 m ez= 0.046 m V=Fy1+Fy2+Fy3+W= 5108 kN

    sA=V/A(1-6*ex/B+6*ez/W)= 204.95 kN/msB=V/A(1-6*ex/B-6*ez/W)= 170.14 "

    sC=V/A(1+6*ex/B-6*ez/W)= 173.42 "

    sD=V/A(1+6*ex/B+6*ez/W)= 208.23 "

    Depth Determination

    1. Punching Shear (Art. 8.15.5.6.2)

    Right leg Center Leg Left Leg

  • 7/30/2019 RC Pier Taba

    16/20

    RC PIER

    2. Wide Beam Shear

    a. In the Short Direction

    s1=P/A(1 + 6*ez/W)= 149.99 kN/m ds2=P/A(1 - 6*ez/W)= 180.38 "

    trial d= 0.934 m

    s3= 150.66 s1 s3 s2

    Vact= 89.29 kN

    bc -ratio of long side to short side of concentrated load= 3.0

    0.166(1+2/bc)= 0.277 < 0.332 take 0.277

    vcb=0.166(1+2/bc)f'c0.332f'c= 1.36 N/mm 1355.38 kN/m

    Vres=vcb*B*d= 11393.36 kN Vres Vact OK!

    b. In the Long Direction

    FyR= 1690 FyC= 1130 FyL= 1640

    1.425 MzR= 96.59 MzC= 35.49 MzL= 34.65

    q2 q3 q5

    q4 q1

    q1=s1*W=P/A(1 + 6*ex/B)*W= 499.85 kN/m q3= 492.62 kN/m

    q2=s2*W=P/A(1 - 6*ex/B)*W= 491.26 " q4= 498.4903

    q5= 495.5556

    a= 860 g= 600

    b= 697 h= 144

    c= 707 i= 338

    d= 707 j= 149

    e= 666 k= 538

    f= 828

    Vmax= 860.00 kN corresponding triangle leg = 1.79 (from STAAD)

    SFD & BMD(max) Diagram ordinates(from STAAD)

  • 7/30/2019 RC Pier Taba

    17/20

    RC PIER

    3. Flexure

    a. In the Short Direction

    Bottom :-

    Using F = 32 mm andClear cover = 50 mm

    davil=D-F/2-CLR CR= 0.934 m

    beff=coln width+2(1/2*d)= 1.93 m

    Loading

    FyR= 1690 MxR= 67.55 FyC= 1640 MxC= 69.42 FyL= 1640 MxL= 67.55

    Right Center Left

    ez(m)= 0.0400 0.0423 0.0412 1

    smax=Fy/beff*W(1 + 6*ez/W)= 314.56 306.59 305.95smin=Fy/beff*W(1 - 6*ez/W)= 267.99 10.95 259.38

    qmax=smax*beff= 608.37 kN/m qmax q1= 578.34 qminqmin=smin*beff= 518.30 " 608.37 518.30

    Mx-x= 299.18 kNm

    The moment for design is therefore,

    Mfact. = 299.18 kNm/m

    The cracking moment given by :

    Ig =bh3/12 = 2.5E+11 mm

    4

    Mcr =frIg/yt = 1543.18 KNm/m yt= 500 mm

    fr = 0.63*sqrt(fc') = 3.086357076 MPa

    The amount of reinforcement shall be adequate to develop a factored flexural resistance at least equal to the

    lesser of :

    - 1.2 times the cracking strength determined on the basis of elastic stress distribution and the

    modulus of rupture, fr, of the concrete.

    Besides the area of reinforcement shall not be less than the minimum shrinkage and temprature reinforcement.

    Reinforcement

    Mu = 1851.81 KNm/m

    Design moment, Mu = 1851.81 KNm/m

    As = Mu / ( fy (d - a/2 ) ) where Mu= 1851.81 KNm/m

    a = As*fy / ( 0.85 * fc' b ) = 0.90

    b= 3000 mm

    Assume a 36 mm fy= 420.00 N/mm2

    As = Mu / ( fy ( 5,302 mm2 fc'= 24.00 N/mm2

    a = As*fy / ( 0.8 36 mm D= 1000 mm

    diam= 16 mm

    cover = 50 mm

    d= 942 mm

    Required As = 5302 mm2/m

    Spacing = 114 mmUse F 16 mm @ 114 mm for width= beff

    Provide As = 5,301.9 mm2/m

    According to section 5.10.8, the area of reinforcement for walls and footings in each direction shall not be less than :

    As = 0.0015Ag

    Use As,min=0.0015*b*d= 4239 mm /m S = 142.29 mm

    Use F 16 mm @ 142 mm for the rest

  • 7/30/2019 RC Pier Taba

    18/20

    RC PIER

    b. In the Long Direction

    Bottom :-

    Mmax = 600.00 kNm/m

    The cracking moment given by :

    Ig =bh3/12 = 2.5E+11 mm

    4

    Mcr =frIg/yt = 1543.18 KNm/m yt= 500 mm

    fr = 0.63*sqrt(fc') = 3.086357076 MPa

    The amount of reinforcement shall be adequate to develop a factored flexural resistance at least equal to the

    lesser of :

    - 1.2 times the cracking strength determined on the basis of elastic stress distribution and the

    modulus of rupture, fr, of the concrete.

    Besides the area of reinforcement shall not be less than the minimum shrinkage and temprature reinforcement.

    ReinforcementMu = 1851.81 KNm/m

    Design moment, Mu = 1851.81 KNm/m

    As = Mu / ( fy (d - a/2 ) ) where Mu= 1851.81 KNm/m

    a = As*fy / ( 0.85 * fc' b ) = 0.90

    b= 3000 mm

    Assume a 36 mm fy= 420.00 N/mm2

    As = Mu / ( fy ( 5,313 mm2 fc'= 24.00 N/mm2

    a = As*fy / ( 0.8 36 mm D= 1000 mm

    diam= 20 mm

    cover = 50 mm

    d= 940 mm

    Required As = 5313 mm2/m

    Spacing = 177 mmUse F 20 mm 177 mm for width= beff

    Provide As = 5,313.4 mm2/m

    According to section 5.10.8, the area of reinforcement for walls and footings in each direction shall not be less than :

    As = 0.0015Ag

    Use As,min=0.0015*b*d= 4230 mm /m S = 222.81 mm

    Use F 20 mm @ 222 mm

    Use F 20 mm @ 177 mmProvide As = 5,313.4 mm2/m

    rmax = 0.75*rb = 0.75*0.85*b1*(fc'/fy)*600/(600+fy) b1= 0.85= 0.0182 fc' = 24 N/mm2

    rprovided = As/bd = 0.0019

  • 7/30/2019 RC Pier Taba

    19/20

    RC PIER PIER CAP DESIGN-19 of 20

    1) DESIGN DATA

    1.1.MATERIAL PROPERTIES:

    Concrete :- Grade C-30 concrete ( section 9.3)

    fc'= = 24 MPa fc' cylinder )

    fc=0.4*fc' = 9.6 MPa

    Ec=4800sqrt(fc') 23,515 MPa

    Reinforcement steel:

    Grade 420 steel: For rebars diam. 20mm and abovefy = 420 MPa

    fs = 165 MPa

    Es = 200,000 MPa

    Grade 300 steel: For rebars less than diam. 20

    fy = 300 MPa

    fs = 140 MPa

    Es = 200,000 MPa

    Modular ra Ec / Es = 8.51 Use n = 9

    2) DESIGN FOR FLEXURE

    Design Loads:

    (from STAAD)

    Mu(max-ve)= 772.94 kNm

    Mu(max+ve)= 25.69 kNm

    Pier Cap Section:

    b= 1000 h

    h= 1000

    b

    The cracking moment given by :

    Ig =bh3/12 = 83,333,333,333.33 mm

    4

    Mcr =frIg/yt = 514.39 KNm/m yt= 500 mm

    fr = 0.63*sqrt(fc') = 3.086357076 MPaThe amount of reinforcement shall be adequate to develop a factored flexural resistance at least equal to the

    lesser of :

    - 1.2 times the cracking strength determined on the basis of elastic stress distribution and the

    modulus of rupture, fr, of the concrete.

    Besides the area of reinforcement shall not be less than the minimum shrinkage and temprature reinforcement.

    Reinforcement

    Mu = 772.94 KNm/m

    Design moment, Mu = 772.94 KNm/m

    As = Mu / ( fy (d - a/2 ) ) where Mu= 772.94 KNm/m

    a = As*fy / ( 0.85 * fc' b ) = 0.90b= 1000 mm

    Assume a 45 mm fy= 420.00 N/mm2

    As = Mu / ( fy 2,205 mm2 fc'= 24.00 N/mm2

    a = As*fy / ( 0. 45 mm D= 1000 mm

    diam= 20 mm

    cover = 40 mm

    d= 950 mm

    Required As = 2205 mm2/m

    Use 8 F 20 both for top and bottom

    rmax = 0.75*rb 0.75*0.85*b1*(fc'/fy)*600/(600+fy) b1= 0.85= 0.0182 fc' = 24 N/mm2

    rprovided =As/bd = 0.0023

  • 7/30/2019 RC Pier Taba

    20/20

    RC PIER PIER CAP DESIGN-20 of 20

    3) DESIGN FOR SHEAR

    Shear strength

    Design of cross sections subject to shear shall be based on

    Vu < = Vn = (Vc + Vs ) = 0.900

    where Vu = factored shear forces at the section

    Vn = the nominal shear strength, determined as the lesser of Vn = Vc + Vs or Vn=0.25*fc'*bv*dv

    Vc = the nominal shear strength provided by the concrete, determined by:

    Vc = 0.083*b*SQRT(fc')*bv*dv, where b= 2.00

    Vs = the nominal shear strength provided by the shear reinforcement

    Vs = Av*fv*d / s

    Shear strength provided by concrete

    Shear stress provided by concrete

    vc = 0.083*b*sqrt(fc') = 0.813 (MPa )

    The shear strength carried by concrete,Vc=vc*bw*d= 0.813 bw*d (N)

    Shear strength provided by shear reinforcement

    Where the factored shear force, Vu, exceeds shear strength Vc, shear reinforcement shall be provided to satisfy

    the equation, Vu < = Vn = ( Vc + Vs )

    When shear reinforcement perpendicular to the axis of the member is used

    Vs = Vu/ - Vc = Av*fy*d / s

    There fore, spacing of shear reinforcement, s, is :

    S = Av*fy*d / Vs = Av*fy*d/(Vu/-Vc)=Av*fy*d/(Vu/ - 0.813*bw*d )Minimum shear reinforcement ( Eq.12.34 )

    Av = 0.083*sqrt(fc')*bw*S / fy fc' = 24 MPa

    Smax = Av*fy / ( 0.083*sqrt( fc ')*bw ) fy = 300 MPa

    Maximum spacing of shear reinforcement Av =diam.12 226 mm2

    If Vu < 0.10*fc' * bw * d, S