references - springer978-3-540-71398-2/1.pdf · 358 references 25. niinomi m., kuroda d., morinaga...

22
References 1. Jaffee R. I., Promisel N. E., eds.: The Science, Technology and Application of Titanium, Pergamon Press, Oxford, UK, (1970) 2. Jaffee R. I., Burte H. M., eds.: Titanium Science and Technology, Plenum Press, New York, USA, (1973) 3. Williams J. C., Belov A. F., eds.: Titanium and Titanium Alloys, Plenum Press, New York, USA, (1982) 4. Kimura H., Izumi O., eds.: Titanium ‘80, Science and Technology, AIME, Warrendale, USA, (1980) 5. Lütjering G., Zwicker U., Bunk W., eds.: Titanium, Science and Technology, DGM, Oberur- sel, Germany, (1985) 6. Lacombe P., Tricot R., Beranger G., eds.: Sixth World Conference on Titanium, Les Editions de Physique, Les Ulis, France, (1988) 7. Froes F. H., Caplan I. L., eds.: Titanium ‘92, Science and Technology, TMS, Warrendale, USA, (1993) 8. Blenkinsop P. A., Evans W. J., Flower H. M., eds.: Titanium ‘95, Science and Technology, The University Press, Cambridge, UK, (1996) 9. Gorynin I. V., Ushkov S. S., eds.: Titanium ’99, Science and Technology, CRISM “Pro- metey”, St. Petersburg, Russia, (2000) 10. Bomberger H. B., Froes F. H., Morton P. H.: Titanium Technology: Present Status and Future Trends, TDA, Dayton, USA, (1985) p. 3 11. Eylon D., Seagle S.R.: Titanium ’99, Science and Technology, CRISM “Prometey”, St. Petersburg, Russia, (2000) p. 37 12. Bania P. J.: Titanium ‘92, Science and Technology, TMS, Warrendale, USA, (1993) p. 2227 13. Seagle S. R.: Mater. Sci. Eng. A213, (1996) p.1 14. Gorynin I. V.: Titanium ‘92, Science and Technology, TMS, Warrendale, USA, (1993) p. 65 15. Yamada M: Mater. Sci. Eng. A213, (1996) p. 8 16. Boyer R. R.: J. of Metals 44, no. 5, (1992) p. 23 17. Combres Y., Champin B.: Titanium ‘95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 11 18. Wilhelm H., Furlan R., Moloney K. C.: Titanium ‘95, Science and Technology, The Univer- sity Press, Cambridge, UK, (1996) p. 620 19. Schutz R. W., Watkins H. B.: Mater. Sci. Eng. A243, (1998) p. 305 20. Moriyasu T.: Titanium ‘95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 21 21. Froes F. H., Allen P. G., Niinomi M.: Non-Aerospace Applications of Titanium, TMS, War- rendale, USA, (1998) p. 3 22. Blenkinsop P. A.: Titanium ‘95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 1 23. Boyer R. R.: Titanium ‘95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 41 24. Shira C., Froes F. H.: Non-Aerospace Application of Titanium, TMS, Warrendale, USA, (1998) p. 331

Upload: duongliem

Post on 17-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

References

1. Jaffee R. I., Promisel N. E., eds.: The Science, Technology and Application of Titanium, Pergamon Press, Oxford, UK, (1970)

2. Jaffee R. I., Burte H. M., eds.: Titanium Science and Technology, Plenum Press, New York,

USA, (1973)

3. Williams J. C., Belov A. F., eds.: Titanium and Titanium Alloys, Plenum Press, New York,

USA, (1982)

4. Kimura H., Izumi O., eds.: Titanium ‘80, Science and Technology, AIME, Warrendale, USA,

(1980)

5. Lütjering G., Zwicker U., Bunk W., eds.: Titanium, Science and Technology, DGM, Oberur-

sel, Germany, (1985)

6. Lacombe P., Tricot R., Beranger G., eds.: Sixth World Conference on Titanium, Les Editions

de Physique, Les Ulis, France, (1988)

7. Froes F. H., Caplan I. L., eds.: Titanium ‘92, Science and Technology, TMS, Warrendale,

USA, (1993)

8. Blenkinsop P. A., Evans W. J., Flower H. M., eds.: Titanium ‘95, Science and Technology,

The University Press, Cambridge, UK, (1996)

9. Gorynin I. V., Ushkov S. S., eds.: Titanium ’99, Science and Technology, CRISM “Pro-

metey”, St. Petersburg, Russia, (2000)

10. Bomberger H. B., Froes F. H., Morton P. H.: Titanium Technology: Present Status and Future Trends, TDA, Dayton, USA, (1985) p. 3

11. Eylon D., Seagle S.R.: Titanium ’99, Science and Technology, CRISM “Prometey”, St.

Petersburg, Russia, (2000) p. 37

12. Bania P. J.: Titanium ‘92, Science and Technology, TMS, Warrendale, USA, (1993) p. 2227

13. Seagle S. R.: Mater. Sci. Eng. A213, (1996) p.1

14. Gorynin I. V.: Titanium ‘92, Science and Technology, TMS, Warrendale, USA, (1993) p. 65

15. Yamada M: Mater. Sci. Eng. A213, (1996) p. 8

16. Boyer R. R.: J. of Metals 44, no. 5, (1992) p. 23

17. Combres Y., Champin B.: Titanium ‘95, Science and Technology, The University Press,

Cambridge, UK, (1996) p. 11

18. Wilhelm H., Furlan R., Moloney K. C.: Titanium ‘95, Science and Technology, The Univer-

sity Press, Cambridge, UK, (1996) p. 620

19. Schutz R. W., Watkins H. B.: Mater. Sci. Eng. A243, (1998) p. 305

20. Moriyasu T.: Titanium ‘95, Science and Technology, The University Press, Cambridge, UK,

(1996) p. 21

21. Froes F. H., Allen P. G., Niinomi M.: Non-Aerospace Applications of Titanium, TMS, War-

rendale, USA, (1998) p. 3

22. Blenkinsop P. A.: Titanium ‘95, Science and Technology, The University Press, Cambridge,

UK, (1996) p. 1

23. Boyer R. R.: Titanium ‘95, Science and Technology, The University Press, Cambridge, UK,

(1996) p. 41

24. Shira C., Froes F. H.: Non-Aerospace Application of Titanium, TMS, Warrendale, USA,

(1998) p. 331

Page 2: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

358 References

25. Niinomi M., Kuroda D., Morinaga M., Kato Y., Yashiro T.: Non-Aerospace Application of Titanium, TMS, Warrendale, USA, (1998) p. 217

26. Zarkades A., Larson F. R.: The Science, Technology and Application of Titanium, Pergamon

Press, Oxford, UK, (1970) p. 933

27. Conrad H., Doner M., de Meester B.: Titanium Science and Technology, Plenum Press, New

York, USA, (1973) p. 969

28. Fedotov S. G.: Titanium Science and Technology, Plenum Press, New York, USA, (1973)

p. 871

29. James D. W., Moon D. M.: The Science, Technology and Application of Titanium, Pergamon

Press, Oxford, UK, (1970) p. 767

30. Ivasishin O. M., Flower H. M., Lütjering G.: Titanium ’99, Science and Technology, CRISM

“Prometey”, St. Petersburg, Russia, (2000) p. 77

31. Collings E. W.: Materials Properties Handbook: Titanium Alloys, ASM, Materials Park,

USA, (1994) p. 1

32. Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium Al-loys, ASM, Materials Park, USA, (1994)

33. Partridge P. G.: Met. Rev. 12, (1967) p. 169

34. Yoo H. M.: Met. Trans. 12A, (1981) p. 409

35. Paton N. E., Williams J. C., Rauscher G. P.: Titanium Science and Technology, Plenum

Press, New York, USA, (1973) p. 1049

36. Jones I. P., Hutchinson W. B.: Acta Met. 29, (1981) p. 951

37. Paton N. E., Baggerly R. G., Williams J. C.: Rockwell Report SC 526.7FR (1976)

38. Paton N. E., Williams J. C.: Second International Conference on the Strength of Metals and Alloys, ASM, Metals Park, USA, (1970) p. 108

39. Paton N. E., Backofen W. A.: Met. Trans. 1, (1970) p. 2839

40. Rosenberg H. W.: The Science, Technology and Application of Titanium, Pergamon Press,

Oxford, UK, (1970) p. 851

41. Baker H., ed.: Alloy Phase Diagrams, ASM Handbook, Vol. 3, ASM, Materials Park, USA,

(1992)

42. Hansen M.: Constitution of Binary Alloys, McGraw-Hill, New York, USA, (1958)

43. Burgers W. G.: Physica 1, (1934) p. 561

44. Newkirk J. B., Geisler A. H.: Acta Met. 1, (1953) p. 370

45. Otte H. M.: The Science, Technology and Application of Titanium, Pergamon Press, Oxford,

UK, (1970) p. 645

46. Williams J. C.: Titanium Science and Technology, Plenum Press, New York, USA, (1973)

p. 1433 47. Flower H. M., Davis R., West D. R. F.: Titanium and Titanium Alloys, Plenum Press, New

York, USA, (1982) p. 1703

48. Peters M., Lütjering G., Ziegler G.: Z. Metallke. 74, (1983) p. 274

49. Benjamin D., ed.: Properties and Selection: Stainless Steels, Tool Materials and Special-Purpose Materials, Metals Handbook, 9th edn, Vol. 3, ASM, Metals Park, USA, (1980)

p. 353

50. Béchel J., Hocheid B.: Titanium, Science and Technology, DGM, Oberursel, Germany,

(1985) p. 1613

51. Blackburn M. J.: Trans. AIME 239, (1967) p. 1200

52. Williams J. C., Sommer A. W., Tung P. P.: Met. Trans. 3, (1972) p. 2979

53. Pearson W. B.: Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol. 2,

Pergamon Press, London, UK, (1967)

54. Williams J. C., Hickman B. S., Leslie D. H.: Met. Trans. 2, (1971) p. 477

55. Williams J. C.: Titanium Technology: Present Status and Future Trends, TDA, Dayton,

USA, (1985) p. 75

56. Gysler A., Lütjering G., Gerold V.: Acta Met. 22, (1974) p. 901

Page 3: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

References 359

57. Wagner L., Gregory J. K.: Beta Titanium in the 1990’s, TMS, Warrendale, USA, (1993)

p. 199

58. Zwicker U.: Titan and Titanlegierungen, Springer-Verlag, Berlin, Germany, (1974) p. 102

59. Liu Z., Welsch G.: Met. Trans. 19A, (1988) p. 121

60. Mishin Y., Hertig C.: Acta Mater. 48, (2000) p. 589

61. Schutz R. W., Thomas D. E.: Corrosion, Metals Handbook, 9th edn, Vol. 13, ASM, Metals

Park, USA, (1987) p. 669

62. Davis J. R., ed.: Stainless Steels, ASM, Materials Park, USA, (1994) p. 139

63. Myers J. R., Bomberger H. B., Froes F. H.: Titanium Technology: Present Status and Future Trends, TDA, Dayton, USA, (1985) p. 165

64. Schutz R. W.: Titanium ‘95, Science and Technology, The University Press,, Cambridge,

UK, (1996) p. 1860

65. Schutz R. W.: Metallurgy and Technology of Practical Titanium Alloys, TMS, Warrendale,

USA, (1994) p. 295

66. Bania P. J., Parris W. M.: Titanium 1990, Products and Applications, TDA, Dayton, USA,

(1990) p. 784

67. Smialek J. L., Nesbitt J. A., Brindley W. J., Brady M. P., Doychak J., Dickerson R. M.,

Hull D. R.: Mat. Res. Soc. Symp. Proc. 364, (1995) p. 1273

68. Leyens C., Peters M., Kaysser W. A.: Titanium ’95, Science and Technology, The University

Press, Cambridge, UK, (1996) p. 1935

69. Leyens C.: Titan und Titanlegierungen, DGM, Oberursel, Germany, (1996) p. 139

70. Johnson T. J., Loretto M. H., Kearns M. W.: Titanium ’92, Science and Technology, TMS,

Warrendale, USA, (1993) p. 2035

71. Kroll W. J.: Trans. El. Soc. 78, (1940) p. 35

72. Hunter M. A.: J. Amer. Chem. Soc. 32, (1910) p. 330

73. Cobel G., Fisher J., Snyder L. E.: Titanium ’80, Science and Technology, AIME, Warrenda-

le, USA, (1980) p. 1969

74. Rosenberg H. W., Green J. E.: Titanium ’92, Science and Technology, TMS, Warrendale,

USA, (1993) p. 2371

75. Chen G. Z., Fray D. J., Farthing T. W.: Nature 407, (2000) p. 361

76. Sears J. W., Young J. M., Kearns M.: Titanium ’92, Science and Technolgy, TMS, Warren-

dale, USA, (1993) p. 2293

77. Mitchell A.: Titanium ’98, International Academic Publisher, Beijing, China, (1990) p. 91

78. Buttrell W. H., Shamblen C. E.: Titanium ’95, Science and Technology, The University

Press, Cambridge, UK (1999) p. 1446

79. Adams R. T., Rosenberg H. W.: Titanium and Titanium Alloys, Plenum Press, New York,

USA, (1982) p. 127

80. Chen C. C., Boyer R. R.: J. of Metals 31, no. 7, (1979) p. 33

81. Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium Al-loys, Technical Note 4: Forging, ASM, Materials Park, USA, (1994) p. 1083

82. Kuhlmann G. W.: Forging Titanium Alloys, Metals Handbook, 9th edn, Vol. 14, ASM,

Metals Park, USA, (1988) p. 267

83. Machining Data Handbook, 2nd edn, Machinability Data Center, Metcut Research Associa-

tes, Inc., Cincinnati, USA, (1972)

84. Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium Al-loys, Technical Note 7: Machining, ASM, Materials Park, USA, (1994) p. 1119

85. Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium Al-loys, Technical Note 3: Casting, ASM, Materials Park, USA, (1994) p. 1079

86. Eylon D., Froes F. H., Gardiner R. W.: Titanium Technology: Present Status and Future Trends, TDA, Dayton, USA, (1985) p. 35

87. Savage S. J., Froes F. H.: Titanium Technology: Present Status and Future Trends, TDA,

Dayton, USA, (1985) p. 60

Page 4: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

360 References

88. Froes F. H., Eylon D.: Titanium Technology: Present Status and Future Trends, TDA,

Dayton, USA, (1985) p. 49

89. Paton N. E., Hamilton C. H., eds.: Superplastic Forming of Structural Alloys, AIME,

Warrendale, USA, (1982)

90. Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note 5A: Superplastic Forming of Titanium Alloys, ASM, Materials Park, USA, (1994) p. 1101

91. Winkler P.-J.: Sixth World Conference on Titanium, Les Editions de Physique, Les Ulis,

France, (1988) p. 1135

92. Lee D., Backofen W. A.: Trans. AIME 239, (1967) p. 1034

93. Tisler R. J., Lederich R. J.: Titanium ’95, Science and Technology, The University Press,

Cambridge, UK, (1996) p. 596

94. Ashby M. F., Verrall R. A.: Acta Met. 21, (1973) p. 149

95. Kearns W. H., ed.: Welding Handbook, 7th edn, Vol. 4, American Welding Society, Mia-

mi, USA, (1982) p. 43

96. Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium Alloys, Technical Note 10: Welding and Brazing, ASM, Materials Park, USA, (1994)

p. 1159

97. Helm D., Lütjering G.: Titanium ’99, Science and Technology, CRISM “Prometey”, St.

Petersburg, Russia, (2000) p. 1726

98. Juhas M. C., Viswanathan G. B., Fraser H. L.: Friction Stir Welding, CD-ROM, TWI,

Cambridge, UK, (2000)

99. Wagner L., Lütjering G.: Second International Conference on Shot Peening, American

Shot Peening Society, USA, (1984) p. 194

100. Niku-Lari A., ed.: First International Conference on Shot Peening, Pergamon Press, Ox-

ford, UK, (1981)

101. Clauer A. H., Holbrook J. H., Fairand B. P.: Shock Waves and High-Strain-Rate Pheno-mena in Metals, Plenum Press, New York, USA, (1981) p. 675

102. Clauer A. H.: Surface Performance of Titanium, TMS, Warrendale, USA, (1996) p. 217

103. Krautkramer J., Krautkramer H.: Ultrasonic Testing of Materials, 4th edn, Springer-

Verlag, Berlin, Germany, (1990)

104. Mester M. L., McIntire P., eds.: Ultrasonic Testing, Nondestructive Testing Handbook,

2nd edn, Vol. 7, ASNT, Columbus, USA, (1991)

105. Buck O., Thompson D. O., Paton N. E., Williams J. C.: Internal Friction and Ultrasonic Attenuation in Crystalline Solids, Springer-Verlag, Berlin, Germany, (1975) p. 451

106. Moyers J. C., Seagle S. R., Copley D. C., Gilmore R. S.: Titanium ’95, Science and Tech-nology, The University Press, Cambridge, UK, (1996) p. 1521

107. Libby H. L.: Introduction to Electromagnetic Nondestructive Test Methods, Krieger,

Malabar, USA, (1979)

108. Birks A. S., Green R. E., eds.: Electromagnetic Testing, Nondestructive Testing Hand-

book, 2nd edn, Vol. 4, ASNT, Columbus, USA, (1986)

109. Thomas G.: Transmission Electron Microscopy of Metals, John Wiley and Sons, New

York, USA, (1962)

110. Rhodes C. G., Williams J. C.: Met. Trans. 6A, (1975) p. 2103

111. Banerjee D., Williams J. C.: Scripta Met. 17, (1983) p. 1125

112. Blackburn M. J., Williams J. C.: ASM Quart. Trans. 60, (1967) p. 373

113. Blackburn M. J., Williams J. C.: Trans. AIME 239, (1967) p. 287

114. Spurling R. A., Rhodes C. G., Williams J. C.: Met. Trans. 5, (1974) p. 2597

115. Adams B. L., Wright S. I., Kunze K.: Met. Trans. 24A, (1993) p. 819

116. Cullity B. D.: Elements of X-Ray Diffraction, 2nd edn, Addison-Wesley, Reading, USA,

(1978)

117. Kocks U. F., Tome C. N., Wenk H.-R.: Texture and Anisotropy, The University Press,

Cambridge, UK, (1998)

118. Dieter G. E.: Mechanical Metallurgy, 2nd edn, McGraw-Hill, New York, USA, (1976)

Page 5: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

References 361

119. Hertzberg R. W.: Deformation and Fracture Mechanics of Engineering Materials, 4th edn,

John Wiley and Sons, New York, USA, (1996)

120. Lütjering G., Gysler A.: Titanium Science and Technology, DGM, Oberursel, Germany,

(1985) p. 2065

121. Sakurai K., Itabashi Y., Komatsu A.: Titanium ‘80, Science and Technology, AIME, War-

rendale, USA, (1980) p. 299

122. Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium Alloys, ASM, Materials Park, USA, (1994) p. 228

123. Curtis R. E., Boyer R. R., Williams J. C.: Trans. ASM 62, (1969) p. 457

124. Margolin H., Williams J. C., Chesnutt J. C., Lütjering G.: Titanium ‘80, Science and Tech-nology, AIME, Warrendale, USA, (1980) p. 169

125. Okazaki K., Conrad H.: Trans. JIM 13, (1972) p. 205

126. Okazaki K., Conrad H.: Titanium and Titanium Alloys, Plenum Press, New York, USA,

(1982) p. 429

127. Finden P. T.: Sixth World Conference on Titanium, Les Editions de Physique, Les Ulis,

France, (1988) p. 1251

128. Dieter G. E.: Mechanical Metallurgy, 2nd edn, McGraw-Hill, New York, USA, (1976)

p. 685

129. Conrad H., Jones R.: The Science, Technology and Application of Titanium, Pergamon

Press, Oxford, UK, (1970) p. 489

130. Fleischer R. L.: The Strengthening of Metals, Chapman and Hall, New York, USA, (1964)

p. 93

131. Williams J. C., Baggerly R. G., Paton N. E.: Met. and Mater. Trans. 33A, (2002) p. 837

132. Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium Alloys, ASM, Materials Park, USA, (1994) p. 247

133. Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium Alloys, ASM, Materials Park, USA, (1994) p. 227

134. Jones R. L., Conrad H.: Trans. AIME 245, (1969) p. 779

135. Blackburn M. J., Williams J. C.: Proc. Conf. on the Fundamental Aspects of Stress Corro-sion Cracking, NACE, Houston, USA, (1969) p. 620

136. Williams J. C., Thompson A. W., Rhodes C. G., Chesnutt J. C.: Titanium and Titanium Alloys, Plenum Press, New York, USA, (1982) p. 467

137. Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium Alloys, ASM, Materials Park, USA, (1994) p. 238

138. Paton N. E., Williams J. C., Chesnutt J. C., Thompson A. W.: AGARD Conf. Proc.,

no. 185, (1976) p. 4-1

139. Boyd J. D.: The Science, Technology and Application of Titanium, Pergamon Press, Ox-

ford, UK, (1970) p. 545

140. Paton N. E., Hickman B. S., Leslie D. H.: Met. Trans. 2, (1971) p. 2791

141. Williams J. C.: Effect of Hydrogen on Behavior of Materials, AIME, New York, USA,

(1976) p. 367

142. Hall J. A., Banerjee D., Wardlaw T.: Titanium, Science and Technology, DGM, Oberursel,

Germany, (1985) p. 2603

143. Lütjering G., Gysler A., Wagner L.: Sixth World Conference on Titanium, Les Editions de

Physique, Les Ulis, France, (1988) p. 71

144. Lütjering G., Helm D., Däubler M.: Fatigue 93, EMAS, Warley, UK, (1993) p. 165

145. Frederick S. F.: AFML-TR-73-265, (1973)

146. Peters M., Lütjering G.: Titanium '80, Science and Technology, AIME, Warrendale, USA,

(1980) p. 925

147. Lütjering G., Albrecht J., Invasishin O. M.: Microstructure/Property Relationships of Titanium Alloys, TMS, Warrendale, USA, (1994) p. 65

148. Lütjering G., Albrecht J., Ivasishin O. M.: Titanium '95, Science and Technology, The

University Press, Cambridge, UK, (1996) p. 1163

Page 6: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

362 References

149. Ivasishin O. M., Lütjering G.: Titanium ’99 , Science and Technology, CRISM “Pro-

metey”, St. Petersburg, Russia, (2000) p. 441

150. Hines J. A., Peters J. O., Lütjering G.: Fatigue Behavior of Titanium Alloys, TMS, War-

rendale, USA, (1999) p. 15

151. Lütjering G., Schmidt H.-J.: Fatigue ’87, EMAS, Warley, UK, (1987) p. 1663

152. Tacke-Messing U., Wagner L., Lütjering G.: Gefüge und Bruch, Gebrüder Borntraeger,

Berlin, Germany, (1990) p. 199

153. Torster F.: PhD Thesis, TU Hamburg-Harburg, Germany, (1995); Berichte aus der Werk-

stofftechnik, Shaker Verlag, Aachen, Germany, (1995)

154. Peters M., Gysler A., Lütjering G.: Titanium ’80, Science and Technology, AIME, War-

rendale, USA, (1980) p. 1777

155. Gray III G. T., Lütjering G.: Titanium, Science and Technology, DGM, Oberursel, Germa-

ny, (1985) p. 2251

156. Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium Alloys, ASM, Materials Park, USA, (1994) p. 575

157. Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium Alloys, ASM, Materials Park, USA, (1994) p. 584

158. Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium

Alloys, ASM, Materials Park, USA, (1994) p. 587

159. Wegmann G., Lütjering G., Albrecht J., Folkers K.-D., Liesner C.: Titanium ’95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 895

160. Wegmann G., Albrecht J., Lütjering G., Folkers K.-D., Liesner C.: Z. Metallkde. 88,

(1997) p. 764

161. Schroeder G., Albrecht J., Lütjering G.: Titanium ’99, Science and Technology, CRISM

“Prometey”, St. Petersburg, Russia, (2000) p. 545

162. Blackburn M. J., Smyrl W. H.: Titanium Science and Technology, Plenum Press, New

York, USA, (1973) p. 2577

163. Adachi S., Wagner L., Lütjering G.: Titanium, Science and Technology, DGM, Oberursel,

Germany, (1985) p. 2139

164. Lindemann J., Wagner L.: Fatigue Behavior of Titanium Alloys, TMS, Warrendale, USA,

(1999) p. 47

165. Notkina E., Gysler A., Lütjering G.: Fatigue in the Very High Cycle Regime, Institute of

Meteorology and Physics, Vienna, Austria, (2001) p. 149

166. Lütjering G.: Compass 1999: Component Optimization from Materials Properties and Simulation Software, EMAS, Warley, UK, (1999) p. 263

167. Helm D.: Fatigue Behavior of Titanium Alloys, TMS, Warrendale, USA, (1999) p. 291

168. Boyer R. R.: Mat. Sci. Eng. A213, (1996) p. 103

169. Boyer R. R., Williams J. C., Paton N. E.: Titanium ’99, Science and Technology, CRISM

“Prometey”, St. Petersburg, Russia, (2000) p. 1007

170. Jaffee R. I., ed.: Titanium Steam Turbine Blading, Pergamon Press, New York, USA,

(1990)

171. Puschnik H., Fladischer H., Lütjering G., Jaffee R. I.: Titanium ’92, Science and Technol-ogy, TMS, Warrendale, USA, (1993) p. 131

172. Wells M. G. H., Roopchaud B., Montgomery J. S., Gooch W. S.: Non-Aerospace Applica-tions of Titanium, TMS, Warrendale, USA, (1998) p. 289

173. Burkins M., Hansen J., Paige J., Turner P.: Non-Aerospace Applications of Titanium, TMS, Warrendale, USA, (1998) p. 273

174. Saal S., Wagner L., Lütjering G., Pillhöfer H., Daeubler M. A.: Z. Metallkde. 81, (1990)

p. 535

175. Schauerte O., Gysler A., Lütjering G., Mailly S., Chabanne Y., Sarrazin-Baudoux C.,

Mendez J., Petit J.: Fatigue Behavior of Titanium Alloys, TMS, Warrendale, USA, (1999)

p. 191

Page 7: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

References 363

176. Petit J., Sarrazin-Baudoux C., Chabanne Y., Lütjering G., Gysler A., Schauerte O.: Fa-tigue Behavior of Titanium Alloys, TMS, Warrendale, USA, (1999) p. 203

177. Lütjering S., Smith P. R., Eylon D.: Intermetallics and Superalloys, Euromat Vol. 10,

Wiley-VCH, Weinheim, Germany, (2000) p. 283

178. Daeubler M. A., Helm D., Neal D. F.: Titanium 1990, Products and Applications, TDA,

Dayton, USA, (1990) p. 78

179. Gysler A., Lütjering G.: DFVLR-FB 79-24, (1979)

180. Daeubler M. A., Helm D.: Titanium ’92, Science and Technology, TMS, Warrendale,

USA, (1993) p. 41

181. Neal D. F.: Titanium, Science and Technology, DGM, Oberursel, Germany, (1985) p. 2419

182. Neal D. F.: Titanium ’95, Science and Technology, The University Press, Cambridge, UK,

(1996) p. 2195

183. Boyer R. R., Lütjering G.: Titanium Alloy Processing, TMS, Warrendale, USA, (1996)

p. 349

184. Busongo F., Lütjering G.: Proceedings of the 10th World Conference on Titanium, Wiley-

VCH, Weinheim, Germany, (2003)

185. Prandi B., Wadier J.-F., Schwartz F., Mosser P.-E., Vassel A.: Titanium 1990, Products and Applications, TDA, Dayton, USA, (1990) p. 150

186. Peters J. O., Lütjering G., Koren H., Puschnik H., Boyer R. R.: Mater. Sci. Eng. A213,

(1996) p. 71

187. Combres Y., Champin B.: Beta Ttianium Alloys in the 1990’s, TMS, Warrendale, USA,

(1993) p. 477

188. Peters M., Lütjering G.: Z. Metallkde. 67, (1976) p. 811

189. Lütjering G., Gysler A.: Aluminum, Transformation Technology and Application, ASM,

Metals Park, USA, (1980) p. 171

190. Sauer C., Busongo F., Lütjering G.: Fatigue 2002, EMAS, Warley, UK, (2002) p. 2043

191. Sauer C., Busongo F., Lütjering G.: Materials Science Forum, Vols. 396-402, Trans Tech

Publications, Zuerich, Switzerland, (2002) p. 1115

192. Peters J. O., Lütjering G.: Z. Metallkde. 89, (1998) p. 464

193. Lütjering G., Gysler A.: Aluminum Alloys, Physical and Mechanical Properties, EMAS,

Warley, UK, (1986) p. 1547

194. Lütjering G.: Mater. Sci. Eng. A263, (1999) p. 117

195. Albrecht J., Lütjering G.: Titanium ’99, Science and Technology, CRISM “Prometey”, St.

Petersburg, Russia, (2000) p. 363

196. Peters J. O., Lütjering G., Koren M., Puschnik H., Boyer R. R.: Titanium ’95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 1403

197. Benedetti M., Peters J. O., Lütjering G.: Proceedings of the 10th World Conference on Titanium, Wiley-VCH, Weinheim, Germany, (2003)

198. Lindemann J.: PhD Thesis, TU Brandenburg, Cottbus, Germany, (1998); Fortschr.-Ber.

VDI, series 5, no. 547, VDI Verlag, Düsseldorf, Germany, (1999)

199. Peters J. O., Lütjering G., Ivasishin O. M., Markovsky P. E.: Third ASM Int. Conf. on Synthesis, Processing and Modelling of Advanced Materials, ASM, Materials Park, USA,

(1997) p. 269

200. Boyer R. R.: Beta Titanium Alloys in the 1990’s, TMS, Warrendale, USA, (1993) p. 335

201. Froes F. H., Allen P. G., Niinomi M., eds.: Non-Aerospace Applications of Titanium, TMS, Warrendale, USA, (1998)

202. Bania P. J.: Beta Titanium Alloys, Société Francaise de Métallurgie et de Matériaux, Paris,

France, (1994) p. 7

203. Boyer R. R.: Beta Titanium Alloys, Société Francaise de Métallurgie et de Matériaux,

Paris, France, (1994) p. 253

204. Wheeler D. A., Vogt R. G., Cianci M. S.: Beta Titanium Alloys in the 1990’s, TMS, War-

rendale, USA, (1993) p. 375

Page 8: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

364 References

205. Davies D. P., Gittos B. C., Terlinde G., Fischer G.: Titanium ’95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 1371

206. Terlinde G., Fischer G.: Titanium ’95, Science and Technology, The University Press,

Cambridge, UK, (1996) p. 2177

207. Dunlop D. C., Schutz R. W.: Beta Titanium in the 1990’s, TMS, Warrendale, USA, (1993)

p. 347

208. McAndrew J. B., Kessler H. D.: Trans. AIME 206, (1956) p. 1348

209. Yamaguchi M., Umakoshi Y.: Progress in Materials Science 34, (1990) p. 1

210. Kim Y.-W., Dimiduk D. M.: J. of Metals 43, no. 8, (1991) p. 40

211. Yamaguchi M., Inui H.: Structural Intermetallics, TMS, Warrendale, USA, (1993) p. 127

212. Huang S. C. Chesnutt J. C.: Intermetallic Compounds: Principles and Practice, Vol. 2,

John Wiley and Sons, New York, USA, (1995) p. 73

213. Dimiduk D. M.: Gamma Titanium Aluminides, TMS, Warrendale, USA, (1995) p. 3

214. Dimiduk D. M., Martin P. L., Kim Y.-W.: Mat. Sci. Eng. A243, (1998) p. 66

215. Appel F., Wagner R.: Mat. Sci. Eng. R22, (1998) p. 187

216. Dimiduk D. M.: Intermetallics 6, (1998) p. 613

217. Dimiduk D. M.: Mat. Sci. Eng. A263, (1999) p. 281

218. Dimiduk D. M., McQuay P. A., Kim Y.-W.: Titanium ’99: Science and Technology, CRISM “Prometey”, St. Petersburg, Russia, (2000) p. 259

219. Kim Y.-W., Dimiduk D. M., Loretto M., eds.: Gamma Titanium Aluminides, TMS, War-

rendale, USA, (1999)

220. Kim Y.-W., Wagner R., Yamaguchi M., eds.: Gamma Titanium Aluminides, TMS, War-

rendale, USA, (1995)

221. Hemker K. J., Dimiduk D. M., Clemens H., Darolia R., Inui H., Larsen J. M., Sikka V. K.,

Thomas M., Whittenberger J. D., eds.: Structural Intermetallics 2001, TMS, Warrendale,

USA, (2001)

222. Lipsitt H. A.: High Temperature Ordered Intermetallic Alloys V, Mat. Res. Soc. Symp.

Proc. 288, (1993) p. 119

223. Banerjee D., Gogia A. K., Nandy T. K., Muraleedharan K., Mishra R. S.: Structural Inter-metallics, TMS, Warrendale, USA, (1993) p. 19

224. Banerjee D.: Intermetallic Compounds: Principles and Practice, Vol. 2, John Wiley and

Sons, New York, USA, (1995) p. 91

225. Banerjee D.: Progress in Materials Science 42, (1997) p. 135

226. Nandy T. K., Banerjee D.: Structural Intermetallics, TMS, Warrendale, USA, (1997)

p. 777

227. Gogia A. K., Nandy T. K., Banerjee D., Carisey T., Strudel J. L., Franchet J. M.: Intermet-

allics 6, (1998) p. 741

228. Marcinkowski M. J.: Electron Microscopy and Structure of Materials, University of Cali-

fornia Press, Berkeley, USA, (1972) p. 333

229. Blackburn M. J.: Trans. AIME 239, (1967) p. 660

230. Shechtman D., Blackburn M. J., Lipsitt H.: Met. Trans. 5, (1974) p. 1373

231. Banerjee D., Rowe R. G., Hall E. L.: High-Temperature Ordered Intermetallic Alloys IV, MRS, Pittsburgh, USA, (1991) p. 285

232. Ward C. H.: Intern. Mat. Rev. 38, (1993) p. 79

233. Ward C. H., Williams J. C., Thompson A. W., Rosenthal D. G., Froes F. H.: Sixth World Conference on Titanium, Les Editions de Physique, Les Ulis, France, (1988) p. 1103

234. Chesnutt J. C., Hall J. A., Lipsitt H. A.: Titanium ’95, Science and Technology, The Uni-

versity Press, Cambridge, UK, (1996) p. 70

235. Strychor R., Williams J. C.: Solid to Solid Phase Transformations, AIME, Warrendale,

USA, (1982) p. 249

236. Strychor R., Williams J. C., Soffa W. A.: Met. Trans. 19A, (1988) p. 225

237. Lütjering G., Proske G., Albrecht J., Helm D., Däubler M.: Intermetallic Compounds (JIMIS-6),The Japan Institute of Metals, Sendai, Japan, (1991) p. 537

Page 9: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

References 365

238. Kumpfert J., Ward C. H., Peters M., Kaysser W. A.: Synthesis/Processing of Lightweight Metallic Materials, TMS, Warrendale, USA, (1995) p. 85

239. Banerjee D., Gogia A. K., Nandy T. K., Joshi V. A.: Acta Met. 36, (1988) p. 871

240. Rowe R. G., Banerjee D., Muraleedharan K., Larsen M., Hall E. L., Konitzer D. G.,

Woodfield A. P.: Titanium ’92, Science and Technology, TMS, Warrendale, USA, (1993)

p. 1259

241. Kelly T. J., Austin C. M.: Titanium ’95, Science and Technology, The University Press,

Cambridge, UK, (1996) p. 192

242. Blackburn M. J.: The Science, Technology and Application of Titanium, Pergamon Press,

Oxford, UK, (1970) p. 633

243. Seeger J., Hartig C., Bartels A., Mecking H.: High-Temperature Ordered Intermetallic Alloys IV, MRS, Pittsburgh, USA, (1991) p. 157

244. Bhowal P. R., Merrick H. F., Larsen D. E.: Mater. Sci. Eng. A192/193, (1995) p. 685

245. Huang S. C., McKee D. W., Shih D. S., Chesnutt J. C.: Intermetallic Compounds (JIMIS-6),The Japan Institute of Metals, Sendai, Japan, (1991) p. 363

246. Proske G., Lütjering G., Albrecht J., Däubler M. A., Helm D.: Titanium ‘92, Science and Technology, TMS, Warrendale, USA, (1993) p. 1187

247. Rowe R. G.: Titanium ’92, Science and Technology, TMS, Warrendale, USA, (1993)

p. 343

248. Rowe R. G., Konitzer D. G., Woodfield A. P., Chesnutt J. C.: High-Temperature Ordered Intermetallic Alloys IV, MRS, Pittsburgh, USA, (1991) p. 703

249. Proske G., Lütjering G., Albrecht J., Helm D., Däubler M.: Mater. Sci. Eng. A152, (1992)

p. 310

250. Lütjering G., Proske G., Terlinde G., Fischer G., Helm D.: Titanium ’95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 332

251. Takashima K., Cope M. T., Bowen P.: Titanium ’95, Science and Technology, The Uni-

versity Press, Cambridge, UK, (1996) p. 340

252. Kim Y.-W., Boyer R., eds.: Microstructure/Property Relationships in Titanium Aluminides and Alloys, TMS, Warrendale, USA, (1990)

253. Pope D. P., Liu C. T., Whang S. H., Yamaguchi M., eds.: High Temperature Intermetal-lics, Elsevier, Amsterdam, The Netherlands, (1997)

254. Clemens H., Kestler H.: Advanced Engineering Materials 2, (2000) p. 551

255. Liu C. T., Maziasz P. J., Clemens D. R., Schneibel J. H., Sikka V. J., Nieh T. G.,

Wright J., Walku L. R.: Gamma Titanium Aluminides, TMS, Warrendale, USA, (1995)

p. 679

256. Larsen J. M., Worth B. D., Balsone S. J., Jones J. W.: Gamma Titanium Aluminides, TMS,

Warrendale, USA, (1995) p. 821

257. Prewo K. M.: The Science, Technology and Application of Titanium, Pergamon Press,

Oxford, UK, (1970) p. 2333

258. Smith P. R., Gambone M. L., Williams D. S., Garner D. I.: Journal of Materials Sci-

ence 33, (1998) p. 5855

259. Hanusiak W. M.: Atlantic Research Corporation – Advanced Materials Division, Wil-

mington, USA, (1999) private communication

260. Guo Z. X., Derby B.: Titanium ‘92, Science and Technology, TMS, Warrendale, USA,

(1993) p. 2633

261. MacKay R. A., Brindley P. K., Froes F. H.: J. of Metals 43, no. 5, (1991) p. 23

262. Ward-Close M., Partridge P. G.: Titanium ‘92, Science and Technology, TMS, Warren-

dale, USA, (1993) p. 2479

263. Gigerenzer H., Kumnick A. J.: Textron Specialty Materials Report, Lowell, USA, (1990)

264. Brindley P. K.: High Temperature Intermetallic Alloys II, MRS, Pittsburgh, USA, (1987)

p. 419

265. Vassel A., Indrigo C., Pautonnier F.: Titanium ‘95, Science and Technology, The Univer-

sity Press, Cambridge, UK, (1996) p. 2739

Page 10: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

366 References

266. Metcalfe A. G.: J. Comp. Mat. 1, (1967) p. 356

267. Warren R., Anderson C. H.: Composites 15, (1984) p. 101

268. Clym T. W., Flower H. M.: Titanium ‘92, Science and Technology, TMS, Warrendale,

USA, (1993) p. 2467

269. Das G.: Titanium ‘92, Science and Technology, TMS, Warrendale, USA, (1993) p. 2617

270. Larsen J. M., Revelos W. C., Gambone M. L.: Intermetallic Matrix Composites II, MRS,

Pittsburgh, USA, (1992) p. 3

271. Jha S. C., Forster J. A., Pandey A. K., Delagi R. G.: ISI Japan 31, (1991) p. 1267

272. Bassi C., Peters J. A., Wittenauer J.: J. of Metals 41, no. 9, (1989) p. 18

273. Larsen J. M., Russ S. M., Jones J. W.: Met. and Mater. Trans. 26A, (1995) p. 3211

274. Larsen J. M., Russ S. M., Jones J. W.: Characterization of Fibre Reinforced Titanium Metal Matrix Composites, Specialized Printing Services, Loughton, UK, (1994) p. 1.1

275. Veeck S. J., Colvin G. N.: Titanium ‘92, Science and Technology, TMS, Warrendale,

USA, (1993) p. 2495

276. Warner G. K.: B. F. Goodrich Landing Systems, Cleveland, USA, (2001) private commu-

nication

277. Onnes H. K.: Comm. Leiden 120b, (1911)

278. Meisner W., Ochsenfeld R.: Naturwissenschaften 21, (1933) p. 787

279. Buckel W.: Super-conductivity, VCH, Weinheim, Germany, (1991) p. 143

280. Kosing O. E., Scharl R., Schmuhl H. J.: Proceedings of ASME TURBO EXPO 2001: Land, Sea, and Air, CD-ROM, Paper no. 2001 GT 0283, ASME, Warrendale, USA, (2001)

281. Zhao Y., Zhou L., Deng J.: Titanium ’98, International Academic Publishers, Beijing,

China, (1999) p. 457

282. Advanced Materials and Processes, no. 9, (1993) p. 7

283. Outlook, Teledyne Wah Chang Albany, USA, Vol. 14, no. 1, (1993) p. 1

284. Shitazaki K., Tamura T., Kuriiwa T., Goto T., Kamegawa A., Takamura H., Okada M.:

Materials Transactions 43, (2002) p. 1115

285. Tamura T., Hatakeyama M., Ebinuma T., Kamegawa A., Takamura H., Okada M.: Materi-

als Transactions 43, (2002) p. 1120

286. Shirasaki K., Kuriiwa T., Tamura T., Kamegawa A., Okada M.: Materials Transactions 43,

(2002) p. 1173

287. Chang L. C., Read T. A.: Trans. AIME 191, (1951) p. 49

288. Melton K. N.: Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann,

London, UK, (1990) p. 21

289. Wayman C. M., Duerig T. W.: Engineering Aspects of Shape Memory Alloys, Butterworth-

Heinemann, London, UK, (1990) p. 3

290. Duerig T. W., Zadno G. R.: Engineering Aspects of Shape Memory Alloys, Butterworth-

Heinmann, London, UK, (1990) p. 369

291. Otsuka K.: Engineering Aspects of Shape Memory Alloys, Butterworth-Heinmann, Lon-

don, UK, (1990) p. 36

292. Breme J.: Sixth World Conference on Titanium, Les Editions de Physique, Les Ulis,

France, (1988) p. 57

293. Brunette D. M., Tengvall P., Textor M., Thomsen M., eds.: Titanium in Medicine, Springer-Verlag, Berlin, Germany, (2001)

294. Perren S. M., Pohler O. E. M.,, Schneider E.: Titanium in Medicine, Springer-Verlag,

Berlin, Germany, (2001) p. 771

295. Windler M., Klabunde R.: Titanium in Medicine, Springer-Verlag, Berlin, Germany,

(2001) p. 703

296. Hosonuma M., Shimamune T.: Sixth World Conference on Titanium, Les Editions de

Physique, Les Ulis, France, (1988) p. 495

297. Breme J., Biehl V., Wack T., Eisenbarth E.: Titanium ’99, Science and Technoloy, CRISM

“Prometey”, St. Petersburg, Russia, (2000) p. 1187

Page 11: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

References 367

298. Albrecht J., Lütjering G., Nicolai H.-P., Liesner C.: Fatigue 2002, EMAS, Warley, UK,

(2002) p. 2085

299. Semlitsch M., Weber H., Steger R.: Titanium ’95, Science and Technology, The University

Press, Cambridge, UK, (1996) p. 1742

300. Wang K., Gustavson L., Dumbleton J.: Titanium ’92, Science and Technology, TMS,

Warrendale, USA, (1993) p. 2697

301. Fanning J. C.: Titanium ’95, Science and Technology, The University Press, Cambridge,

UK, (1996) p. 1800

302. Steinemann S. G., Mäusli P.-A., Szmukler S., Semlitsch M., Pohler O., Hintermann H.-E.,

Perren S. M.: Titanium ’92, Science and Technology, TMS, Warrendale, USA, (1993)

p. 2689

303. Niinomi M., Kuroda D., Fukunaga K., Fukui H., Kato Y., Yashiro T., Suzuki A., Hase-

gawa J.: Titanium ’99, Science and Technology, CRISM “Prometey”, St. Petersburg, Rus-

sia, (2000) p. 1195

304. Froes F. H.: Non-Aerospace Applications of Titanium, TMS, Warrendale, USA, (1998)

p. 317

305. Friedrich H., Kiese J., Haldenwanger H.-G., Stich A.: Proceedings of the 10th World Conference on Titanium, Wiley-VCH, Weinheim, Germany, (2003)

306. Sommer C., Peacock D.: Titanium ’95, Science and Technology, The University Press,

Cambridge, UK, (1996) p. 1836

307. Schauerte O., Kramer M., Kiese J., Walz W.: Proceedings of the 10th World Conference on Titanium, Wiley-VCH, Weinheim, Germany, (2003)

308. Froes F. H.: Non-Aerospace Application of Titanium, TMS, Warrendale, USA, (1998)

p. 327

309. Moroishi T., Yamada M., Fujii M., Kusano A., Kawabe A.: Titanium ’95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 1662

310. Ward-Close C. M.: Titanium ’99, Science and Technology, CRISM “Prometey”, St. Pe-

tersburg, Russia, (2000) p. 27

311. Koryagin N. I.: Sixth World Conference on Titanium, Les Editions de Physique, Les Ulis,

France, (1988) p. 49

312. Fukuhara Y.: Sixth World Conference of Titanium, Les Editions de Physique, Les Ulis,

France, (1988) p. 381

313. Shimizu Y.: Titanium ’99, Science and Technology, CRISM “Prometey”, St. Petersburg,

Russia, (2000) p. 19

314. Yamaguchi H., Miki K.: Alutopia 11, (1987) p. 41

Page 12: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

Index

A

alloys 31-33, 150, 175

- applications 174-175

- corrosion resistance 170-171

- modulus of elasticity 14-17

- precipitation hardening 35, 160

- processing 151-157

- properties 150, 163, 165, 213-216

- solid solution hardening 35, 160

- strengthening mechanisms 160

alloys and grades 32, 149-150, 175

-case 48, 135

colony size 30, 178-181, 185

colony size/property correlations 191-192

colony structure 30-31, 178-179, 182

grain size

- CP titanium 154-156, 162-163

- fully equiaxed structure ( + alloys) 186-

188, 191, 208, 212, 242

lamellae 30-31, 178, 185

lamellae width 179, 182-183

layer 30, 39-40, 178-180, 185, 193-194,

247-275, 279-280

nucleation and growth 30-31

phase

- anisotropy 14-15

- CRSS 19

- crystal structure 13

- modulus of elasticity 14-17

- precipitation hardening 35

- shear modulus 15-16

- slip modes 17-19

- solid solution hardening 35

- twinning modes 20-21

- unit cell 14

platelets ( alloys) 38-39, 248-255, 260-

261, 275-276

plates ( alloys) 39, 252-256, 260, 275, 277

stabilizing elements 21-22

p (see primary )

2 alloys

- alloying elements 293-294

- 2 phase 294-295

- microstructures 294-296, 301-302

- properties 301-306

- Super 2 alloy 294-296

2 phase (Ti3Al)

- anti-phase boundaries 297, 299

- cleavage fracture 291-292

- crystal structure 290

- deformation modes 290

- ordered lattice 290-291

- planar slip 291-292

- prism shear 290-291

- slip systems 290

2 plates 294

2 precipitates 35-36, 160, 175, 180, 191,

212-216, 233, 242-243

' martensite (hexagonal) 27

'' martensite (orthorhombic) 27

'/ '' boundary 27, 29

+ alloys 32-33

- applications 224-232

- corrosion resistance 45-47

- crystallographic texture 184, 220

- modulus of elasticity 16-17, 221

- processing 177-190

- properties 190-224

ABAQUS 79

acicular martensite 27

acid leaching 54

aero-engine applications

- blisk 245-246

- cast fan frame 85, 229

- cast LPT blades 308-309

- cast transmission adapter case 229

- compressor casing 121-122, 228

- compressor rotor 110-111, 132-133, 286

- compressor spool 227-228, 244

- exhaust structure 284-285

- fan blades 225-226

- fan casing 81-82

- fan disk 80, 227, 286

- GE-90 9

- impeller 120-121, 245

- integrally bladed rotor 111-112, 227

Page 13: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

370 Index

- manifold 101-102, 228-229

- TMC rings for rotating parts 325-327

- TMC shaft 326-327

aging ( + alloys) 180, 191, 212-216, 233,

242-243

aging ( alloys) 248-250, 253, 256-257, 261-

262, 274-278

aggressive environments 166-167

aircraft applications

- bulkhead forging 78, 81, 224

- cargo handling fittings 283

cast brake torque tube 285

- cast exhaust nozzle flap 310-311

- helicopter rotor head 286-287

- landing gear beam forging 79-80, 224, 281-

282

- nacelle structure 284-285

- nut clips 283

- springs 284

- TMC augmentor actuater links 327-328

- wing attach fitting 225-226

- wingbox 100, 109

airframe application 8

airplane SR-71 3

Al equivalent content 23

allotropic transformation temperature 13-14

alloy classification 31-34

alloy element partitioning 35, 185, 202-203,

240-241

alloy refining 65

alloying elements 21-26, 293, 299

ammonium bifluoride etching (ABF) 130-131

anisotropic behavior ( processed condition)

264-274

anisotropy ( phase) 15

anodizing colors 355-356

annealing/aging temperature 180, 209

anti-phase boundaries 290, 297, 299

applications

- aero-engine (see aero-engine)

- aerospace 174

- aircraft (see aircraft)

- architecture 9-10, 354

- armor components 230

- automotive 11, 92-93, 311, 349-351

- biomedical materials 11, 343-349

- Boeing airframes 8

- coal burning power generation plants 174

- consumer goods 9, 355

- decorative arts 355-356

- downhole service 287

- GE-90 aero-engine 9

- heat exchangers 158-159, 172-173

- high performance vehicles 11

- jewelry 355

- offshore structures 9-10, 230, 232

- pressure vessels 103, 174

- pulp and paper production 174-175

- sports equipment 10, 351-353

- steam turbine blades 230-231

applications of CP titanium 167

armor components 230

artifacts (LM) 34, 136

artifacts (TEM) 140-143

athermal phase 28-29

autogeneous welding 108

B

alloys 32-34

- applications 281-287

- corrosion resistance 46

- modulus of elasticity 15-17

- precipitation hardening 36-40

- processing 247-261

- properties 261-281

- solid solution hardening 36

annealed structure ( + alloys)

- microstructure 178-179

- processing route 177-180

- properties 191-207, 213-214, 217-219, 238-

244

annealed structure (heavy stabilized al-

loys)

- microstructure 249-251

- processing route 248-251

- properties 262, 277-278

annealed structure (high strength alloys)

262

- fatigue crack propagation 269-271, 277,

279-281

- fracture toughness 272-276, 279-280

- HCF strength 266, 268, 279-280

- microstructure 252-253, 275-277

- processing route 252-253, 275

- tensile ductility 263-264, 275-276, 279

- yield stress 263-264, 275-276

eutectoid forming elements 22

grain size ( + alloys) 177, 183, 185, 194

grain size ( alloys) 249, 252, 259, 262,

279-280

isomorphous elements 22

phase

- crystal structure 14

- modulus of elasticity 15-17

- precipitation hardening 36-40

- slip modes 19

Page 14: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

Index 371

- solid solution hardening 36

- unit cell 14

processed structure ( + alloys)

- microstructure 180-182

- processing route 180-181

processed structure (high strength alloys)

262

- fatigue crack propagation 269-271

- fracture toughness 272-274

- HCF strength 266-269

- microstructure 254-256

- processing route 254-255

- tensile ductility 264-265

- yield stress 264

stabilizing elements 22

transus temperature 32, 249-252

2 phase 294-295, 299

' particles 37-38, 249

bar 71-73

basket weave structure 31

bcc unit cell 14

bend factor 96

beta flecks 57-59, 67, 69

biaxial deformation 158, 161

bicycle applications 10, 352-353

bi-lamellar structure 191, 217-219, 242-243,

348

billet 71-73

bi-modal structure ( + alloys)

- crystallographic texture 184

- formation mechanism 185

- interconnecting p grains 209-212

- microstructure 183

- processing route 182-185

- properties 191, 194, 201-207, 209-212,

235-243

bi-modal structure (high strength alloys)

262

- fatigue crack propagation 270-271

- fracture toughness 272-273

- HCF strength 266, 268

- microstructure 259-260

- processing route 259-261

- tensile ductility 263-264

- yield stress 263-264

biomedical alloys 11, 345-346, 349

biomedical applications 11, 343-349

blended elemental powder route 91-93

blisk (bladed disk) 9, 245-246

blocker 78

blooming mill 151, 153

blue etch anodizing (BEA) 130-131

bone plate 346

brittle fracture 165-166, 168, 291-292

bulk head forging 78, 81, 224

Burger relationship 27, 30-31, 39, 184, 294

Burgers vector 17-19

burn resistant titanium alloys 336-337

“buy to fly” ratio 79

C

ac slip 18-19, 290

cargo handling fittings 283

cast aero-engine fan frame 85, 229

cast aero-engine transmission adapter case

229

cast brake torque tube 285

cast turbocharger rotor 350-351

cast golf club heads 10-11, 352-353

cast hip joint stem 348

cast porosity 86

cast pump impeller 86-87, 151

cast wing attach fitting 225-226

casting 85-89

casting electrode 71, 73

casting furnace 86, 88

ceramic shell 86-87

charpy impact energy 165

chemical milled compressor casing 121-122

chemical milling 121-122

- HNO3/HF ratio 122

- hydrogen pickup 122

chlorination 51-53

chlorinator 52

classification of alloys 31-34

cleavage fracture 165-166, 291-292

closed die forging 77

coatings 50

coherent 2 precipitates 35-36

coherent particles 37-38

coherent particles 37-38

coil 76, 152-153, 161

cold hearth furnace 63-64

cold hearth melted slab 65, 151, 153

cold hearth melting (CHM) 62-65

cold isostatic pressing (CIP) 91

cold rolling 76, 152-153

colony structure 30-31, 178-179

color of titanium 355-356

color wheel 144-145

commercially pure titanium (see CP titanium)

compression twins 20-21

compressive residual stress 114-115, 119-120

compressor casing 121-122, 228

compressor disk microstructure 182-183

compressor rotor 110-111, 133, 286

Page 15: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

372 Index

compressor spool 227-228, 244

condenser 173

conditioning 71

connecting rod 92-93

consumer goods 9, 355

continuous layer 30, 39-40, 178-180, 185,

193-194, 247-275, 279-280

conventional machining 83-84

conventional sheet forming 95-96

coolant fed drills 84

coolants 83

cooling rate effects

- + alloys 178-183, 186, 188-189, 192-

197, 200, 235-236, 238-240

- alloys 254-255, 259-261

- Super 2 alloy 301-303

corrosion behavior 45-48

corrosion resistance 45-46, 166-167, 287

corrosive environments 166-167

cost elements for sponge 55-56

cost of titanium 5-6

cost sensitivity 11, 166-167

CP titanium

- annealing temperature 154, 156

- applications 167, 172-175

- castings 87, 151

- charpy impact energy 165

- corrosion resistance 45-47, 166-167

- crystallographic texture 161

- forgings 151

- grain size 154-156, 162-163

- HCF strength 160, 162

- iron content 150, 154-156

- microstructural features 151-152

- modulus of elasticity 16, 160

- oxygen content 31-32, 35, 150, 160-162

- processing route 151-154

- rolled products 152-153

- slip modes 17-19, 162

- strengthening mechanisms 160

- tensile ductility 160

- tubes 107, 157-158

- twinning modes 20-21

- yield stress 150, 160, 162-163

CP titanium grades 31-32, 149-150

crack closure 192, 199-200, 215

crack front geometry 192, 197-200, 206-207,

211-212, 218, 271-274, 276, 280

creep flattening 74

creep resistance ( + alloys) 191

- grain size (fully equiaxed structure) 242

- 2 precipitates (aging) 242-243

- annealed structure 238-241

- bi-lamellar structure 242-244

- bi-modal structure 238-241

- crystallographic texture 243

creep resistance ( alloys) 262, 278

creep resistance ( alloys) 307

creep resistance (Super 2 alloy) 302

creep resistance (TMCs) 323-324

crevice corrosion 46-47, 167-168, 170-171

crevice corrosion test 170-171

CRSS 19

crystal structure 14, 290-293, 296-297

crystallographic relationship 27, 31, 192, 297-

298

crystallographic texture 75-76, 157-158, 161,

184, 191, 220-224, 243

crystallographic texture investigation 137-

138, 144-145

cutting tool life 83

cutting tool materials 83

D

deep drawing 158

definition of alloys 33, 149

definition of + alloys 33

definition of alloys 33-34

definition of heavily stabilized alloys 247

definition of high strength alloys 247

DEFORM 79

deformation modes 17-21, 290-293

deformation twinning 20-21, 154-155, 160

density 13, 42

die forging 77-78

diffusion 43-44

diffusion bonded joint 99

diffusion bonding (DB) 98-101

diffusivity data 44

disks 80, 227, 286

distillation process 52-53

dovetail slots inspection 132

ductile fracture 164, 193-194

ductile inclusions 294-295

ductility loss 168

duplex structure (see bi-modal structure)

dye penetrant inspection 124, 133-134

E

eddy current inspection 124, 132

elastic properties 14-17, 221

electrical resistivity 41-42

electrochemical machining (ECM) 123

electro-deoxidation process (EDO) 56-57

electrolytic polishing 136-137, 139-144, 147-

148

Page 16: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

Index 373

electrolytic refining 56

electromagnetic probe 132

electron beam welding (EBW) 108

electrowinning 56

ELI grades 32, 150, 213, 230

environmental effects 47-48, 222-223, 237,

305-306

equiaxed structure (see fully equiaxed struc-

ture

equivalent Al content 23

equivalent Mo content 28

etching 136-138

exhaust system for motorcycles 352

extra low interstitials (ELI) 32, 150, 213, 230

eyeglass frames 343

F

fan blades 225-226

fan casing 81-82

fan disk 80, 227, 286

fast diffusing elements 43-44

fatigue crack nucleation

- + alloys 195-196, 202-203, 205, 209

- alloys 268-269

fatigue crack propagation ( + alloys) 191

- 2 precipitation (aging) 213-215

- annealed structure 196-200

- bi-lamellar structure 218-219

- bi-modal structure 205-207, 237

- crystallographic texture 222-223

- fully equiaxed structure 210-211

- oxygen 214-215

fatigue crack propagation ( alloys) 262, 269-

271, 276-277, 279-281

fatigue crack propagation (TMCs) 321-322

fatigue life calculation 227

fatigue specimen preparation 147-148

Fe content 150, 154-156

Fe diffusivity 43-44

Fe stabilized phase 154-155

filler wire 107-108

first melt electrode 59-60

flame cut 59

fluidized bed 51

fluorescent dye 134

fluorescent penetrant inspection 133-134

focused ion beam device (FIB) 140

forging 77-81

forging press 77-78

forging process modeling 79

forgings 78, 80-81, 282-283, 287

formability index 96

Formula-One racing cars 11

fracture mode

- brittle 168

- ductile 164, 193-194

fracture surface examination 143-144

fracture toughness ( + alloys) 191

- 2 precipitates (aging) 215-216

- annealed structure 200, 206

- bi-lamellar structure 218

- bi-modal structure 206

- crystallographic texture 223

- fully equiaxed structure 212

- oxygen 215-216

fracture toughness ( alloys) 262, 272-276,

279-280

frame type heat exchanger 172-173

freezing segregation 61

friction stir welding 112-113

friction welding 109-112

Fukuoka Dome 9-10, 354

fully equiaxed structure ( + alloys)

- crystallographic texture 184, 220

- formation mechanism 186-187

- microstructure 186, 188

- processing route 186-188

- properties 191, 208-212, 221-222, 242

fusion weld 104-105

fusion welded pressure vessel 103

fusion welding 102-109

G

alloys

- 2+ lath structure 297-298

- alloying elements 293, 297, 299-300

- applications 308-312

- 2 phase 299

- boron additions 306

- microstructures 297-298

- oxidation behavior 300

- processing 306-307

- properties 307

- product forms 306

phase (TiAl)

- crystal structure 292

- ordered lattice 293

- slip systems 292

gas atomization process 89

gas atomized powder 90

gas metal arc welding (GMAW) 107

gas tungsten arc welding (GTAW) 106

gates 88

general corrosion 45-46

GFM 72

globular particles ( alloys) 256-257

Page 17: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

374 Index

globular structure (see fully equiaxed struc-

ture)

globularization mechanism 185, 187

golf club heads 10-11, 352-353

grade designations 149

grade numbers 150

grain boundary (see layer)

grain shape 181-182, 255-257, 263-274

grain size (see grain size, grain size)

“grain switching” mechanism 97

gravity separation 63

Gregor 2

growth of plates 30

H

Hall-Petch relationship 154, 163

hard alpha 58, 67, 127-128

hardening mechanisms 34-40

hardening of phase 35-36

hardening of phase 36-40

HCF strength ( + alloys) 191

- 2 precipitates (aging) 213

- annealed structure 195

- bi-lamellar structure 218

- bi-modal structure 202-204

- crystallographic texture 222

- fully equiaxed structure 208-209

- oxygen 213

HCF strength ( alloys) 262, 266-269, 277-

279

HCF strength (CP titanium) 160, 162

HCF strength ( alloys) 307

HCF strength (Super 2 alloy) 304

HCF strength (TMCs) 321-322

HCF strength/yield stress ratio 160, 162, 195,

278-279

HDH process 22, 91

“hearth only” process 66

heat affected zone (HAZ) 104-105

heat exchanger 158-159, 167, 172-173

heating rate 249-250

helicopter rotor head 286-287

hexagonal martensite ( ') 27

hexagonal unit cell 14

HF/HNO3 etching 130-131

high density inclusions (HDIs) 57-59, 63, 65-

66, 70

high interstitial defects (HIDs) 57

high loading rates 165

high temperature alloys ( + alloys)

- 2 precipitates 233

- alloy element partitioning 240-241

- applications 244-246

- cooling rate 235-236, 238-241

- intermediate annealing treatment (bi-modal

structure) 240-241

- intermediate annealing treatment (lamellar

structure) 242-243

- processing 234-235

- silicides 233-235, 243

- volume fraction of primary 240

high temperature properties ( + alloys)

- creep resistance 238-243

- fatigue crack propagation 237

- HCF strength 202, 204

- LCF strength 236-237

- tensile ductility 202, 236

- yield stress 202, 235-236

high temperature properties (orthorhombic

alloys) 303-305

high temperature properties (Super 2 alloy)

301-302, 304, 306

hip joint implant 374-348

history of titanium 2

homogeneous distribution of platelets 39-

40, 250-251

homogenization annealing 70

homogenization time 152

hot band 76, 152-153

hot isostatic pressing (HIP) 85, 88-89,91

hot rolling 74, 151-152

hot working 71

Hunter process 53

hybride vehicle 338

hydraulic fluid resistance 285

hydride precipitation 168-169

hydrides (TEM artifacts) 140-142

hydrogen content 22

hydrogen diffusivity 44

hydrogen effects on properties 48, 222-223,

237

hydrogen embrittlement 48, 168

hydrogen pickup 47-48, 122, 156, 168

hydrogen powered vehicles 338

hydrogen removal 122

hydrogen storage materials 338-339

hydrogen tolerance 48, 156

hydrostatic tensile stress 169

I

ignition tests 336-337

ilmenite 2, 51

impeller 121, 244-245

incoherent platelets 39, 253

incoherent plates 30, 253

inert gas shield 106

Page 18: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

Index 375

inert gas sweep 54

inertia weld macrostructure 110

inertia welded fan disk 80, 286

inertia welded compressor rotor 110-111, 133,

286

inertia welded compressor spool 227-228, 244

inertia welding 109-111

inertia welding modeling 109-110

ingot

- non-axisymmetric 63, 65, 151, 153

- round 59-60

ingot conditioning 71

inhomogeneous distribution of platelets 40,

250

inspection methods 123-134

inspection of DB joints 100

integrally bladed rotor 111-112, 227

intercrystalline fracture 193

interface phase (TEM artifact) 140-141

interference microscopy 137-138

intermediate annealing treatment (bi-modal

structure) 203-204, 240-241

intermediate annealing treatment (high

strength alloys) 253

intermediate annealing treatment (lamellar

structure) 217, 242

internal fatigue crack nucleation 115, 224

internal hydrogen 48

internal porosity 85

internal stress measurement 146-147

International Conferences on Titanium 1

interstitial stabilized defects 55

investment cast aero-engine frame 85, 229

investment casting 85-89

ion milling 139-142

iron content 150, 154-156

iron diffusivity 43-44

iron stabilized phase 154-155

isothermal particles 37-38

J

jet polishing 139

joining methods 102-113

K

Klaproth 2

Kroll 2

Kroll process 2, 51, 53

Kroll’s etch 136-137

L

lamellar microstructure 30-31, 177-180

landing gear beam forging 79-80, 224, 281-

282

laser deposition 93-94

laser deposition apparatus 95

laser shock processed impeller 121

laser shock processing 118-120

- intensity 119

- laser coupling 119-120

- residual stresses 120

lath structure ( 2+ ) 297-298

LCF strength ( + alloys)

- 2 precipitates (aging) 214

- annealed structure 199, 205

- bi-lamellar structure 218

- bi-modal structure 205, 236

- oxygen 214 light microscopy (LM) 135-138

limiting draw ratio (LDR) 158

linear friction weld microstructure 112-113,

227

linear friction welding 9, 111-112, 227

liquid hydrogen fuel system 174

LM artifacts 34, 136

low cost titanium parts 11

M

m value 97, 101

machined blisk 245-246

machined fan disk 80

machining 79-80, 83-84

macrostructure of inertia weld 110

manifold 101-102, 228-229

market shares (alloy type) 7

market shares (application) 5-8

martensite

- microstructure 27-28, 178-179

- modulus of elasticity 16-17

- MS temperature 28-29

- transformation 27

martensite (LM artifact) 34, 136

martensite (TEM artifact) 142-143

massive martensite 27

mean stress effect on HCF strength 224

mechanical polishing 135, 147

mechanical polishing artifacts 136

mechanical testing 147-148

melt related defects 57-58, 66-70

metal inert gas welding (MIG) 107

metallic titanium production

- processes 56-57

- sponge 51-55

melting 57-66

melting temperature 13

Page 19: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

376 Index

metastable phase diagram 37

metastable phases ( , ') 36-38

Mg reduction 2, 53-55

microstructural features

- + alloys 177-190, 233-234

- alloys 248-261

- CP titanium 151-152

microstructure of colonies 30-31, 143-144,

178-179

microstructure of compressor disk 182-183

microstructure of DB joint 99

microstructure of fusion weld 104-105

microstructure of HAZ 104-105

microstructure of linear friction weld 112-113

microstructure of martensite 27-28, 178-179

microtexture investigation 137-138, 144-145

mill products 71-73

mill-annealed condition 74, 189-190

mill-annealed structure ( + alloys)

- crystallographic texture 184, 220

- microstructure 106, 190

- processing route 189-190

Mo equivalent content 28

modeling of forging process 79

modeling of inertia welding 109-110

modulated structure 28, 35-36

modulus of elasticity 14-17, 160, 221, 319

MS temperature 28

multistage compressor rotor 110-111

multi-zone ultrasonic inspection 127

N

“95-99” curves 114

Na reduction 2, 53

“near ” alloys 33

“necklace” microstructure 256-257

noble metals addition 45, 47, 150, 166-167,

170-171

non-aerospace applications 9-11

nonuniform platelets distribution 39-40,

250-251

nonuniform recrystallization 250

Normaski interference microscopy 137-138

nucleation of plates 30

nut clips 283

O

off-road racing trucks 11

offshore applications 9-10, 230

omega phase

- athermal transformation 28-29

- modulus of elasticity 16-17

- precipitation 37-38, 249

open die forging 77

ordered 2 phase 289, 294-295

ordered lattice 289, 291, 293, 297

orientation image microscopy (OIM) 144-145

orientation polyhedron 145

Orowan mechanism 274

orthorhombic alloys 303

orthorhombic martensite ( '') 27, 35-36

orthorhombic phase 296-270

overpeening 117-118

oxalic acid stain etch 136, 138

oxidation 48-50

oxidation resistant alloys 49, 284-285, 300

oxide layer 49, 135, 300

oxide layer thickness 355-356

oxide surface film passivation 45, 170

oxidizing environments 45, 166

oxygen content 31-32, 35, 150, 161-162, 191,

212-216

P

pack rolling 75, 152

paint 2

particulate reinforcement 92-93

passive oxide film 45, 170

permanent mold casting 89

PGM additions 45, 47, 150, 166-167, 170-171

phase diagrams 21-26

- Ti-Al 23

- Ti-Al-V (isothermal sections) 26

- Ti-Cr 25

- Ti-Fe 68

- Ti-Mo 24

phase transformations 27-31

pickling 121

pile-ups 35, 38, 263, 291

pitting corrosion 46

planar slip 35, 38, 162, 223, 292

plasma arc welding (PAW) 108-109

plate 71, 73-75

plate heat exchanger 172-173

plateau etching 143-144

platinum group metals (PGM) addition 45, 47,

150, 166-167, 170-171

polarized light microscopy 137-138, 156

pole figure determination 146

pole figures 161, 184, 220

polishing artifacts 136

porosity 85

powder metallurgy 89-92

powder size 90-91

pre-aging 40, 250-251

precipitate-free-zone 248

Page 20: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

Index 377

precipitation hardening 35-40, 160, 175, 191,

212-216, 223, 233, 242, 262, 274-278

precipitation of platelets 38-39, 248-250,

253

precipitation of 2 35-36, 160, 175, 191, 212-

216, 223, 233, 242

precursors 38, 40, 249-250

PREP powder 90

pressure vessel 103, 174

primary ( p) size 182, 184, 204-206

primary ( p) volume fraction 184, 202, 209-

211, 240, 260

primary processing 70-76

processing control 254, 256-258

processing modeling 79

processing route

- + alloys 177-189, 234-235

- alloys 248-261

- CP titanium 152, 154

processing temperature 184, 234-235, 249

protective surface oxide film 45-46, 170

pseudo-binary phase diagram 33

purification of sponge

- acid leaching 54

- inert gas sweep 54-55

- vacuum distillation 54-55

R

R-ratio 191-192, 199, 215, 223-224

r value 158

racing bicycle 352-353

racing cars 11, 352

racing motorcycles 352

racing wheelchair 352-353

radiographic inspection 124, 129

rammed graphite casting 86

rectilinear shape 79

recrystallization 71, 154, 184-185, 187, 260

recrystallization annealing temperature 156,

184, 187, 260

recrystallization annealing time 249

reducing environments 45, 166

reduction by

- Mg 2, 53-55

- Na 2, 53

REP powder 89-90

residual compressive stress 114-115

residual tensile stress 115

revert 59, 70

ring rolled cylinder 82-83

ring rolling 81

risers 88

robotic peening 116

roller expansion 158, 172

rolling mill 74

rotating electrode process (REP) 89-91

rutile 2, 51

S

scale (oxide layer) 49, 300

scanning electron microscopy (SEM)

- fracture surface 143

- microstructure 143

- orientation image (OIM) 144-145

Schmidt factor 18

scrap 59, 70

seamless cylinder 81

secondary precipitates ( + alloys) 188,

191, 217-218

segregation 61, 67

self-diffusion of titanium 43-44

Sendzimir mill 76

shape memory alloys (TiNi)

- applications 343-344

- aging effect on MS 342-343

- crystal structure 339

- composition effect on MS 342

- “one-way” shape memory 343

- strain reversibility 341

- superelasticity 340-341, 344

- transformation sequence 340-341

- twinned martensite 329, 341

- “two-way” shape memory 344

shaped eddy current probe 132-133

shear modulus 15-16

shearing of coherent particles 35, 38, 212

sheet 71, 73, 75

sheet formability index 96

sheet formed parts 283

sheet forming 95-96

shell type heat exchanger 158, 172

shot peening

- Almen intensity 117

- fatigue life 117-118, 147-148

- machines 116

- pressure 114, 117

- residual stresses 114, 119-120

- stress relaxation 115

- time 117-118

shrinkage pores 86

side-plates 252-253, 255

silicides 233-235, 243

slip bands 35, 38, 162, 195-196, 213, 223

slip length/property correlation 192, 213

slip modes 17-19, 290-293

slip steps at the surface 48, 237

Page 21: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

378 Index

slow diffusing elements 43-44

smeared metal 135

soft ball bats 353-354

soft zones along grain boundaries 248, 263-

280

solid solution hardening 35-36, 160

solidification 61, 67

“sonic shape” 79

specific heat capacity 41

SPF 97-99

SPF/DB 98-101

SPF/DB component 101-102

spinodal decomposition 28, 35-36

split crucible furnace 88

sponge 2

sponge cake 53

sponge cost elements 55-56

sponge crushing 55

sponge fines 91, 93

sponge fire 55

sponge particle size 55

sponge price 5-6

sponge production 51-55

sponge production (USA) 4

sponge production capacity (worldwide) 3-5

sports equipment 9-11, 351-353

“spring back” 96, 158-159

springs 284, 350-351

steam turbine blades 230-231

Steckel mill 76, 153

stent 343-344

stop-off agent 100

strain induced porosity 72-73, 127-128

strain localization 35-36, 38, 160, 162, 195-

196, 213, 223, 263-264, 275

strain rate sensitivity 97 strength to density ratio 42

stress corrosion susceptibility 175, 223

stress induced martensite (artifact) 34, 136

stress relieving treatment 180, 189, 209, 213-

214

strip 75-76

structure/property correlations

- + alloys 191

- alloys 262

subsurface fatigue crack nucleation 115, 224

Super 2 alloy 294-296, 302-304

superconducting Nb-47Ti alloy

- artificial pinning center material (APC) 333

- microstructure 332

- processing 332

- wire 332-334

superconductivity 329-331

superheat 65, 86

superplastic behavior 97

superplastic forming 97-99

superplastically formed part 99

surface damage 84, 114

surface effects on fatigue life 147-148

surface etching inspection 124, 129-131

surface oxide layer 49, 300

surface replication inspection 124, 134

surface treatment 113-123

suspension springs 350-351

symphathetic nucleation and growth 30

T

TR value 96

TEM artifacts 140-142

temperature dependence of CRSS 19

temperature dependence of E 16

temperature dependence of G 16

tensile ductility ( + alloys) 191

- 2 precipitates (aging) 213

- annealed structure 193-194, 202

- bi-lamellar structure 218-219

- bi-modal structure 194, 202, 236

- crystallographic texture 221

- fully equiaxed structure 208

- oxygen 213

tensile ductility ( alloys) 262-265, 275-276,

279

tensile ductility (CP titanium) 160

tensile ductility ( alloys) 307

tensile ductility (orthorhombic alloys) 305

tensile ductility (Super 2 alloy) 301-303

tension twins 20

texture 75-76, 157-158, 161, 184, 191, 220-

224, 243

texture investigation 137-138, 144-145

thermal conductivity 41

thermal expansion coefficient 41-42

thermo-mechanical processing 79-80

thickness of oxide layer 355-356

thin foil preparation 137, 139-140

through-transus processed structure (high

strength alloys) 262

- microstructure 257-258

- processing route 256, 258

Ti-Al phase diagram 23

Ti-Al-V (isothermal sections) 26

Ti-Cr phase diagram 25

Ti-Fe phase diagram 68

Ti-Mo phase diagram 24

TiCl4 2, 51-53, 55-56

- distillation 52-53

Page 22: References - Springer978-3-540-71398-2/1.pdf · 358 References 25. Niinomi M., Kuroda D., Morinaga M ... Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note

Index 379

- reduction by Mg 2, 53-55

- reduction by Na 2, 53

TiN 68

TiO2 2, 51-53

titanium fire (aero-engine compressor) 335-

336

titanium matrix composites (TMCs)

- applications 325-328

- carbon coating on fibres 317

- cost 325-326, 328

- cross plies 315

- cross weave wires 317

- degradation 323, 325

- fibre architecture 319-321, 323-324

- fibre/matrix interface 317

- fibre orientation 319-321, 323-324

- fibre touching 314, 316

- fibres 313-314

- microstructure 315

- monotape 315-316

- oxidation 323, 325

- processing methods 314

- properties 318-324

tool life 83

torque monitoring 84

transmission electron microscopy (TEM) 139-

142

tube welding 106-107, 157-158

tubes 157-158, 172

tungsten inert gas welding (TIG) 89, 106

turnings 59

twinning 138, 154, 161

twinning modes 20-21

twins 138, 155

type I defects 57-58, 67-68, 127

type II defects 57-59, 69

U

ultrasonic inspection 124-129

- detection capability 125

- “false positives” 126

- multi-zone method 127

- scan trace 125

- sonic shape 79, 128

- transducer 124

- ultrasonic image 127-128

undeformable platelets 39

unit cell 14, 291, 293, 297

unrecrystallized grain structure 180-181, 254-

257

upsetting 78

usage by alloy type (USA) 7

usage by market sector

- Japan 6

- USA 7-8

- USSR 6

V

vacuum arc remelting (VAR) 58-62

vacuum casting furnace 88

vacuum distillation of sponge 54

vacuum distillation process (VDP) 54-55

vapor honing 116

VAR final step 66

VAR furnace 61-62

VAR ingot 59-60, 151

void coalescence 164

void nucleation 164

voids 72, 127-128

volume fraction of phase 247, 250, 253

volume fraction of plates 253, 260

volume fraction of 2 precipitates 35, 233

W

warm forming 159, 249

wavy slip 35, 161-162

wax pattern 86

weld repair (castings) 88-89

weldability 151, 170

welding 102-113

welding of tubes 106-107, 157-158

Widmanstätten structure 31, 178

wingbox 100, 109

X

X-ray computer tomography 129

X-ray diffraction 146-147

Y

yield stress ( alloys) 150, 160, 175

yield stress ( + alloys) 191

- 2 precipitates (aging) 213, 242-243

- annealed structure 193, 202

- bi-lamellar structure 218-219

- bi-modal structure 202, 236

- crystallographic texture 221

- fully equiaxed structure 208

- oxygen 213

yield stress ( alloys) 262-264, 275-276, 279

yield stress (CP titanium) 150, 160

yield stress ( alloys) 307

yield stress (orthorhombic alloys) 304-305

yield stress (Super 2 alloy) 301-304