relevansi-prinsip-kimia-dan-kesuburan-tanah.doc

Download Relevansi-Prinsip-Kimia-Dan-Kesuburan-Tanah.doc

If you can't read please download the document

Upload: anggunfuji

Post on 01-Jan-2016

35 views

Category:

Documents


1 download

DESCRIPTION

vcb

TRANSCRIPT

RELE VANSI PRINSIP KIMIA DAN

KESUBURAN TANAH

Disusun untuk memenuhi tugas Mata Kuliah Kesuburan Tanah dan Nutrisi Tanaman II

Disusun oleh :R. Iman Muhardiono (150110080222)Bilqis Raznasti Q. (150110080227)Dona Apryliana (150110080228)Gilang Fauzi (150110080230)Yohana K. Destyani (150110080243)

AGROTEKNOLOGI F

PROGRAM STUDI AGROTEKNOLOGIFAKULTAS PERTANIANUNIVERSITAS PADJADJARANBANDUNG2009

A.Pendahuluan

Setiap orang berkepentingan terhadap tanah. Tanah sebagai sumberdaya alam yang dapat dimanfaatkan oleh manusia untuk berbagai macam aktivitas guna memenuhi kebutuhan hidupnya. Tanah sebagai sumberdaya yang digunakan untuk keperluan pertanian dapat bersifat sebagai sumberdaya yang dapat pulih (reversible) dan dapat pula sebagai sumberdaya yang dapat habis (Santoso, 1991).

Tanah berasal dari pelapukan batuan dengan bantuan tanaman dan organisme, membentuk tubuh unik yang menyelaputi lapisan batuan. Proses pembentukan tanah dikenal sebagai pedogenesis. Proses yang unik ini membentuk tanah sebagai tubuh alam yang terdiri atas lapisan-lapisan atau disebut sebagai horizon. Setiap horizon dapat menceritakan mengenai asal dan proses-proses fisika, kimia dan biologi yang telah dilalui tubuh tanah tersebut.

Dalam usaha pertanian tanah mempunyai fungsi utama sebagai sumber penggunaan unsur hara yang dibutuhkan untuk pertumbuhan tanaman, dan sebagai tempat tumbuh dan berpegangnya akar serta tempat penyimpan air yang sangat diperlukan untuk kelangsungan hidup tumbuhan.

A.Indikator Kesuburan Tanah

Kesuburan tanah bisa diukur berdasarkan beberapa indikator kesuburan tanah. Beberapa indikator kesuburan tanah yang biasa digunakan oleh para ahli tanah antara lain adalah : kapasitas absorbsi, tingkat kejenuhan basa, derajat kemasaman tanah, kandungan liat dan kandungan bahan organik.

1.Kapasitas Absorbsi dihitung dengan milli equivalent, adalah kemampuan tanah untuk mengikat/ menarik suatu kation oleh partikel-partikel kolloid tanah (partikel kolloid itu terdiri dari liat dan organik), dan ini secara langsung mencerminkan kemampuan tanah melakukan aktifitas pertukaran hara dalam bentuk kation. Semakin tinggi nilai kapasitas absorbsi, maka tanah dikatakan kesuburannya semakin baik, yang biasanya susunan kationnya didominasi oleh unsur K (Kalium), Ca (Calsium) dan Mg (Magnesium), sehingga nilai pH tanah normal (berkisar 6,5).Kejenuhan Basa, nilainya dalam bentuk persen, mencerminkan akumulasi susunan kation. Peningkatan nilai persen kejenuhan basa mencerminkan semakin tingginya kandungan basa-basa tanah pada posisi nilai pH tanah yang menyebabkan nilai

termasuk kation hara tanaman. Kapasitas pertukaran kation penting untuk kesuburan

tanah.

kesuburan kimiawi optimal secara menyeluruh. Nilai kesuburan kimiawi secara sederhana dicermnkan oleh nilai pH, karena nilai pH akan mampu mempengaruhi dan mencerminkan aktifitas kimiawi sekaligus aktifitas biologis dan kondisi fisik di dalam tanah.

3.Kemasaman Tanah. Reaksi tanah menunjukkan sifat kemasaman atau alkalinitas tanah yang dinyatakan dengan nilai pH. Nilai pH menunjukkan banyaknya konsentrasi ion hidrogen (H+) di dalam tanah. Makin tinggi kadar ion H+ didalam tanah, semakin masam tanah tersebut. Di dalam tanah selain H+ dan ion-ion lain ditemukan pula ion OH-, yang jumlahnya berbanding terbalik dengan banyaknya H+. pada tanah-tanah masam jumlah ion H+ lebih tinggi daripada OH-, sedang pada tanah alkalis kandungan OH- lebih banyak daripada H+. Bila kandungan H+ sama dengan OH- , maka tanah bereaksi netral yaitu mempunyai pH = 7 (Anonim 1991).

Nilai pH berkisar dari 0-14 dengan pH 7 disebut netral sedangkan pH kurang dari 7 disebut masam dan pH lebih dari 7 disebut alkalis. Walaupun demikian pH tanah umumnya berkisar dari 3,0-9,0. Di Indonesia unumnya tanahnya bereaksi masam dengan 4,0 5,5 sehingga tanah dengan pH 6,0 6,5 sering telah dikatakan cukup netral meskipun sebenarnya masih agak masam. Di daerah rawarawa sering ditemukan tanah-tanah sangat masam dengan pH kurang dari 3,0 yang disebut tanah sangat masam karena banyak mengandung asam sulfat. Di daerah yang sangat kering kadang-kadang pH tanah sangat tinggi (pH lebih dari 9,0) karena banyak mengandung garam Na (Anonim 1991).

3.Kandungan liat, merupakan ukuran kandungan partikel kolloid tanah. Partikel dengan ukuran ini (kolloid) akan mempunyai luas permukaan dan ruang pori tinggi sehingga mempunyai kemampuan absorbsi juga tinggi serta diikuti kemampuan saling tukar yang tinggi pula diantara partikel kolloid. Kemampuan absorbsi ini bisa untuk air maupun zat hara, sehingga menjadi cermin peningkatan kesuburan tanah. Namun jika kandungan liat pada komposisi dominan atau tinggi menjadi tidak ideal untuk budidaya maupun pengolahan tanah. Kandungan liat yang tinggi menyebabkan perkolasi, inlfiltrasi, permeabilitas, aerasi tanah menjadi lebih rendah sehingga menyulitkan peredaran air dan udara.

termasuk kation hara tanaman. Kapasitas pertukaran kation penting untuk kesuburan

tanah.

5. Kandungan BO merupakan indikator paling penting dan menjadi kunci dinamika kesuburan tanah. Bahan organik mempunyai peran yang multifungsi, yaitu mampu merubah sifat fisik, sifat kimia dan sifat biologi tanah. Selain itu bahan organik juga mampu berperan mengaktifkan persenyawaan yang ditimbulkan dari dinamikanya sebagai ZPT (zat pengatur tumbuh), sumber Enzim (katalisator reaksi-reaksi persenyawaan dalam metabolisme kehidupan) dan Biocide (obat pembasmi penyakit dan hama dari bahan organik).

Bahan organik juga dapat merubah sifat kimia tanah, yaitu melalui proses dekomposisi yang dilakukan oleh mikroba yang memang selalu menempel pada bahan organik. Proses dekomposisi akan melepaskan zat-zat hara ke dalam larutan di dalam tanah dan juga menjadikan bahan organik menjadi bentuk yang lebih sederhana dan bersifat kolloid. Kondisi ini akan meningkatkan kemampuan absorbsi tanah yang berkaitan juga dengan kapasitas tukar kation (KTK) tanah karena meningkatnya luas permukaan partikel tanah. Hal ini menjadikan tanah mempunyai kemampuan menyimpan unsur-unsur hara yang semakin baik, mengurangi penguapan Nitrogen, maupun pencucian hara-hara kation lain. Pada saatnya berarti pula meningkatkan kapasitas tanah untuk melepas hara kation bagi kebutuhan tanaman, baik melalui proses pertukaran secara langsung maupun pasif oleh proses difusi.

C. Peranan Bahan Organik Terhadap Kesuburan Kimia Tanah

Pengaruh bahan organik terhadap kesuburan kimia tanah antara lain terhadap kapasitas pertukaran kation, kapasitas pertukaran anion, pH tanah, daya sangga tanah dan terhadap keharaan tanah. Penambahan bahan organik akan meningkatkan muatan negatif sehingga akan meningkatkan kapasitas pertukaran kation (KPK). Bahan organik memberikan konstribusi yang nyata terhadap KPK tanah. Sekitar 20 70 % kapasitas pertukaran tanah pada umumnya bersumber pada koloid humus (contoh:

Molisol), sehingga terdapat korelasi antara bahan organik dengan KPK

tanah

(Stevenson, 1982). Kapasitas pertukaran kation (KPK) menunjukkan kemampuan

tanah

untuk menahan kation-kation dan mempertukarkan kation-kation tersebut

termasuk kation hara tanaman. Kapasitas pertukaran kation penting untuk kesuburan

tanah.

Fraksi organik dalam tanah berpotensi dapat berperan untuk menurunkan kandungan pestisida secara nonbiologis, yaitu dengan cara mengadsorbsi pestisida dalam tanah. Mekanisme ikatan pestisida dengan bahan organik tanah dapat melalui: pertukaran ion, protonisasi, ikatan hidrogen, gaya vander Waals dan ikatan koordinasi dengan ion logam (pertukaran ligan). Tiga faktor yang menentukan adsorbsi pestisida dengan bahan organik : (1) karakteristik fisika-kimia adsorbenya (koloid humus), (2) sifat pestisidanya, dan (3) Sifat tanahnya, yang meliputi kandungan bahan organik, kandungan dan jenis lempungnya, pH, kandungan kation tertukarnya, lengas, dan temperatur tanahnya (Stevenson, 1982).

Peran bahan organik terhadap ketersediaan hara dalam tanah tidak terlepas dengan proses mineralisasi yang merupakan tahap akhir dari proses perombakan bahan organik. Dalam proses mineralisasi akan dilepas mineral-mineral hara tanaman dengan lengkap (N, P, K, Ca, Mg dan S, serta hara mikro) dalam jumlah tidak tentu dan relatif kecil. Hara N, P dan S merupakan hara yang relatif lebih banyak untuk dilepas dan dapat digunakan tanaman.

1. Nitrogen

Nitrogen merupakan unsur hara makro esensial, menyusun sekitar 1,5 % bobot tanaman dan berfungsi terutama dalam pembentukan protein (Hanafiah 2005). Menurut Hardjowigeno (2003) Nitrogen dalam tanah berasal dari :

a.Bahan Organik Tanah : Bahan organik halus dan bahan organik kasar

b.Pengikatan oleh mikroorganisme dari N udara

c.Pupuk

d.Air Hujan

Sumber N berasal dari atmosfer sebagai sumber primer, dan lainnya berasal dari aktifitas didalam tanah sebagai sumber sekunder. Fiksasi N secara simbiotik khususnya terdapat pada tanaman jenis leguminoseae sebagai bakteri tertentu. Bahan organik juga membebaskan N dan senyawa lainnya setelah mengalami proses dekomposisi oleh aktifitas jasad renik tanah.

Hilangnya N dari tanah disebabkan karena digunakan oleh tanaman atau mikroorganisme. Kandungan N total umumnya berkisar antara 2000 4000 kg/ha pada lapisan 0 20 cm tetapi tersedia bagi tanaman hanya kurang 3 % dari jumlah tersebut (Hardjowigeno 2003).

ditingkatkan dengan penambahan bahan organik melalui 5 aksi seperti tersebut di

bawah ini: (1) Melalui proses mineralisasi bahan organik terjadi pelepasan P mineral

Manfaat dari Nitrogen adalah untuk memacu pertumbuhan tanaman pada fase vegetatif, serta berperan dalam pembentukan klorofil, asam amino, lemak, enzim, dan persenyawaan lain (RAM 2007). Nitrogen terdapat di dalam tanah dalam bentuk organik dan anorganik. Bentuk-bentuk organik meliputi NH4, NO3, NO2, N2O dan unsur N. Tanaman menyerap unsur ini terutama dalam bentuk NO3, namun bentuk lain yang juga dapat menyerap adalah NH4, dan urea (CO(N2))2 dalam bentuk NO3. Selanjutnya, dalam siklusnya, nitrogen organik di dalam tanah mengalami mineralisasi sedangkan bahan mineral mengalami imobilisasi. Sebagian N terangkut, sebagian kembali scbagai residu tanaman, hilang ke atmosfer dan kembali lagi, hilang melalui pencucian dan bertambah lagi melalui pemupukan. Ada yang hilang atau bertambah karena pengendapan.

Proses nitrogen

Bahan organik sumber nitrogen (protein) pertama-tama akan mengalami peruraian menjadi asam-asam amino yang dikenal dengan proses aminisasi, yang selanjutnya oleh sejumlah besar mikrobia heterotrofik mengurai menjadi amonium yang dikenal sebagai proses amonifikasi. Amonifikasi ini dapat berlangsung hampir pada setiap keadaan, sehingga amonium dapat merupakan bentuk nitrogen anorganik (mineral) yang utama dalam tanah (Tisdel dan Nelson, 1974).

Nasib dari amonium ini antara lain dapat secara langsung diserap dan digunakan tanaman untuk pertumbuhannya, atau oleh mikroorganisme untuk segera dioksidasi menjadi nitrat yang disebut dengan proses nitrifikasi. Nitrifikasi adalah proses bertahap yaitu proses nitritasi yang dilakukan oleh bakteri Nitrosomonas dengan menghasilkan nitrit, yang segera diikuti oleh proses oksidasi berikutnya menjadi nitrat yang dilakukan oleh bakteri Nitrobacter yang disebut dengan nitratasi.

Nitrat merupakan hasil proses mineralisasi yang banyak disukai atau diserap oleh sebagian besar tanaman budidaya. Namun nitrat ini mudah tercuci melalui air drainase dan menguap ke atmosfer dalam bentuk gas (pada drainase buruk dan aerasi terbatas) (Killham, 1994).

2. C-Organik

Kandungan bahan organik dalam tanah merupakan salah satu faktor yang berperan dalam menentukan keberhasilan suatu budidaya pertanian. Hal ini dikarenakan bahan organik dapat meningkatkan kesuburan kimia, fisika maupun

ditingkatkan dengan penambahan bahan organik melalui 5 aksi seperti tersebut di

bawah ini: (1) Melalui proses mineralisasi bahan organik terjadi pelepasan P mineral

biologi tanah. Penetapan kandungan bahan organik dilakukan berdasarkan jumlah COrganik (Anonim 1991).

Bahan organik tanah sangat menentukan interaksi antara komponen abiotik dan biotik dalam ekosistem tanah. Musthofa (2007) dalam penelitiannya menyatakan bahwa kandungan bahan organik dalam bentuk C-organik di tanah harus dipertahankan tidak kurang dari 2 persen, Agar kandungan bahan organik dalam tanah tidak menurun dengan waktu akibat proses dekomposisi mineralisasi maka sewaktu pengolahan tanah penambahan bahan organik mutlak harus diberikan setiap tahun. Kandungan bahan organik antara lain sangat erat berkaitan dengan KTK (Kapasitas Tukar Kation) dan dapat meningkatkan KTK tanah. Tanpa pemberian bahan organik dapat mengakibatkan degradasi kimia, fisik, dan biologi tanah yang dapat merusak agregat tanah dan menyebabkan terjadinya pemadatan tanah (Anonim 1991).

3. P-Bray

Unsur Fosfor (P) dalam tanah berasal dari bahan organik, pupuk buatan dan mineral-mineral di dalam tanah. Fosfor paling mudah diserap oleh tanaman pada pH sekitar 6-7 (Hardjowigeno 2003).

Dalam siklus P terlihat bahwa kadar P-Larutan merupakan hasil keseimbangan antara suplai dari pelapukan mineral-mineral P, pelarutan (solubilitas) P-terfiksasi dan mineralisasi P-organik dan kehilangan P berupa immobilisasi oleh tanaman fiksasi dan pelindian (Hanafiah 2005).

Menurut Leiwakabessy (1988) di dalam tanah terdapat dua jenis fosfor yaitu fosfor organik dan fosfor anorganik. Bentuk fosfor organik biasanya terdapat banyak di lapisan atas yang lebih kaya akan bahan organik. Kadar P organik dalam bahan organik kurang lebih sama kadarnya dalam tanaman yaitu 0,2 0,5 %. Tanah-tanah tua di Indonesia (podsolik dan litosol) umumnya berkadar alami P rendah dan berdaya fiksasi tinggi, sehingga penanaman tanpa memperhatikan suplai P kemungkinan besar akan gagal akibat defisiensi P (Hanafiah 2005). Menurut Foth (1994) jika kekurangan fosfor, pembelahan sel pada tanaman terhambat dan pertumbuhannya kerdil.

Pengaruh bahan organik terhadap ketersediaan P dapat secara langsung melaui proses mineralisasi atau secara tidak langsung dengan membantu pelepasan P yang

terfiksasi. Stevenson (1982) menjelaskan ketersediaan P di dalam

tanah

dapat

ditingkatkan dengan penambahan bahan organik melalui 5 aksi seperti tersebut di

bawah ini: (1) Melalui proses mineralisasi bahan organik terjadi pelepasan P mineral

(PO43-); (2) Melalui aksi dari asam organik atau senyawa pengkelat yang lain hasil dekomposisi, terjadi pelepasan fosfat yang berikatan dengan Al dan Fe yang tidak larut menjadi bentuk terlarut,

Al(Fe)(H2O)3(OH)2 H2PO4 + Khelat ===> PO42- (larut) + Kompleks AL-Fe- Khelat (Stevenson, 1982).

(3). Bahan organik akan mengurangi jerapan fosfat karena asam humat dan asam fulvat berfungsi melindungi sesquioksida dengan memblokir situs pertukaran; (4). Penambahan bahan organik mampu mengaktifkan proses penguraian bahan organik asli tanah; (5). Membentuk kompleks fosfo-humat dan fosfo-fulvat yang dapat ditukar dan lebih tersedia bagi tanaman, sebab fosfat yang dijerap pada bahan organik secara lemah.

Untuk tanah-tanah berkapur (agak alkalin) yang banyak mengandung Ca dan Mg fosfat tinggi, karena dengan terbentuk asam karbonat akibat dari pelepasan CO2 dalam proses dekomposisi bahan organik, mengakibatkan kelarutan P menjadi lebih meningkat, dengan reaksi sebagai berikut :

CO2+ H2O ====== > H2CO3

H2CO3 + Ca3(PO4)2 ====== > CaCO3 + H2PO4

Asam-asam organik hasil proses dekomposisi bahan organik juga dapat berperan sebagai bahan pelarut batuan fosfat, sehingga fosfat terlepas dan tersedia bagi tanaman.

Hasil proses penguraian dan mineralisasi bahan organik, di samping akan melepaskan fosfor anorganik (PO43-) juga akan melepaskan senyawa-senyawa Porganik seperti fitine dan asam nucleic, dan diduga senyawa P-organik ini, tanaman dapat memanfaatkannya. Proses mineralisasi bahan organik akan berlangsung jika kandungan P bahan organik tinggi, yang sering dinyatakan dalam nisbah C/P. Jika kandungan P bahan tinggi, atau nisbah C/P rendah kurang dari 200, akan terjadi mineralisasi atau pelepasan P ke dalam tanah, namun jika nisbah C/P tinggi lebih dari 300 justru akan terjadi imobilisasi P atau kehilangan P (Stevenson, 1982).

4. Kalium (K)

Kalium merupakan unsur hara ketiga setelah Nitrogen dan Fosfor yang diserap oleh tanaman dalam bentuk ion K+. Muatan positif dari Kalium akan membantu menetralisir muatan listrik yang disebabkan oleh muatan negatif Nitrat, Fosfat, atau unsur lainnya. Hakim et al. (1986), menyatakan bahwa ketersediaan Kalium

merupakan Kalium yang dapat dipertukarkan dan dapat diserap tanaman yang tergantung penambahan dari luar, fiksasi oleh tanahnya sendiri dan adanya penambahan dari kaliumnya sendiri.

Kalium tanah terbentuk dari pelapukan batuan dan mineral-mineral yang mengandung kalium. Melalui proses dekomposisi bahan tanaman dan jasad renik maka kalium akan larut dan kembali ke tanah. Selanjutnya sebagian besar kalium tanah yang larut akan tercuci atau tererosi dan proses kehilangan ini akan dipercepat lagi oleh serapan tanaman dan jasad renik. Beberapa tipe tanah mempunyai kandungan kalium yang melimpah. Kalium dalam tanah ditemukan dalam mineral- mineral yang terlapuk dan melepaskan ion-ion kalium. Ion-ion adsorpsi pada kation tertukar dan cepat tersedia untuk diserap tanaman. Tanah-tanah organik mengandung sedikit Kalium.

5.Kalsium (Ca)

Kalsium tergolong dalam unsur-unsur mineral essensial sekunder seperti Magnesium dan Belerang. Ca2+ dalam larutan dapat habis karena diserap tanaman, diambil jasad renik, terikat oleh kompleks adsorpsi tanah, mengendap kembali sebagai endapan-endapan sekunder dan tercuci (Leiwakabessy 1988). Adapun manfaat dari kalsium adalah mengaktifkan pembentukan bulu-bulu akar dan biji serta menguatkan batang dan membantu keberhasilan penyerbukan, membantu pemecahan sel, membantu aktivitas beberapa enzim (RAM 2007).

5.Natrium (Na)

Natrium merupakan unsur penyusun lithosfer keenam setelah Ca yaitu 2,75% yang berperan penting dalam menentukan karakteristik tanah dan pertumbuhan tanaman terutama di daerah kering dan agak kering yang berdekatan dengan pantai, karena tingginya kadar Na di laut, suatu tanah disebut tanah alkali jika KTK atau muatan negatif koloid-koloidnya dijenuhi oleh 15% Na, yang mencerminkan unsur ini merupakan komponen dominan dari garam-garam larut yang ada. Pada tanah-tanah ini, mineral sumber utamanya adalah halit (NaCl). Kelompok tanah alkalin ini disebut tanah halomorfik, yang umumnya terbentuk di daerah pesisir pantai iklim kering dan berdrainase buruk. Sebagaimana unsur mikro, Na juga bersifat toksik bagi tanaman jika terdapat dalam tanah dalam jumlah yang sedikit berlebihan (Hanafiah, 2005).

7.Magnesium (Mg)

Magnesium merupakan unsur pembentuk klorofil. Seperti halnya dengan beberapa hara lainnya, kekurangan magnesium mengakibatkan perubahan warna yang khas pada daun. Kadang-kadang pengguguran daun sebelum waktunya merupakan akibat dari kekurangan magnesium (Hanafiah 2005).

7.Belerang (S)

Bahan organik di samping berperan terhadap ketersediaan N dan P, juga berperan terhadap ketersediaan S dalam tanah. Di daerah humida, S-protein, merupakan cadangan S terbesar untuk keperluan tanaman. Mineralisasi bahan organik akan menghasilkan sulfida yang berasal dari senyawa protein tanaman. Di dalam tanaman, senyawa sestein dan metionin merupakan asam amino penting yang mengandung sulfur penyusun protein (Mengel dan Kirkby, 1987).

Protein tanaman mudah sekali dirombak oleh jasad mikro. Belerang (S) hasil mineralisasi bahan organik, bersama dengan N, sebagian S diubah menjadi mantap selama pembentukan humus. Di dalam bentuk mantap ini, S akan dapat terlindung dari pembebasan cepat (Brady, 1990). Seperti halnya pada N dan P, proses mineralisasi atau imobilisasi S ditentukan oleh nisbah C/S bahan organiknya. Jika nisbah C/S bahan tanaman rendah yaitu kurang dari 200, maka akan terjadi mineralisasi atau pelepasan S ke dalam tanah, sedang jika nisbah C/S bahan tinggi yaitu lebih dari 400, maka justru akan terjadi imobilisasi atau kehilangan S (Stevenson, 1982).

Siklus Sulfur

-Oksidasi sulfur menjadi sulfat oleh Thiobacillus, Arthrobacter

dan Bacillus

2H2S + O2 2S + 2H2O

2S + 2H2O + 3O2 2SO42- + 4H+

S2O32- + H2O + 2O2 2SO42- + 2H+

-Reduksi Sulfat menjadi sulfida (S2-) oleh Desulphovibrio

desulphuricans

2SO42- + 4H2 S2- + 4H2O

DAFTAR PUSTAKA

http://kebunaren.blogspot.com/2009/01/memahami-konsep-kesuburan-tanah.html

http://www.punden.org/index.php?

option=com_content&view=article&id=72 :pelatihan-mengukur-kesuburan-tanah&catid= 1 :latest-news&Itemid=50

http://suntoro.staff.uns.ac.id/files/2009/04/pengukuhan-prof-suntoro.pdf