research on final beam transport and beam …kawatalab/research/fusion/...f o r m i t y [%] (a) al...

67
*2005/12/13 予備審査 Research on Final Beam Transport and Beam-Target Interaction in Heavy Ion Inertial Confinement Fusion --- 重イオン慣性核融合における最終段ビーム輸送と ビーム-ターゲット相互作用に関する研究 --- 工学研究科 エネルギー環境科学専攻 学籍番号:DT030204 染谷哲勇

Upload: others

Post on 03-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

*2005/12/13 予備審査

Research on Final Beam Transport and Beam-Target Interaction

in Heavy Ion Inertial Confinement Fusion---重イオン慣性核融合における最終段ビーム輸送とビーム-ターゲット相互作用に関する研究 ---

工学研究科 エネルギー環境科学専攻学籍番号:DT030204 染谷哲勇

Page 2: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Dissertation structure

1. Introduction1.1 Fusion

1.1.1 Magnetic fusion1.1.2 Inertial confinement fusion1.1.3 Heavy ion fusion

1.2 Lawson criteria1.3 Purposes of this thesis

2. Final Beam Transport2.1 Beam final transport in heavy ion fusion2.2 Physical mechanism of insulator guide and

simulation model2.3 Simulation results2.4 Interaction with background gas2.5 Discussions

*T.Someya, S.Kawata, et al., Fusion Science and Technology, 43 282 (2003).

Page 3: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

3. HIB-Target Interaction3.1 Introduction3.2 Simulation model

3.2.1 Stopping power3.2.2 Beam illumination scheme3.2.3 Beam particle orbit in the target3.2.4 Beam divergence3.2.5 deposition energy calculation procedure3.2.6 Evaluation of non-uniformity on the spherical target

3.3 Simulation results3.3.1 Deposition non-uniformity 3.3.2 Chamber radius effect3.3.3 The Gaussian beam3.3.4 Beam number effect3.3.5 Target temperature effect3.3.6 Displacement on fuel pellet position in a reactor

3.4 Discussions

*T.Someya, A.I.Ogoyski, et al., Physical Review ST-AB, 7 044701-1 (2004).*T.Someya, S.Kawata, et al., Nucl. Inst. and Meth. in Phys. Res. A, 544 406 (2005)

Page 4: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

4. Target Hydrodynamics4.1 Introduction4.2 Simulation model

4.2.1 Hydrodynamics4.2.2 Basic equations4.2.3 Heat conduction4.2.4 Radiation transport4.2.5 Energy exchange4.2.6 Fusion reaction4.2.7 Alpha particle deposition

4.3 Simulation results4.3.1 Without foam case4.3.2 With foam case4.3.3 Foam thickness effect

4.4 Discussions

5. Conclusions

*T.Someya, T.Kikuchi, et al., Inertial Fusion Sciences and Applications 2005, Proc. Book, Biarritz, France Sep., 2005.

Page 5: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Chapter 1. Introduction

Page 6: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Introduction--- fusion and fission ---

ExampleFission: 235U + n 134Xe + 100Sr + 2n

total mass: Mbefore > Mafter

Fusion: 2D + 3T 4He + n

total mass: Mbefore > Mafter

Energy = |Mbefore – Mafter|×c2

Page 7: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Introduction--- confinement plasma ---

Fusion reaction

*NIFS: http://www.nifs.ac.jp/index-j.html

Confinement of high density and high temperature plasma

By inertialBy gravity By magnetic field

Page 8: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Introduction--- inertial confinement fusion ---

Indirect-driven

heavy ion beam

direct-drivenlaser or heavy ion beam

Page 9: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

*http://www.llnl.gov/

IonSourceand Injector

Accelerationwith ElectricFocusing

Acceleration with Magnetic focusing

Target

Focusing

Bunching and Final Compression

Introduction--- Heavy Ion Fusion (HIF) ---

Page 10: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Heavy Ion beam (HIB)

Fuel pelletAccelerator

5~10m~mm

Beam Accelerator (Scale, Cost, Energy, etc..)Physics of Intense Beam (Bunching, Emittance growth, etc..)Beam Final Transport (Stable transportation, Interaction with gas, etc..)Beam-Target InteractionAnalysis of Target-Plasma Hydrodynamics etc..

Problems of HIF

Introduction--- problems ---

Page 11: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Chapter 2. Final Beam Transport

Page 12: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Heavy Ion beam (HIB)

Fuel pelletAccelerator

5~10m~mm

Introduction

Problems of HIFBeam Accelerator (Scale, Cost, etc..)Physics of Intense Beam (Bunching, Emittance growth, etc..)Beam Final Transport (Stable transportation, Interaction with gas, etc..)Beam-Target InteractionAnalysis of Target-Plasma Hydrodynamics etc..

Page 13: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Simulation model

θIntense HIB

rz

Insulator Guide

Insulator Guide

Plasma

0.3mZ=0m 1.3m 2.3m

Focal point (2.1m)

r=5cm

Initial Beam radius: 4cm

HIB

Page 14: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Physical mechanism of Insulator guide

1. Local electric field creation

Insulator GuideElectric Field

Ion Beam

Hydrogen Plasma Insulator Guide

2. Discharges and plasma production

3. Electrons extraction

Insulator Guide

Emitted Electrons

Hydrogen Plasma

Page 15: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Input HIB parameter

Particle energy: 8 GeVMaximal beam current: 5 kA

Pulse width: 10 nsecPa

rtic

le E

nerg

y (G

eV)

Pb+ ion beam

Time (ns)

Beam

Cur

rent

(kA

)

0

5

0

4

8

100 2 8

Beam CurrentParticle Energy

Beam particle temperature: 10 eV

Page 16: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Simulation resultsWith Guide Without Guide

t=5.2ns

Pb+Beam Pb+Beam

t=15.9nsPb+Beam Pb+Beam

t=21.2nsPb+Beam Pb+Beam

t=28.4ns

Pb+Beam

Z=0m 2.3m

Focal point

Pb+Beam

2.3m

Focal point

Ion beam particles

Page 17: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Simulation results

t=5.2ns

Pb+Beam Electrons

t=15.9nsPb+Beam Electrons

t=21.2ns

Pb+Beam Electrons

t=28.4ns

Pb+BeamZ=0m 2.3m

Focal point

2.3m

Electrons

Ion beam and generated electrons from the plasma

Page 18: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Spatial Distribution of the HIB Charge Neutralization

[%]

[%]

[%]

[%]

[%]

[%]

Z[cm]

r[cm

]

100 2300

2.0

Beam Envelope

Spatial distribution of the HIB charge neutralization

t=26.4nsWith Guide

Z[cm]

r[cm

]

0 2300

+

5.0

Zoom up

Page 19: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Spatial Distribution of the HIB Current Neutralization

[%]

[%]

[%]

[%]

[%]

[%]

Spatial distribution of the HIB net current neutralization

Z[cm]

r[cm

]

230

2.0

Beam Envelope

1000

t=26.4nsWith Guide

Z[cm]

r[cm

]

0 2300

+

5.0

Zoom up

Page 20: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Charge & current neutralization

Total space charge in the chamber Beam net current

Charge and Current neutralization are self-regulated

Page 21: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

HIB radius at focal spot

Without Guide With Guide

HIB radius at focal spot is suppressed to about 1/3

Page 22: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Instability

Heavy Ion beam (HIB)

Fuel pelletAccelerator

5~10m

Filled with Background Gas

Ion beam and background gas

◎Two stream instability ◎Filamentation instability

)21exp(

uV

22 2b

2b

e

2be

max −ωωπ

−=γ e2b

2b

2p

2b

max uV2 ν

ωω

frequencyCollosion:eν

frequencyplasmaElectron:eωfrequencyplasmaBeam:bω

rategrowthMaximum:maxγ

velocityBeam:Vb

velocitythermalBeam:ub

Page 23: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Back ground plasma

Co-moving electrons22[keV]

Collision-17[keV]

Calculation Result Calculation Result γγeeττ<0<0 ⇒⇒ CollisionCollision

Interaction between the Guide Electrons & Background Electrons

scattering co-moving electron by collision

HIB space charge is neutralized by background gas

Page 24: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Two-Stream InstabilityBetween the Beam Ions and Background Electrons

Estimated stability boundaries

Nb: Beam ion densityNe: Background electron density

(γτ<5 for the two-stream instability)

HIB Temperature at focal spot

Safe from the Two-stream instability

Page 25: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Filamentation Instability

e2b

2b

2p

2b

max uV2 ν

ωω

31211 cm1000.2~1038.1Nb −××=3165 cm1000.1~1000.1Ne −××=

MeV0.1~1.0Tb =MeV10Te =

Parameters

Always γτ< 5

Safe from the Filamentation instability

Page 26: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Chapter 3. HIB-Target Interaction

Page 27: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Introduction

Heavy Ion beam (HIB)

Fuel pelletAccelerator

5~10m~mm

Beam Accelerator (Scale, Cost, etc..)Physics of Intense Beam (Bunching, Emittance growth, etc..)Beam Final Transport (Stable transportation, Interaction with gas, etc..)Beam-Target InteractionAnalysis of Target-Plasma Hydrodynamics etc..

Problems of HIF

Page 28: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Purposes

MeV6.17nHeTD 10

42 ++⇒+

DTFuel pellet

Beam axis

Fuel pellet surface

HIB

Effective Implosion

Non-uniformity (< few %)

Calculate deposition energy on the target surfaceIllumination scheme to suppress deposition energy non-uniformity

Page 29: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Simulation Model

Void

Pb0.03mm

11.3g/cm3

Al0.97mm

2.69g/cm3

Void3.0mm

(b) Pb+Al pellet structure (a) Al pellet structure

Al1.00mm

2.69g/cm3

Void3.0mm

Void

Beam parameters*Heavy ion beam: Pb+

*Particle energy: 8GeV*Beam temperature: 0MeV,100MeV*Beam number density: 1.3X1011 1/cc*Beam number: 12,20,32,60,92,120*Beam distribution: Semi-Gaussian,Gaussian

Page 30: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Beam Transverse Emittance & Beam Temperature

TargetFocal Spot

αdvr

Ren

Rch f

RbeamBackward focal position

Forward focal position

fmin

fmax

Rf

RpInclude the Emittance Effect by changing the Focal Spot

Page 31: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Non-uniformity

∑=rn

iiiwσσRMS

( )

φθ

θ φ

σnn

EE

E

n

j

n

kijki

iRMSi

∑∑ −=

2

1

EE

w ii =

σrms:root mean square(RMS) non-uniformityσi:non-uniformity at a surface

<Ei>:mean deposition energy at a surfaceEijk:deposition energy at each point

nr,nθ,nφ:each mesh numberE:total deposition energyEi:total deposition energy at a surfacewi:weight function include the Bragg peak effect

i

iiPTVi

n

iPTViiPTV

EEE

wr

2

minmax −=

=∑

σ

σσ

σptv:peak to valley(PTV) non-uniformityσPTVi:PTV non-uniformity at a surface Ei

max:the Maximum deposition energy at a surfaceEi

min:the minimum deposition energy at a surface

Page 32: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Simulation results--- 32HIBs illumination ---

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

3.3 3.4 3.5 3.6 3.7 3.8 3.9 40246810121416182022

Non

-uni

form

ity [%

]

Dep

ositi

on e

nerg

y [r

el. u

nit]

Pellet radius [mm]

Deposition energy

PTV

RMS

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

3.3 3.4 3.5 3.6 3.7 3.8 3.9 40246810121416182022

Deposition energy

PTV

RMS

Non

-uni

form

ity [%

]

Dep

ositi

on e

nerg

y [r

el. u

nit]

Pellet radius [mm]

Al target Pb + Al target

non-uniformity = 1.86 % non-uniformity = 1.98 %

Page 33: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Mode Analysis

1

10

20

Mode n10

20

m

00.00050.001

0.00150.002

0.0025Amplitude Sn

m

1

10

20

Mode n10

20

m

00.00050.001

0.00150.002

0.0025Amplitude Sn

m

1

10

20

Mode n10

20

m

00.00050.001

0.00150.002

0.0025Amplitude Sn

m

1

10

20

Mode n10

20

m

00.00050.001

0.00150.002

0.0025Amplitude Sn

m

Al target Pb + Al target

Global

At the Bragg peak

Reduction of noise mode

Page 34: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140

Beam Number

RM

S N

on-u

nifo

rmity

[%]

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140Beam Number

RM

S N

on-u

nifo

rmity

[%]

(a) Al target

(b) Pb+Al target

Under 2%

Beam Number Effect

Under 2%

Page 35: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

Beam radius[mm]

FlatG1G2G3G4G5

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140Beam Number

RM

S N

on-u

nifo

rmity

[%] G1

G2G3G4G5under 2.0 %G1: σ=1.20Rb

G2: σ=1.00RbG3: σ=0.80RbG4: σ=0.55RbG5: σ=0.50Rb*Rb is beam radius

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−= 2

2

2 2exp

21

σπσb

bRRn

The Gauss distribution

Gauss Distribution Effect

The non-uniformities are suppressed low in the cases of G1 ~ G3 for the lager number of beams (>32)

Page 36: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1.0 3.0 5.0 7.0 9.0Chamber radius [m]

RM

S N

on-u

nifo

rmity

[%]

32-Beam60-Beam120-Beam

εr=5 mm-mrad

Fuel pellet

4~6m~mm

HIB

The optimal non-uniformity stays at around the 3.0 ~ 6.0 m chamber radius

in the 32, 60 and 120-beam systems

Chamber Effect

Page 37: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Target Temperature Effect

1

1.5

2

2.5

0 100 200 300 400 500

Target Temperature [eV]

RM

S N

on-u

nifo

rmity

[%] 120-Beam

60-Beam32-Beam

Target temperature v.s. RMS non-uniformity

HIB illumination non-uniformity is kept low during the HIB pulse duration

Changes of stopping range

Page 38: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Pellet Displacement

Fusion reactor

Displacement dz

Fuel pellet

Pellet entrance

Reactor chamber center

1

10

0.01 0.1dz [mm]

RM

S N

on-u

nifo

rmity

[%] 32-Beam

60-Beam120-Beam

(b) Rch=5m (a) Rch=2m

1

10

0.01 0.1dz [mm]

RM

S N

on-u

nifo

rmity

[%] 32-Beam

60-Beam120-Beam

Serious problem

Page 39: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Reduce the Non-uniformity for the Pellet Displacement

xy

z -3

0

34

-4

-2-1

12

-30

3 4

-4-2 -1

1 2 -3

0

34

-4

-2-1

12

-3

0

34

-4

-2-1

12

-3

0

34

-4

-2-1

12

xy

z

-3

0

3

4

-4

-2-1

12

-30

3 4

-4-2 -1

1 2 -3

0

34

-4

-2-1

12

New scheme

32-HIBs 32-HIBs system

New scheme&

Large radius

Large radius

Displace the HIB illumination point for the theta-direction (2 deg.)

Page 40: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Chapter 4. Target Hydrodynamics

Page 41: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Introduction

Heavy Ion beam (HIB)

Fuel pelletAccelerator

5~10m~mm

Problems of HIFBeam Accelerator (Scale, Cost, etc..)Physics of Intense Beam (Bunching, Emittance growth, etc..)Beam Final Transport (Stable transportation, Interaction with gas, etc..)Beam-Target InteractionAnalysis of Target-Plasma Hydrodynamicsetc..

Page 42: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Required gain

From the energy balance : f ηd ηth G = 1Taking : ηth = 40 %, f< ¼

ηd G > 10Suppose: ηd = 10 ~33 %

Rquirement gain G > 30 ~ 100 G > 30 for HIB driver

Ed : driver energyEin :energize driverEfus :fusion energyE :electrical power f :fraction of electric power

Page 43: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Purposes

HIB illumination non-uniformity induce implosion non-uniformity

Fusion energy reduction

Find the target structure and HIB parameters to suppress the implosion non-uniformity and achieve required gain

Investigate radiation transport effect on the implosion non-uniformity

Find robust parameters over a large pellet displacement

Page 44: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Foam and radiation transport effect

Page 45: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Initial condition 0.5 mm foam

targetWith foam (0.5 mm thickness)

Without foam

Without foam

pulse

ONRadiation transport

OFF32-HIBs illumination

Page 46: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Mean profile of radiation temperature and density

0.5mm foamt=0.29ns t=40.4ns t=44.6ns

w/o foamt=0.37ns t=34.9ns t=36.2ns

Page 47: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Profile of target materials

t=46 nst=42 nst=0

t=0 t=33ns t=35ns

t=0 t=42 ns t=46 ns0.5 mm foam case (radiation transport ON)

0.5 mm foam case (radiation transport OFF)

without foam case

Page 48: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Profile of target density0.5 mm foam case (radiation transport ON)

0.5 mm foam case (radiation transport OFF)

without foam caset=0

t=33ns t=35ns

t=0t=42 ns t=46 ns

t=0t=42 ns t=46 ns

Page 49: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Focused profile of target density (rad. tra. ON & OFF )t=46ns ONt=42ns rad. tra. ON

t=46ns rad. OFFt=42ns rad. tra. OFF

Page 50: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Profile of target ion temperature0.5 mm foam case (radiation transport ON)

without foam caset=24ns

t=34ns

t=34ns

t=42ns t=46ns

t=33ns

0.5 mm foam case (radiation transport OFF)

t=35ns

Page 51: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Deposition energy and target temperaturet=34nst=24nst=20ns

Stopping power

Target temp.(Radiation on)

Target temp.(Radiation off)

Page 52: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Tr non-uniformity at ablation front(radiation transport effect)

non-uniformity is suppressed effectively at the main pulse region by the radiation transport effect

Page 53: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Non-uniformity at ablation front

t = 42 nst=34 ns

non-uniformity is smoothed by the radiation transport effect

Page 54: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Radiation transport effect on pellet displacement

Gain curve

Requirement gain region

Mean ρR Maximum ion temperature

Page 55: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Non-uniformity at void close

Page 56: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Non-uniformity at max ρR

Page 57: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Foam thickness effect

Page 58: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Initial condition 1.0 mm foam

0.5 mm foam

target1.0 mm thickness foam

0.5 mm thickness foam

pulse

Radiation transport ON

32-HIBs illumination

Page 59: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

1.0mm foamt=0.50ns t=43.57ns

Mean profile of radiation temperature and density

t=47.27ns

0.5mm foamt=0.29ns t=40.4ns t=44.6ns

Page 60: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Tr non-uniformity at ablation front

non-uniformity in the case of 1mm foam thickness is also suppressed

Page 61: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Non-uniformity at ablation front

t=42 nst=34 ns

Page 62: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Foam thickness effect on pellet displacement

Requirement gain region

Mean ρR Maximum ion temperature

Gain curve

Page 63: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Non-uniformity at void close

Page 64: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Non-uniformity at max ρR

Page 65: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

Chapter 5. Conclusions

Page 66: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

ConclusionsBeam Final Transport

・The HIB space charge and current are neutralized effectively・Beam divergence is suppressed using the insulator guide・Two stream and filamentation instabilities are not problem in our parameters

Beam Illumination・Illumination non-uniformity is suppressed using 32 or more illumination system・The non-uniformity is most suppressed for the 3 ~ 6 m chamber radius・Target temperature is minor effect on the illumination non-uniformity ・The non-uniformity is kept small for the pellet displacement using out new illumination scheme

Target hydrodynamics・The radiation energy is trapped at the low density region・The implosion non-uniformity is suppressed by the radiation transport effect ・For the large pellet displacement, we can product the effective fusion energy using the 0.5 mm foamed target

Page 67: Research on Final Beam Transport and Beam …kawatalab/research/fusion/...f o r m i t y [%] (a) Al target (b) Pb+Al target Under 2% Beam Number Effect Under 2%-3.0 -2.0 -1.0 0.0 1.0

AchievementJournals1. T.Someya, S.Kawata, T.Nakamura, A.I.Ogoyski, K.Shimizu and J.Sasaki,

"Beam final transport and direct drive pellet implosion in heavy ion fusion", Fusion Science and Technology, 43 282 (2003).

2. T.Someya, A.I.Ogoyski, S.Kawata and T.Sasaki, "Heavy ion beam illumination on a direct-driven pellet in heavy-ion inertial fusion", Physical Review ST-AB, 7 044701-1 (2004).

3. T.Someya, S.Kawata, T.Kikuchi and A.I.Ogoyski, "HIB illumination on a target in HIF", Nucl. Inst. and Meth. in Phys. Res. A, 544 406 (2005).

International conferences1. A.I.Ogoyski, T.Someya, T.Sasaki and S,Kawata, "Heavy ion beam

illumination non-uniformity", Inertial Fusion Sciences and Applications 2003, Proc. Book p.694, Monterey, USA, Sep., 2003.

2. T.Someya, T,Kikuchi, K.Miyazaki, S.Kawata and A.I.Ogoyski, "HIB irradiation on direct-driven fuel target in heavy ion fusion", IEEE International Conference on Plasma Science, Abst. Book p.88, Monterey, USA, Jun., 2005.

3. T.Someya, T.Kikuchi, K.Miyazawa, S.Kawata and A.I.Ogoyski, "Heavy ion beam interaction with a direct-driven pellet", Inertial Fusion Sciences and Applications 2005, Proc. Book, Biarritz, France Sep., 2005.