rodrigues ledoux sapolsky arn 2009

Upload: riseandsinh

Post on 07-Jul-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    1/27

     The Influence of StressHormones on Fear Circuitry 

    Sarina M. Rodrigues,1  Joseph E. LeDoux,2,∗

    and Robert M. Sapolsky 3,∗

    1Institute of Personality and Social Research, University of California, Berkeley,California 94720; Address correspondence to Department of Psychology, Oregon StateUniversity, Corvallis, Oregon 97331; email: [email protected]

    2Center for Neural Science and Department of Psychology, New York University,New York, New York 10003; Emotional Brain Institute Labs of the Nathan Kline Institut

    Orangeburg, New York 10962; email: [email protected] of Biological Sciences and Neurology and Neurological Sciences,Stanford Medical Center, Stanford, California 94305-5020; email: [email protected]

     Annu. Rev. Neurosci. 2009. 32:289–313

    First published online as a Review in Advance on March 24, 2009

     The Annual Review of Neuroscience is online at neuro.annualreviews.org

     This article’s doi:10.1146/annurev.neuro.051508.135620

    Copyright   c 2009 by Annual Reviews. All rights reserved

    0147-006X/09/0721-0289$20.00

    ∗ These authors contributed equally to this work.

    Key Words

    fear conditioning, glucocorticoids, norepinephrine

     Abstract 

    Fear arousal, initiated by an environmental threat, leads to activation othe stress response, a state of alarm that promotes an array of autonomi

    and endocrine changes designed to aid self-preservation. The stress response includes the release of glucocorticoids from the adrenal corte

    and catecholamines from the adrenal medulla and sympathetic nerves These stress hormones, in turn, provide feedback to the brain and influ

    ence neural structures that control emotion and cognition. To illustratthis influence, we focus on howit impacts fear conditioning, a behaviora

    paradigm widely used to study the neural mechanisms underlying thacquisition, expression, consolidation, reconsolidation, and extinction

    of emotional memories. We also discuss how stress and the endocrinmediators of the stress response influence the morphological and elec

    trophysiological properties of neurons in brain areas that are cruciafor fear-conditioning processes, including the amygdala, hippocampus

    and prefrontal cortex. The information in this review illuminates th

    behavioral and cellular events that underlie the feedforward and feedback networks that mediate states of fear and stress and their interaction

    in the brain.

    289

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    2/27

    Contents

    INTRODUCTION .. . . . . . . . . . . . . . . . . 291

     WHAT IS FEAR, AND HOW IS ITORGANIZED IN THE BRAIN? . . 291

    Studying Fear in the Laboratory  with Fear Conditioning . . . . . . . . . 291

    Phases of Fear Conditioning. . . . . . . . 292Neural Circuitry Underlying

    Fear Conditioning . . . . . . . . . . . . . . 292FEAR AROUSAL AND THE

    STRESS RESPONSE:OVERVIEW OF THIS

    FEEDFORWARD AND

    FEEDBACK NETWORK. . . . . . . . . 294HOW DO STRESS,

    NOREPINEPHRINE, ANDGLUCOCORTICOIDS

    INFLUENCE DIFFERENTPHASES OF FEAR 

    CONDITIONING?. . . . . . . . . . . . . . . 295 ACQUISITION OF FEAR 

    CONDITIONING... . . . . . . . . . . . . . 297 The Effects of Stress on the

     Acquisition of FearConditioning . . . . . . . . . . . . . . . . . . . 297

     The Effects of NE on the

     Acquisition of FearConditioning . . . . . . . . . . . . . . . . . . . 297

     The Effects of GCs on the Acquisition of Fear

    Conditioning . . . . . . . . . . . . . . . . . . . 297CONSOLIDATION OF

    LONG-TERM MEMORY . . . . . . . . 297 The Effects of Stress on the

    Consolidation of LTM of Fear Conditioning . . . . . . . . . . . . . . 297

     The Effects of NE on theConsolidation of LTM

    of Fear Conditioning............ 298

     The Effects of GCs on the

    Consolidation of LTM

    of Fear Conditioning............ 29RECONSOLIDATION . . . . . . . . . . . . . . 29

     The Effects of Stress on theReconsolidation of Fear

    Conditioning . . . . . . . . . . . . . . . . . . . 29 The Effects of NE Manipulation

    on the Reconsolidation of FearConditioning . . . . . . . . . . . . . . . . . . . 29

     The Effects of GC Manipulationon the Reconsolidation

    of Fear Conditioning............ 29EXTINCTION . . . . . . . . . . . . . . . . . . . . . . 29

     The Effects of Stress on the

    Extinction of FearConditioning . . . . . . . . . . . . . . . . . . . 29

    Involvement of NE in the Extinctionof Fear Conditioning............ 29

    Involvement of GCs in theExtinction of Fear

    Conditioning . . . . . . . . . . . . . . . . . . . 30SUMMARY OF THE EFFECTS

    ON FEAR CONDITIONING . . . . 30HOW STRESS AFFECTS

    FEAR CIRCUITRY ON A CELLULAR LEVEL. . . . . . . . . . . . 30

     The Influence of Stress on

    the Morphology of Neuronsin Fear Circuitry. . . . . . . . . . . . . . . . 30

     The Influence of Stress on theElectrophysiological Properties

    of Neurons in Fear Circuitry . . . . 30 The Influence of NE on the

    Electrophysiological Propertiesof Neurons in Fear Circuitry . . . . 30

     The Influence of GCs on theElectrophysiological Properties

    of Neurons in Fear Circuitry . . . . 30

    CONCLUSIONS . . . . . . . . . . . . . . . . . . . . 30

    “The oldest and strongest emotion of mankind is 

     fear.” 

    —H.P. Lovecraft 

    “A crust eaten in peace is better than a banquet

    eaten in fear.” 

    —Aesop

    290 Rodrigues ·  LeDoux· Sapolsky

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    3/27

    INTRODUCTION 

    Evolution has endowed each species with an ar-ray of instinctual defense mechanisms to help

    organisms cope with environmental threatsand other challenges to safety and well-being.

    Skunksspray offensive odors, blowfish inflate tolook bigger than they actually are, and roaches

    scurry away into crevices for safety. Althoughhumans in modern societies usually have the

    luxury of not having to worry about escapingfrom predators (except for the odd shark, bear,

    or axe murderer), the emotion of fear and thedefensive behaviors connected with it help to

    save us from peril both in everyday situations

    as well as under rare but hazardous conditions: We duck for cover, slam on the brakes, run for

    the hills, or scream for help.Fear arousal is one of the most reliable

    routes for activating the stress response (LaBar& LeDoux 2001), an array of peripheral au-

    tonomic and neuroendocrine changes that aidsurvival (McEwen 2003, Sapolsky et al. 2000).

     At the same time, the peripheral changes in-duced by fear impact the brain, altering the

     way emotional and cognitive systems processinformation. Although such responses enhance

    survival in the short run, chronic activation

    of stress responses contributes to the devel-opment of pathological states such as anxiety,

    phobias, depression, and post-traumatic stressdisorder (PTSD), as well as a host of physi-

    cal ailments, including compromised immunefunction, hypertension, and insulin resistance

    (McEwen 2003, Sapolsky et al. 2000). The aim of this article is to explore how 

    fear arousal, manifested on the neurobiologicallevel, leads to activation of peripheral stress re-

    sponses and how stress responses, in turn, alterbrain systems that control emotion and cogni-

    tion. In the interest of space, we cannot cover

    some important topics, including howearly-lifeexperiences, genetics, or gender might inter-

    act with stress in altering fear (DeRijk & deKloet 2005, Kalin & Shelton 2003, Luine 2002,

    Lyons&Parker2007,Meaney2001,Weinstock 2007).

    CS:   neutralconditioned stimulu

    US:   aversiveunconditionedstimulus

     NE:  norepinephrinGC:  glucocorticoid

    CR:  conditionedresponse

     WHAT IS FEAR, AND HOW IS IT ORGANIZED IN THE BRAIN?

     The term fear refers to both a psychological

    state and a set of bodily responses that occurin response to threat (LeDoux 1996). Much

    progress has been made in understanding how fear is organized in the brain through studies

    of Pavlovian fear conditioning, which we fo-cus on here (Fanselow & Poulos 2005; Lang &

    Davis 2006; LeDoux 1995, 1996, 2007; Maren2001, 2005; Par ´ e et al. 2004; Rodrigues et al.

    2004). There are a variety of ways to assesslearned fear besides measuring Pavlovian con-

    ditioned response effects. For example, a num-

    berofstudieshaveexaminedtheroleofbrainar-eas in passive and active avoidance conditioning

    (Gabriel et al. 2003, McGaugh 2003, Sarter & Markowitsch 1985). In such studies, fear is

    measured indirectly in terms of instrumentalbehaviors that avoid danger. Because studies of 

    avoidance conditioning have not led to a co-herent view of the neural system that mediates

    avoidance (Cain & LeDoux 2008), we empha-size the effects of stress on fear conditioning in

    this review. However, we mention some find-ings from other procedures where relevant.

    Studying Fear in the Laboratory 

     with Fear Conditioning Pavlovian fear conditioning is a behavioral pro-

    cedure in which an emotionally neutral condi-tioned stimulus (CS), such as an auditory tone,

    is paired with an aversive conditioned stimu-lus (US), typically a foot shock. After one or

    several pairings, the CS comes to elicit de-fensive behaviors, including freezing behav-

    ior, as well as increased arousal in the brain

    and secretion of norepinephrine (NE) andglucocorticoids (GCs) peripherally. These

    conditioned responses (CRs) are hard-wiredand occur in response to both innate and

    learned threats. Thus, fear learning does not create conditioned fear responses but allows

    environmental stimuli to come to elicit suchresponses.

    www.annualreviews.org   •   Stress Hormones and Fear Circuitry 291

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    4/27

    STM:   short-termmemory 

    LTM:   long-termmemory 

    LA:  lateral nucleus of 

    the amygdalaCE:  central nucleus of the amygdala

    Phases of Fear Conditioning 

    In studies of fear conditioning, responseselicited by the CS are often measured during

    acquisition andretrievaltests. Acquisition is ini-tial learning of the association between the CS

    and US during the training portion of fear con-ditioning, when the animal first learns to pair

    the two. Retrieval involves a test of the CS-USassociation in which the CS is presented alone.

    Retrieval tests that occur within a few hoursafter acquisition measure short-term memory 

    (STM), whereas those that occur later (typ-ically 24 hours after learning) measure long-

    term memory (LTM). STM and LTM tests are

    used to study memory consolidation, the pro-cess through which an unstable STM is con-

     verted into a more stable and enduring LTMtrace (Dudai 2004, McGaugh 2000, Rodrigues

    et al. 2004).Retrieval tests are also used to study recon-

    solidation. Reconsolidation occurs when fearmemories are retrieved and enter a new la-

    bile state that requires stabilization via proteinsynthesis to persist as an enduring LTM trace

    (Dudai2006,Nader2003,Naderetal.2000).Inaddition, retrieval tests are utilized to measure

    extinction, which is the gradual reduction in the

    ability of the CS to elicit fear CRs that occur when the CS is presented repeatedly in the ab-

    sence of the US (Quirk & Mueller 2008, Sotres-Bayon et al. 2004). Unlike the disruption of re-

    consolidation, which is robust and long lasting,extinction involves a new learning process. As

    a result, after extinction training, the CS canspontaneously produce CRs again after the an-

    imal is reexposed to the US or is placed in anovel context (Bouton et al. 2006, Ji & Maren

    2007).

     Neural Circuitry Underlying Fear Conditioning 

    Fear conditioning is especially useful for study-ing the neural basis of fear because the cir-

    cuit can be described in terms of pathwaysprocessing the CS and controlling the CRs. In-

    deed, the pathways have been mapped from the

    CS sensory processing to the CR motor co

    trol systems. A key link in this circuitry is tamygdala, which sits between the sensory

    put systems on one hand and the motor outsystems on the other (Fanselow & Poulos 20

    Lang & Davis 2006; LeDoux 1995, 1996, 20 Maren 2001, 2005; Par ´ e et al. 2004; Rodrig

    et al. 2004). However, other brain structualso contribute to fear conditioning.

     Amygdala contributions to fear conditio

    ing.   The amygdala contains a heterogeneity

    distinct nuclei, differing by cell type, densneurochemical composition, and connectiv

    (LeDoux 2007, Pitkanen et al. 2000, Swans2003).

     The lateral nucleus (LA) is typically viewas the sensory gateway to the amygdala b

    cause it receives auditory, visual, gustatoolfactory, and somatosensory (including pa

    information from the thalamus and the ctex (olfactory and taste information is transm

    ted to other nuclei, as well). The LA receisensory information about the CS from th

    lamic and cortical projections. The thalam

    amygdala pathway is a shortcut of sorts, tramitting rapid and crude information about

    fear-eliciting stimulus without the oppornity for filtering by conscious control (LeDo

    1995, 1996). The cortico-amygdala pathwaycontrast, provides slower, butmore detailed a

    sophisticated sensory information. Neuronsthe LA respond to both the CS and the U

    and damage to, or a disruption of, the LA p vents fear conditioning. It appears that the co

     vergence takes place in the dorsal half of LA (Romanski et al. 1993), and indeed sing

    unit recordings show that cellular plasticity

    curs in the dorsal LA during fear condition(LeDoux 2007, Maren & Quirk 2004). Mo

    over, molecular changes in the LA consolidthe fear memory, converting STM into LT

    traces (Dudai 2004, Rodrigues et al. 2004). The central nucleus (CE), in contrast

     viewed as the major output region of amygdala. The CE controls the express

    of the fear reaction, including behavio

    292 Rodrigues ·  LeDoux· Sapolsky

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    5/27

    autonomic, and endocrine responses via projec-

    tions to downstream areas, including hypotha-lamus, central gray, and the dorsal motor nu-

    cleus of the vagus (Fanselow & Poulos 2005;Lang & Davis 2006; LeDoux 1995, 1996, 2007;

     Maren 2001, 2005; Par ´ e et al. 2004; Rodrigueset al. 2004). Plasticity also occurs in the CE

    (Par´ e et al. 2004, Wilensky et al. 2006), but thisis likely based on LA plasticity. The LA communicates with the CE directly,

    but the connections between these two nucleiare somewhat modest and other amygdaloid

    nuclei also help mediate between these two.For instance, the LA projects to the basal nu-

    cleus (B), which in turn projects to CE (LeDoux2000, Pitkanen et al. 1997). The LA and B also

    project to the intercalated region (ITC), an in-hibitory network that connects with the CE

    (Likhtik et al. 2008, Par ´ e et al. 2004). Projec-tion neurons in the CE tend to be inhibitory,

    thus LA and B projections to the ITC may 

    stimulate the ITC’s inhibition of CE neuronsto allow the expression fear responses (LeDoux

    2007).Inaddition,theBprojectstothestriatum(McDonald 1991) to orchestrate instrumental

    behaviors, such as escape to safety (LeDoux2007). Furthermore, CE neurons project to the

    medial peri-locus coeruleus dendritic region,resulting in increased NE release (Aston-Jones

    2004), as well as to other monoamine systems inthebrainstem andforebrain (Fudge& Emiliano

    2003, Gray 1993, Par ´ e 2003).Information about the context of a fear-

    ful situation is conveyed to the LA and

    B by the hippocampus ( Ji & Maren 2007,Kim & Fanselow 1992, Phillips & LeDoux

    1992, Pitkanen et al. 2000). Thus, althoughfear conditioning to discrete sensory cues,

    such as a tone or a light, are hippocam-pal independent, conditioning to contex-

    tual information, including details about theenvironment, are hippocampal dependent. The

    LA and B are also interconnected to a variety of cortical areas, such as the prefrontal and poly-

    modal association cortices (Amaral & Insausti1992, McDonald 1998, McDonald et al. 1996,

    B:  basal nucleus of tamygdala

    mPFC:   medialprefrontal cortex

    IL:   infralimic

    subregion of themPFC

    Pitkanen et al 2000, Price 2003, Stefanacci &

     Amaral 2002). These connections allow higher-order cognitive processes, such as emotion reg-

    ulation, complex associations, imagination, andreactions to the news of an abstract state, to

    influence amygdala functions. The LA, B, and accessory basal nuclei are

    sometimes grouped together as the BLA (baso-lateral amygdala). It is important to keep thesenuclei separate when possible.

     Although the LA is required for fear con-ditioning under standard training conditions,

    it appears that, with overtraining, fear condi-tioning can be mediated by circuits that do not 

    depend on the LA (Lee et al. 2005, Maren1999). With overtraining, weak connections

    to the CE appear to induce fear conditioning(Zimmerman et al. 2007), but such pathways

    are not normally used. Moreover, although theB is not required for conditioning, it neverthe-

    less appears to contribute to the appearance of 

    the fear response (Anglada-Figueroa & Quirk 2005). Some authors suggest that under some

    conditions, especially those involving the useof instrumental responses to assess Pavlovian

    conditioning, the CE can mediate condition-ing independent of LA (Balleine & Killcross

    2006, Cardinal et al. 2002). However, this con-clusion is extrapolated largely on the basis

    of appetitive conditioning findings and needsto be studied more systematically in aversive

    conditioning. The expression of fear responses can be reg-

    ulated by the medial prefrontal cortex (mPFC)

     via projections to the LA, B, and ITC. The in-fralimbic subregion (IL) of the mPFC is es-

    pecially important for fear extinction (Quirk et al. 2006, Rosenkranz et al. 2003, Sotres-

    Bayon et al. 2004) because it inhibits amygdalaoutput (Vidal-Gonzalez et al. 2006). However,

    investigators have debated the nature of therole of prefrontal amygdala interactions in ex-

    tinction (Quirk et al. 2006, Rosenkranz et al.2003, Sotres-Bayon et al. 2004). The various

    sensory and higher-order influences on theamygdala are shown in Figure 1.

    www.annualreviews.org   •   Stress Hormones and Fear Circuitry 293

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    6/27

    ITC

    LA

    B

    CE

    Sensory thalamusand cortex

    (auditory, visual,somatosensory,

    gustatory, olfactory)

    Viscero-sensorycortex

    Sensory brainstem(pain, viscera)

    Prefrontal cortex(medial)

    Hippocampus and

    entorhinal cortex

    Polymodalassociation cortex

    ITC

    LA

    B

    CE

    HPA axis(hypothalamus)

    Freezing(central gray)

    Modulatory systemNE, 5HT, DA, ACh

    (cell groups inforebrain and/or

    brainstem)

    Sympathetic andparasympathetic N

    (hypothalamus,brainstem)

    Ventral striatum(instrumental behaviors)

    Polymodal associationcortex (cognition)

    Prefrontal cortex(regulation)

    Figure 1

    (Top) Inputs to some specific amygdala nuclei. Asterisk (∗) denotes species difference in connectivity. (BottOutputs of some specific amygdala nuclei. 5HT, serotonin; Ach, acetylcholine; B, basal nucleus; CE, centrnucleus; DA, dopamine; ITC, intercalated cells; LA, lateral nucleus; NE, norepinephrine; NS, nervoussystem.

    FEAR AROUSAL AND THESTRESS RESPONSE: OVERVIEW OF THIS FEEDFORWARD ANDFEEDBACK NETWORK 

     The presence of an environmental threat, ineffect a stressor, leads to the activation of the

    brain’s fear system, thus initiating the stressresponse in both the brain and the body. A key 

    structure in the fear system, as we have just re- viewed, is the amygdala. It is responsible for

    the detection of threat and the orchestration of 

    stress responses in the brain and the body (Figure 2).

    Once the amygdala detects a threat, outputs lead to the activation of a variety

    target areas that control both behavioral aphysiological responses designed to addr

    the threat (Lang & Davis 2006; LeDoux 192002). In addition to the expression of

    fensive behaviors, such as freezing (Blanch& Blanchard 1969, Fendt & Fanselow 199

    amygdala activation leads to responses in

    294 Rodrigues ·  LeDoux· Sapolsky

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    7/27

    brain and the body that support the fear reac-

    tion. In the brain, monoaminergic systems areactivated, resulting in the releaseof neurotrans-

    mitters such as NE, acetylcholine, serotonin,and dopamine throughout the brain. These

    neurotransmitters lead to an increase in arousaland vigilance and, in general, an enhancement 

    in the processing of external cues (Aston-Jones& Cohen 2005, LeDoux 2007, Ramos & Arnsten 2007, Talarovicova et al. 2007).

    Detection of threat by the amygdala also hasendocrine consequences. Amygdaloid signaling

    causes secretion of corticotropin-releasing hor-mone (CRH) from the periventricular nucleus

    of the hypothalamus. CRH, along with otherhypothalamic secretagogs, causes the release of 

    adrenocorticotropic hormone from the pitu-itary, which in turn stimulates the secretion of 

    GCs from the adrenal cortex. Circulating GCsbind to the high-affinity mineralocorticoid

    receptor (MR) and the low-affinity glucocor-

    ticoid receptor (GR) in tissues throughout thebody and the brain (de Kloet 2004, Korte 2001).

    Finally, detection of threat by the amyg-dala has autonomic consequences. Connections

    from the amygdala to the brainstem lead tothe activation of the sympathetic nervous sys-

    tem, involving the release of epinephrine andNE from the adrenal medulla and NE from

    the terminals of sympathetic nerves through-out the body. Adrenal medullary hormones and

    sympathetic nerves produce an array of effects,including increasing blood pressure and heart 

    rate, diverting stored energy to exercising mus-

    cle, and inhibiting digestion (Goldstein 2003, McCarty & Gold 1996, Sapolsky 2004). Com-

    ing full circle, fear circuitry is profoundly influ-enced by these endocrine and autonomic stress

    responses. Thus, GCs travel in the circulationto the brain and affect the amygdala and a vari-

    ety of other structures. Although NE does not cross the blood-brain barrier, it may affect the

    brain indirectly by binding to visceral afferent nerves, which transmit to the brain (McGaugh

    2003). Thus, the detection of threat and theconsequent activation of the fear system elicit a

     variety of effects that feed back onto the system

    GR:  glucocorticoidreceptor

    that initiates and modulates emotional process-

    ing (McEwen 2003, Par´ e 2003, Sapolsky 2003). With this overview we now turn to a more de-

    tailed consideration of how the fear system in-teracts with stress.

    HOW DO STRESS, NOREPINEPHRINE, AND GLUCOCORTICOIDSINFLUENCE DIFFERENT PHASESOF FEAR CONDITIONING?

    In the remainder of this review we examinehow stress and its biochemical concomitants

    (Charmandari et al. 2005, Sapolsky 2004) in-fluence the acquisition, consolidation, recon-

    solidation, and extinction of conditioned fear,as well as the underlying neural mechanisms

    responsible for different elements of fear pro-cessing. Throughout, we compare animal andhuman studies and their implications for stress-

    induced psychopathology. Instead of an exhaus-tive survey of all pertinent studies, we highlight 

    overarching trends in the literature. To distin-guish effects on acquisition from consolidation,

    it is necessary to compare pretraining manipu-lations with immediate posttraining manipula-

    tions (Rodrigues et al. 2004). This comparisonis necessary because the effects of stress or drugs

    tend to last beyond the short training sessionin such studies (sometimes only a single train-

    ing trial). If pretraining manipulations disrupt 

    STM but posttraining manipulations do not,the effect is said to be on acquisition (though

    an effect on STM itself cannot be ruled out).If posttraining manipulations leave STM intact 

    but disrupt LTM, then the effect is said to be onLTM consolidation. Another important manip-

    ulation involves treatments given immediately before testing LTM. This treatment is called an

    expression test. However, many studies exam-ine pretraining or postraining effects only on

    LTM but not on STM or on acquisition. Sim-ilarly, relatively few studies observe effects on

    expression. Therefore, more investigations areneeded to fully determine how stress, NE, and

    GCs influence different phases of fear learning

    www.annualreviews.org   •   Stress Hormones and Fear Circuitry 295

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    8/27

    and its expression in memory. Below we dis-

    cuss what has been discovered so far. Although variability in protocols makes it difficult to com-

    pare stress manipulations directly across stu

    ies, we make distinctions between acute achronic stress throughout.

    Amygdala

    Hippocampus

    PFCFC

    Sensoryensorythalamushalamus

    Sensoryensorycortexortex

    PFC

    Sensorythalamus

    Release of stress hormones

    Environmental

    threat

    (slowslow(slow

    Monoamineonoaminesystemsystems

    Monoaminesystems

    Feedback loop

    MedullaCortex

    PVNVNPVN

    ACTH

    SNS

    Epinephrine andnorepinephrine

    Epinephrine annorepinephrin

    • Increase in cardiovascular tone

    • Increase in blood pressure

    • Mobilization of stored energy to muscle

    • Transient enhancement of immunity

    • Inhibition of costly, long-term processessuch as growth and reproduction

    Glucocorticoids

    Glucocorticoids

    Pituitary

    Functional connectivity Processing threat stimulus

    c d

    a b

    ARs

    (fast)fast)(fast)

    Sensoryensorythalamushalamus

    Sensoryensorycortexortex

    Sensorythalamus

    Sensorycortex

    Sensorycortex

    Vagunerv

    NTSTSNTS

    MRs and GRs

    Kidney

    Adrenalgland

    Adrenal gland

    296 Rodrigues ·  LeDoux· Sapolsky

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    9/27

     ACQUISITION OF FEAR CONDITIONING

     The Effects of Stress on the Acquisition of Fear Conditioning 

     Although many studies have looked at the ef-

    fects of pretraining stress on the LTM of fear

    conditioning (see below), influences of pre-training stress on acquisition, as tested in STM,have not been formally assessed. However,

    postshock freezing levels during fear condi-

    tioning are greater in chronically stressed ratsthat are classified as highly reactive, as indexed

    by their locomotion in a novel environment (Cordero et al. 2003a). This classification sug-

    gests that at least in some conditions, stress may influence behavior during the learning pro-

    cess. However, this possibility needs further

    study because postshock freezing during acqui-sition reflects contextual conditioning as muchas cued.

     The Effects of NE on the Acquisition of Fear Conditioning 

    Locus coeruleus lesions or pretraining infu-sion of propranolol, a beta adrenergic receptor

    antagonist, into the amygdala (LA/B) blocks

    STM, andconsequently LTM (Bush et al. 2006;Neophytou et al. 2001). This finding is consis-

    tent with an effect on acquisition and its expres-sion in STM.

     The Effects of GCs on the Acquisition of Fear Conditioning 

     The contribution of GCs to fear acquisition

    has been studied by either removing their ef-fects via adrenalectomy, blocking GRs in the

    amygdala with an antagonist, or infusing a

     viral vector into the amygdala prior to training.

     Although more STM evaluations are needed todetermine the precise time course of GCs on

    fear, adrenalectomized rats show reduced con-textual LTM but no immediate memory im-

    pairments (Pugh et al. 1997b). Likewise, GR blockade in the amygdala (LA/B) or hippocam-

    pus disrupts contextual LTM but leaves post-shock levels of freezing intact (Donley et al.2005). A similar pattern emerges from pretrain-

    ing intra-amygdala (LA/B) administration of a viral vector expressing a gene to blunt GR sig-

    naling, which effectively disrupts both cued andcontextual LTM without affecting acquisition

    or postshock levels of freezing (Rodrigues &Sapolsky 2009). These studiessuggest that GCs

    may not be involved in acquisition so much asin the consolidation of fear LTM. We discuss

    additional results that support this claim in thefollowing section.

    CONSOLIDATION OF LONG-TERM MEMORY 

    Studies assessing memory consolidation typ-

    ically administer manipulations immediately after training (Dudai 2004, McGaugh 2000,

    Rodrigues et al. 2004). If such manipulationsfail to disrupt STM but do disrupt LTM, con-

    solidation (conversion of STM to LTM) is saidto be affected.

     The Effects of Stress on theConsolidation of LTM of Fear Conditioning 

    Pretraining exposure to both acute and chronicstressors can enhance LTM of both cued

    and contextual fear conditioning for at least 

    ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

    Figure 2

    Overview of fear arousal and the stress response.  Upper left: Black arrows indicate the functional connectivity of brain structuresinvolved in fear conditioning. Upper right: Red arrows represent the activation of brain areas recruited during the processing of threatening stimuli. Bottom Left: The stress response leads to the release of stress hormones.  Bottom Right: Dashed lines indicatefeedback of the stress response to neural structures involved in fear conditioning. ACTH, adrenocorticotropic hormone; CRH,corticotropin-releasing factor; GRs, glucocorticoid receptors; MRs, mineralocorticoid receptors; NTS: nucleus of the solitary tract;PVN, periventricular nucleus of the hypothalamus; SNS, sympathetic nervous system.

    www.annualreviews.org   •   Stress Hormones and Fear Circuitry 297

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    10/27

    3 months (Conrad et al. 1999; Cordero et al.

    2003a,b; Kohda et al. 2007; Rau et al. 2005; Rau& Fanselow 2008). Acute posttraining stress

    also enhances LTM for cued fear conditioning(Hui et al. 2006). Furthermore, preexposure

    to stress sensitizes fear-conditioning responsessuch that less-intense stressors can produce ro-

    bust fear behaviors, which may help explain why individuals with PTSD react strongly tomild stimuli and quickly form new fears (Rau

    et al. 2005). Because measurements of pretrain-ing stress on acquisition and STM are lacking

    in the literature, more research is needed to ad-dress the temporal dynamics of stress on fear

    conditioning.

     The Effects of NE on theConsolidation of LTM

    of Fear Conditioning 

    Central NE depletion or pretraining infu-

    sions of propranolol into the LA/B priorto conditioning impair auditory fear LTM

    (Bush et al. 2006, Selden et al. 1990). Inaddition, systemic injections of epinephrine,

     which leads to the release of NE in the brain(McGaugh 2003), enhance contextual fear

    LTM (Frankland et al. 2004, Hu et al. 2007) viaa facilitation of AMPA (α -amino-3-hydroxyl-

    5-methyl-4-isoxazole-propionate) receptor in-sertion in the hippocampus (Hu et al. 2007).

    However, posttraining administration of pro-

    pranolol systemically or into the LA/B does not affectLTMconsolidationofauditoryorcontex-

    tual fear conditioning (Bush et al. 2006, Debiec& Ledoux 2004, Lee et al. 2001). Thus, NE

    in the amygdala does not seem critical for theconsolidation of fear conditioning, but it does

    seem to interact with GCs to fortify memories(Roozendaal et al. 2006).

    Posttraining intrahippocampal propranololinfusions given immediately, but not six hours

    after training, block LTM, but not STM, of contextual fear conditioning ( Ji et al. 2003).

    Furthermore, systemic or intrahippocampal in-

    fusions given before testing oneday after condi-tioning impair the retrieval of contextual mem-

    ories (Murchison et al. 2004).

    In humans, systemic NE blockade d

    rupts the consolidation of contextual, but ncued, fear conditioning LTM (Grillon et

    2004). Studies involving avoidance conditioing, an indirect means of measuring fear, sh

    that posttraining systemic and intra-amygd(LA/B) pharmacological manipulations sh

    that NE is crucial to consolidate avoidanlearning (Ferry & McGaugh 1999, Gallagh

    et al. 1977, Liang et al. 1986, Quirarte et

    1997, Roozendaal & McGaugh 1997). Moover, NE levels following avoidance traini

    correlate with subsequent retention (McGauet al. 2002, McIntyre et al. 2002). Thus, dir

    measurement of fear responses with fear contioning gives a different pattern of results th

    do indirect measures with avoidance conditioing. More work systematically examining th

    effects is needed.

     The Effects of GCs on theConsolidation of LTMof Fear Conditioning 

    Pretraining systemic, intrahippocampal,

    intra-amygdala (LA/B) manipulation of Ginfluences the LTM of fear conditioning; co

    textual memories are more vulnerable (Conet al. 2004; Cordero et al. 2002; Donley et

    2005; Pugh et al. 1997a,b) likely because cotextual fear memory is generally weaker (i

    harder to learn and easier to disrupt) than cu

    fear memory (Phillips & LeDoux 1992).Posttraining systemic manipulations of G

    also impact both auditory and contextfear memory consolidation (Corodimas et

    1994, Hui et al. 2004, Pugh et al. 199Zorawski & Killcross 2002). Moreover, po

    training GR blockade in the LA/B affects aditory fear LTM but not STM ( Jin et

    2007), providing more evidence that GCs most important for consolidation process

    Furthermore, posttraining GCs administerimmediately, but not 3 hours, after audito

    fear conditioning facilitates freezing to a to

    previously paired with a US but does not ter responses to unpaired tones or to to

    or shock alone, suggesting a selective a

    298 Rodrigues ·  LeDoux· Sapolsky

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    11/27

    time-dependent role for GC-facilitated mem-

    ory of the tone-shock association (Hui et al.2004). In addition, elevation of GCs sys-

    temically or in the LA/B enhances the re-trievalof fear memories in avoidance paradigms

    (Izquierdo et al. 2002, Roozendaal & McGaugh1997), and this enhancement can be effective

    for memories acquired from one day to many months before (Izquierdo et al. 2002). Finally,in humans, high GC levels positively correlate

     with fear memory consolidation (Zorawski et al.2006).

    RECONSOLIDATION 

     The Effects of Stress on theReconsolidation of Fear Conditioning 

    Preliminary evidence suggests that acute stress

    before, but not after, memory reactivation dis-rupts auditory fear reconsolidation LTM (Bush

    et al. 2004). It would be interesting to see how chronic stress or intra-amygdala manipulations

    influence this phenomenon and the time courseof reconsolidation processes.

     The Effects of NE Manipulation on the Reconsolidation of Fear Conditioning 

     Although the effects of prereactivation NE ma-nipulations on reconsolidation are unknown,

    systemic or intra-amygdala (LA/B) adminis-

    tration of propranolol after reactivation dis-rupts reconsolidation of auditory and contex-

    tual fear LTM in rats (Abrari et al. 2008,Debiec & Ledoux 2004). The same trend holds

    true for avoidance conditioning (Przybyslawskiet al. 1999). These findings are consonant with

    reports that propranolol can effectively treat PTSD when administered after aversive mem-

    ory activation (Brunet et al. 2008, Orr et al.2006, Pitman & Delahanty 2005, Pitman et al.

    2002).

     The Effects of GC Manipulation on the Reconsolidation of Fear Conditioning 

    How alterations of GC activity before reactiva-tion might influence reconsolidation has yet to

    be investigated. After reactivation, GR antago-

    nism in the LA/B disrupts LTM but not STMof auditory fear reconsolidation; this effect oc-

    curs if blockade is immediate, but not 6 hours,after reactivation. Furthermore, this immedi-

    ate postreactivation blockade is effective both1 day and 10 days after conditioning ( Jin et al.

    2007). Likewise, GR blockade in the LA/B im-mediately after retrieval blocks reconsolidationin an avoidance paradigm (Tronel & Alberini

    2007).

    EXTINCTION 

     The Effects of Stress on the Extinction of Fear Conditioning 

    Chronic stress prior to conditioning impairs

    the LTM of auditory and contextual extinctionLTM (Garcia et al. 2008, Miracle et al. 2006);

    similarly, patients with PTSD show impairedcued fearextinction (Blechert et al. 2007, Wessa

    & Flor 2007). However, reports conflict regard-ing the influence of stress on the learning of 

    extinction (Izquierdo et al. 2006, Miracle et al.2006), perhaps because of differences in stress

    types or protocols or species (mice versus rats).Stress induction after fear conditioning but be-

    fore extinction does not influence extinction

    LTM (G. Quirk, unpublished results). If a stres-soris controllable, themPFC inhibits activation

    of brainstem nuclei (Amat et al. 2005). More-over, stress and environmental enrichment pro-

    duce opposite effects on fear renewal in a new context; the influence of enrichment outweighs

    that of stress (Mitra & Sapolsky 2009).

    Involvement of NE in the Extinction of Fear Conditioning 

    NE in the LA/B after extinction train-ing enhances the consolidation of extinction

    memories of contextual fear LTM (Berlau & McGaugh 2006). Furthermore, NE efflux in-

    creases in the PFC during presentation of a

    CS previously paired with a US (Feenstra et al.2001). Similarly, administration of propranolol

    in the IL subregion of the mPFC before, but 

    www.annualreviews.org   •   Stress Hormones and Fear Circuitry 299

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    12/27

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    13/27

        T   a    b    l   e    1

        L   o   c   a    l    i   z   a   t    i   o   n   o    f   m   a   n    i   p   u    l   a   t    i   o   n   s   :   s   y   s   t   e   m    i   c    /    b   r   a    i   n  -   w

        i    d

       e    (       b       l    a    c       k    ) ,    L    A    /    B    (    r    e       d    ) ,    h    i   p   p   o   c   a   m   p   u   s    (

           b       l    u    e

        ) ,   a   n    d   m    P    F    C    (    g    r    e    e    n

        )   a ,

        b .

        P   o   s   t   s    h   o   c

        k    f   r   e   e   z    i   n   g    fi   n    d    i   n   g   s

        i   n   c    l   u    d   e    d    i   n   c   o   n   t   e   x   t   u   a    l    S    T    M   r   e   s   u    l   t   s

        C   o   n    d    i   t    i   o   n    i   n   g

        R   e   c   o   n   s   o    l    i    d   a   t    i   o   n

        E   x   t    i   n   c   t    i   o   n

        P   r   e   t   r   a    i   n  -

        i   n   g

        P   o   s   t   t   r   a    i   n  -

        i   n   g

        P   r

       e   t   e   s   t  -

        i   n   g

        P   r   e   r   e   a   c   t    i   v   a  -

       t    i   o   n

        P   o   s   t   r   e   a   c

       t    i   v   a  -

       t    i   o   n

        P   r   e   c   o   n    d    i   t    i   o   n  -

        i   n   g

        P   r   e   e   x   t    i   n

       c   t    i   o   n

       t   r   a    i   n    i   n   g

        P   o   s   t   e   x   t    i   n   c   t    i   o   n

       t   r   a    i   n    i   n   g

        S    T    R    E    S    S

        C   u   e    d

        S    T    M

        ?

        ?

        ?

        ?

        ?

        ×    ∗

        ×

        ?

        L    T    M

          ↑

          ↑

        ?

          ↑

        ×

          ↓

        ×

        ?

        C   o   n   t   e   x   t   u   a

        l

        S    T    M

         +

        ?

        ?

        ?

        ?

        ?

        ?

        ?

        L    T    M

          ↑

        ?

        ?

        ?

        ?

          ↓

        ?

        ?

        N    E

        C   u   e    d

        S    T    M

          ↑

        ?

        ?

        ?

        ?

        ?

        ×

        ×

        L    T    M

          ↑      ↑

        ×          §

        ×          §

        ?

        ?

          ↑      ↑

        ?

          ↑

        ×

        C   o   n   t   e   x   t   u   a

        l

        S    T    M

          ↑

        ×

        ?

        ?

        ?

        ?

        ?

        ?

        L    T    M

          ↑

        ×      ↑

          ↑      ↑

        ?

          ↑

        ?

        ?

          ↑

        G    C   s

        C   u   e    d

        S    T    M

        ×

        ×

        ?

        ?

        ×

        ?

        ×

        ?

        L    T    M

        ×    ∗      ↑

          ↑      ↑

        ?

        ?

          ↑

        ?

        ×    ∗

        ?

        C   o   n   t   e   x   t   u   a

        l

        S    T    M

        ×

        ×

        ×

        ?

        ?

        ?

        ?

        ×

        ?

        ?

        L    T    M

          ↑      ↑

          ↑

        ?

        ?

        ?

          ↓

        ?

          ↑

          ↑

       a    A    b    b   r   e   v    i   a   t    i   o   n   s   :    L    A    /    B ,    l   a   t   e   r   a

        l    /    b   a   s   a    l   n   u   c    l   e   u   s   o    f   t    h   e   a   m   y   g    d   a    l   a   ;    G    C ,   g    l   u   c   o   c   o

       r   t    i   c   o    i    d   s   ;    L    T    M ,    l   o   n   g  -   t   e   r   m   m   e   m   o   r   y   ;   m    P    F    C ,   m

       e    d    i   a    l   p   r   e    f   r   o   n   t   a    l   c   o   r   t   e   x   ;    N    E ,   n   o   r   e   p    i   n   e   p    h   r    i   n   e

       ;    S    T    M ,   s    h   o   r   t  -   t   e   r   m   m   e   m   o   r   y .

        b    K   e   y   :

          ↑ ,    S   t   r   e   s   s ,    N    E ,   o   r    G    C   s    f   a   c    i    l    i   t   a   t   e    f   e   a   r   m   e   m   o   r   y    h   e   r   e .

          ↓ ,    S   t   r   e   s   s   o   r    G    C   s    i   m   p   a    i   r    f   e   a   r

       m   e   m   o   r   y    h   e   r   e .

        ×

     ,    S   t   r   e   s   s ,    N    E ,   o   r    G    C   s   m   a   n

        i   p   u    l   a   t    i   o   n   s   p   r   o    d   u   c   e   n   o    i   n    fl   u   e   n   c   e   s   a   t   t    h    i   s   t    i   m   e .

        ? ,    E    f    f   e   c   t   s   u   n    k   n   o   w   n .

        ∗ ,   c   o   n    fl    i   c   t    i   n   g   r   e   p   o   r   t   s .

              §

     ,   e    f    f   e   c   t    i   v   e    l   y    d    i   s   r   u   p   t   s   c   o   n   s   o    l    i    d   a   t    i   o   n   o    f   a   v   o    i    d   a   n   c   e    l   e   a   r   n    i   n   g ,    b   u   t   n   o   t    f   e   a   r   c   o

       n    d    i   t    i   o   n    i   n   g .

    www.annualreviews.org   •   Stress Hormones and Fear Circuitry 301

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    14/27

    Control Stress

    500 nm

    500 nm

    500 nm

    Amygdala (LA/B)

    Hippocampus (CA3)

    Prefrontal cortex (IL)

    Figure 3

    Influences of stress on the morphology of neurons in fear circuitry. LA/B,lateral/basal nucleus of the amygdala; CA3, cornu ammonis subfield of thehippocampus; IL, infralimbic subregion of the medial prefrontal cortex.

    Reconstructed Golgi-impregnated neuron images reproduced with permissionfrom Vyas et al. (2002) and Izquierdo et al. (2006).

    atrophy and spine loss (Brown et al. 2005; Cook & Wellman 2004; Czeh et al. 2008; Izquierdo

    et al. 2006; Radley et al. 2004, 2006, 2008;

     Wellman 2001). Furthermore, atrophy in ILneurons through brief uncontrollable stress is

    accompanied by a resistance to fear extinct

    (Izquierdo et al. 2006). Stress-induced atropof hippocampal (Conrad et al. 1999, McEw

    1999, Sousa et al. 2000) and mPFC neuro(Radley et al. 2005) reverses after a stre

    free period. However, the same recovery perdoes not rescue stress-induced hypertrophy

    amygdala neurons (Vyas et al. 2004).

     The Influence of Stress on theElectrophysiological Propertiesof Neurons in Fear Circuitry 

    Stress and its accompanying biological effe

    influence the electrophysiological activityneurons in fear circuitry (see Figure 4). El

    trophysiological studies often explore neuroexcitability, as well as long-term potentiati

    (LTP), an artificial means of inducing syn

    tic connectivity between two brain areas, athus a physiological model of fear learning a

    memory(Blairetal.2001,Rodriguesetal.20Schafe et al. 2001). Stress has differential effe

    on the amygdala, hippocampus, and prefroncortex, which we now review.

    LA/B neurons from stressed animals dispincreased firing rates and greater respo

    siveness (Garcia et al. 1998, Kavushanet al. 2006, Kavushansky & Richter-Le

    2006, Rodr´ ıguez Manzanares et al. 200 Although some stress paradigms, especia

    acute inductions, enhance LTP in the LA

    (Rodr´ ıguez Manzanares et al. 2005, Vouimet al. 2004, 2006), other stress protoc

    suppress it (Kavushansky & Richter-Le2006, Kavushansky et al. 2006, Kohda et

    2007). Along these same lines, the typestress is also a critical factor in the influen

    of stress on hippocampal plasticity such thchronic, but not acute, stress suppres

    hippocampal LTP (Pavlides et al. 200 Temporal qualities of stressors have oppos

    influences on the hippocampus, boosting LT when the tetanizing stimulation is in cl

    proximity to emotional processing and d

    rupting LTP when there is a substantial debetween the stimulation and initiation of stre

    Furthermore, amygdala (LA/B) stimulat

     302 Rodrigues ·  LeDoux· Sapolsky

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    15/27

    mimics this emotion-induced influence on

    hippocampal plasticity (LA/B) (Diamond et al.2007, Richter-Levin 2004, Richter-Levin &

     Akirav 2003). Hippocampal stimulation afterfear extinction training disrupts the recall of 

    extinction (Garcia et al. 2008). Furthermore,uncontrollable stress drastically impairs hip-

    pocampal LTP relative to the influence of thesame amount of controllable stress (Shors et al.1989). The mPFC seems to play a role in

    determining the controllability of stress (Amat et al. 2005), and neurons here display unique

    patterns of firing rates that encode fast and

    slow responses to stress. Whereas some mPFCneurons respond phasically during the duration

    of a stressor, others show activity that persistsafter the stress ceases, and yet others respond

    during the initiation and termination of stress( Jackson & Moghaddam 2006). Furthermore,

    stress reduces LTP induction in projectionsfrom both the LA/B (Maroun & Richter-Levin 2003) and hippocampus (Cerqueira

    et al. 2007, Rocher et al. 2004) to thePFC.

    Dendrite

    LA/B neuroncell body

    Decrease of GABA-mediated inhibition

    GABA-Areceptor

    Axon

    GABACl-

    Enhancement of neuronalresponses and excitability

    Alteration of plasticity thatunderlies fear learning

    LTP induction

    Time (min)

    100

    200

        P   e   r

       c   e   n    t   o    f   c   o   n    t   r   o    l

     0 50

    Figure 4

    Influence of stress, norepinephrine (NE), and glucocorticoids (GCs) on the electrophysiological propertiesof lateral (LA)/basal nucleus (B) neurons of the amygdala. Representative traces and long-term potentiation(LTP) data reproduced with permission from Tully et al. (2007).

    www.annualreviews.org   •   Stress Hormones and Fear Circuitry 303

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    16/27

     The Influence of NE on theElectrophysiological Propertiesof Neurons in Fear Circuitry 

    NE increases the spiking of neurons in the LA and facilitates the induction of LTP (Tully et al.

    2007). What’s more,fear conditioning increasesdepolarization-evoked NE release (Liu et al.

    2007). Moreover, ARs seem particularly pivotalfor a late phase of LTP in the LA, which persists

    for at least three hours and requires the synthe-sis of new mRNA and protein (Huang et al.

    2000). The reactivity of the hippocampal neu-rons is enhanced by NE (Harley 2007, Segal

    et al. 1991), and suppression of GC secretion

    increases NE transmission here (Mizoguchiet al. 2008); the relevance of this to fear learning

    and memory processes is unclear. In the IL of the mPFC, fear conditioning decreases, and ex-

    tinction increases, neuronal excitability (Santiniet al. 2008). Pertinent to this, NE signaling in

    this region increases neuron excitability (Barthet al. 2007, Mueller et al. 2008) and strength-

    ens the memory for extinction (Mueller et al.2008).

     The Influence of GCs on theElectrophysiological Propertiesof Neurons in Fear Circuitry 

    Both high and low GC concentrations en-

    hance the excitability of LA/B neurons (Du-

     varci & Par´ e 2007, Kavushansky & Richter-Levin 2006). In addition, GCs depolarize the

    resting potential, increase input resistance, andsignificantly decrease spike-frequency adapta-

    tion of LA/B neurons (Duvarci & Par ´ e 2007). The influences of GCs are different on the

    hippocampus; there low concentrations (via MR activation) are excitatory, whereas high

    concentrations (via MR plus GR activation)are inhibitory (de Kloet et al. 1999, Joels

    & de Kloet 1992). A similar biphasic relation-ship of MR and GR activation exists for en-

    hancing and suppressing effects of GCs on

    hippocampal LTP, respectively (Pavlides et al.1996, Pavlides & McEwen 1999). We do not 

    know how GCs directly influence the el

    trophysiological profiles of mPFC neuro Therefore, more data are needed to illustr

    how GCs interact with other factors to inflence plasticity in structures that modulate f

    conditioning.

    CONCLUSIONS

     An extensive literature has demonstrated

     ways in which stress, and the endocrine medtors of the stress response, can impact expli

    declarative memory processes (McEwen 199 Though based on a smaller literature, this

     view highlights the ability of stress and aroustriggered fear to impact emotional learn

    and memory, as assessed by fear conditioing. Indeed, stressful experiences, NE,and G

    alter the morphological and electrophysiolocal characteristics of neurons in areas that pla vital role in fear processing, including the am

    dala (LA/B), hippocampus, and PFC. As a sult, they can have a powerful influence on f

    conditioning.In the laboratory, investigators use a nu

    ber of models to induce stress, includexposure to predator odor, restraint, foot sho

    forced swimming, saline injections, and ctemperatures. Furthermore, the duration

    stress manipulations can be acute, moderatechronic. Although thesedifferencesmakedir

    comparisons between studies difficult, ster

    typical responses to these various stressorsoccur and activate the brain’s fear syste

    thus initiating the stress response in both tbody and the brain. Nonetheless, because str

    magnitude and duration differentially impthe morphological and electrophysiolog

    properties of fear circuitry neurons, it wobe important for future studies to comp

    and contrast the influence of different strprotocols.

    Existing studies show that stress beforeafter training boosts LTM of fear conditio

    ing. In addition, stress before, but not aftreactivation enhances reconsolidation. Fina

    stress before fear conditioning, but not bef

     304 Rodrigues ·  LeDoux· Sapolsky

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    17/27

    extinction training, interferes with extinction

    LTM. Altogether, these findings suggest that during initial learning, stress activates events

    that can influence later consolidation and ex-tinction processes. Whether effects exist on the

    acquisition and expression of fear is less clearowing to the relative paucity of studies.

    In regard to NE, cumulative evidence sug-gests that NE is important for fear condition-ing, reconsolidation, and extinction, but not for

    consolidation. NE increases neuronal excitabil-ity and LTP in the LA, and its activity there is

    needed for both STM and LTM of fear condi-tioning. NE also increases neuronal excitability 

    in the IL of the mPFC and is important for theLTM of extinction. Because pretraining but not 

    posttraining intra-amygdala (LA/B) or intra-mPFC infusions of propranolol block LTM of 

    fear conditioning and extinction, respectively,it seems that NE must be tonically active dur-

    ing learning to promote rapid postlearning cas-

    cades in the LA and IL to facilitate STM re-trieval and to promote the conversion of STM

    to LTM.Next, GCs appear to be particularly 

    crucial for LTM, but not the acquisition,of fear conditioning. Therefore, the overall

    trend of systemic or intra-amygdala (LA/B) GCdisrupting LTM is consonant with electrophys-

    iological findings that GCs have long-term, but not short-term, enhancing effects on neuronal

    excitability in LA/B (Duvarci & Par´ e 2007).GRs are located both at synaptic and at nuclear

    sites in the LA. The classic actions of GR, as

    a steroid receptor, involve binding GCs in thecytoplasm and acting as a transcription factor

    upon translocating to the nucleus, whereasless traditional GR actions include rapid,

    nongenomic effects. The fact that GRs seemmore important for fear consolidation than for

    learning, and for enduring but not immediateinfluences on the firing of LA/B neurons,

    suggests that more traditional genomic effects

    underlie these behavioral and electrophysio-logical findings.

    Stress-induced enhancement of LTP in au-ditory inputs to the LA alongside disruption of 

    LTP in the projections to the PFC from thehippocampus and the LA/B is congruent with

    the notion that powerful fear inputs can facil-itate strong emotional pathways at the cost of activating more regulatory pathways. Indeed,

    an abundant literature showing that NE is im-portant particularly for hippocampal and PFC

    function, in addition to LA/B activation, is inline with NE’s role in arousal and cognition.

    Given that hippocampal function is dis-rupted by major stressors or exposure to ele-

     vated levels of GCs, how might it play a pivotalrole in forming fear memories, particularly con-

    textualones?Thisanswermightbeexplainedby the model of the hippocampus shifting from acognitive mode to a flashbulb memory mode

    under intense stress, which explains why thecontextual memories of traumatic experiences

    are vivid and endure for many years but tend tobe disjointed and fragmented (Diamond et al.

    2007).In summary, stress, NE, and GCs appear to

    be potent modulators of fear memory forma-tion. Furthermore, the ability of stress, NE,

    and GCs to decrease GABA (γ 

    -aminobutyricacid)-A receptor-mediated inhibition (Duvarci

    & Par´ e 2007, Rodriguez Manzanares et al.

    2005, Tully et al. 2007), thereby allowing forincreased excitability in LA/B, is harmonious

     with the fact that benzodiazepines act on thisreceptor to decrease anxiety.

    During difficult times, we are often advisedto “use our heads” or “follow our hearts” or “go

     with our gut.” As this review highlights, ourbodies and our minds really are not separate,

    but instead mutually inform each other on how to process the emotional events of our lives.

    DISCLOSURE STATEMENT 

     The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

    www.annualreviews.org   •   Stress Hormones and Fear Circuitry 305

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    18/27

     ACKNOWLEDGMENTS

     We apologize to all the investigators whose research could not be appropriately cited owto space limitations. We extend our sincere gratitude to our many wonderful collaborators

    thoughtful discussions pertaining to the topic and data of this review. Research by S.M.R. aR.M.S. on this topic supported by NIH Grant 5R01 AG020633. J.E.L. supported by NIH Gra

    P50 MH058911, R01 MH046516, R37 MH037884, and K05 MH067048.

    LITERATURE CITED

     Abrari K, Rashidy-Pour A, Semnanian S, Fathollahi Y. 2008. Administration of corticosterone after mem

    reactivation disrupts subsequent retrieval of a contextual conditioned fear memory: dependence up

    training intensity. Neurobiol. Learn. Mem. 89:178–84

     Aerni A, Traber R, Hock C, Roozendaal B, Schelling G, et al. 2004. Low-dose cortisol for symptom

    posttraumatic stress disorder. Am. J. Psychiatry 161:1488–90

     Amaral DG, Insausti R. 1992. Retrograde transport of D-[3H]-aspartate injected into the monkey amygda

    complex. Exp. Brain Res. 88:375-88

     Amat J, Baratta MV, Paul E, Bland ST, Watkins LR, Maier SF. 2005. Medial prefrontal cortex determi

    how stressor controllability affects behavior and dorsal raphe nucleus.  Nat. Neurosci. 8:365–71

     Anglada-Figueroa D, Quirk GJ. 2005. Lesions of the basal amygdala block expression of conditioned fear

    not extinction. J. Neurosci. 25:9680–85 Aston-Jones G. 2004. Locus coeruleus, A5 and A7 noradrenergic cell groups. In The Rat Nervous System,

    G Paxinos, pp. 259–335. Amsterdam/Boston: Elsevier Acad.

     Aston-Jones G, Cohen JD. 2005. Adaptive gain and the role of the locus coeruleus-norepinephrine system

    optimal performance. J. Comp. Neurol. 493:99–110

    Balleine BW, Killcross S. 2006. Parallel incentive processing: an integrated view of amygdala function. Tr

     Neurosci. 29:272–79

    Barrett D, Gonzalez-Lima F. 2004. Behavioral effects of metyrapone on Pavlovian extinction.  Neurosci. L

    371:91–96

    Barth AM, Vizi ES, Lendvai B. 2007. Noradrenergic enhancement of Ca 2+ responses of basal dendrite

    layer 5 pyramidal neurons of the prefrontal cortex. Neurochem. Int. 51:323–27

    Berlau DJ, McGaugh JL. 2006. Enhancement of extinction memory consolidation: the role of the noradr

    ergic and GABAergic systems within the basolateral amygdala.  Neurobiol. Learn. Mem. 86:123–32Blair HT, Schafe GE, Bauer EP, Rodrigues SM, LeDoux JE. 2001. Synaptic plasticity in the lateral amygd

    a cellular hypothesis of fear conditioning. Learn. Mem. 8:229–42

    Blanchard RJ, Blanchard DC. 1969. Crouching as an index of fear. J. Comp. Physiol. Psychol. 67:370–75

    Blechert J, Michael T, Vriends N, Margraf J, Wilhelm FH. 2007. Fear conditioning in posttraumatic str

    disorder: evidence for delayed extinction of autonomic, experiential, and behavioural responses.  Beh

     Res. Ther. 45:2019–33

    Bouton ME, WestbrookRF, Corcoran KA, Maren S. 2006. Contextual and temporal modulation of extinct

    behavioral and biological mechanisms. Biol. Psychiatry 60:352–60

    Brown SM, Henning S, Wellman CL. 2005. Mild, short-term stress alters dendritic morphology in rat me

    prefrontal cortex. Cereb. Cortex 15:1714–22

    Brunet A, Orr SP, Tremblay J, Robertson K, Nader K, Pitman RK. 2008. Effect of post-retrieval propran

    on psychophysiologic responding during subsequent script-driven traumatic imagery in post-traumastress disorder. J. Psychiatr. Res. 42:503–6

    Bush DEA, Gekker A, LeDoux JE. 2006. Blockade of amygdala beta-adrenergic receptors disrupts fear c

    ditioning. Soc. Neurosci. 370.7

    Bush DEA, McEwenBS, LeDouxJE. 2004. Acute restraintstress enhances thereconsolidation of fear memo

    Soc. Neurosci. 208.4

    Cai WH, Blundell J, Han J, Greene RW, Powell CM. 2006. Postreactivation glucocorticoids impair recal

    established fear memory. J. Neurosci. 26:9560–66

     306 Rodrigues ·  LeDoux· Sapolsky

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    19/27

    Cain CK,LeDoux JE.2008. Emotionalprocessing andmotivation:in searchof brain mechanisms. In Handbook

    of Approach and Avoidance Motivation, ed. AJ Elliot, pp. 17–34. New York: Psychology Press

    Cardinal RN,Parkinson JA, Hall J, Everitt BJ. 2002. Emotion andmotivation:the role of theamygdala, ventral

    striatum, and prefrontal cortex. Neurosci. Biobehav. Rev. 26:321–52

    Cerqueira JJ, Mailliet F, Almeida OF, Jay TM, Sousa N. 2007. The prefrontal cortex as a key target of the

    maladaptive response to stress. J. Neurosci. 27:2781–87

    Charmandari E, Tsigos C, Chrousos G. 2005. Endocrinology of the stress response. Annu. Rev. Physiol. 67:259–

    84

    Conrad CD, LeDoux JE, Magarinos AM, McEwen BS. 1999. Repeated restraint stress facilitates fear condi-tioning independently of causing hippocampal CA3 dendritic atrophy. Behav. Neurosci. 113:902–13

    Conrad CD, MacMillan DD 2nd, Tsekhanov S, Wright RL, Baran SE, Fuchs RA. 2004. Influence of chronic

    corticosterone and glucocorticoid receptor antagonism in the amygdala on fear conditioning.  Neurobiol.

     Learn. Mem.  81:185–99

    Cook SC, Wellman CL. 2004. Chronic stress alters dendritic morphology in rat medial prefrontal cortex.

     J. Neurobiol. 60:236–48

    Cordero MI, Kruyt ND, Merino JJ, Sandi C. 2002. Glucocorticoid involvement in memory formation in a

    rat model for traumatic memory.  Stress  5:73–79

    Cordero MI, Kruyt ND, Sandi C. 2003a. Modulation of contextual fear conditioning by chronic stress in rats

    is related to individual differences in behavioral reactivity to novelty.  Brain Res. 970:242–45

    Cordero MI, Venero C, Kruyt ND, Sandi C. 2003b. Prior exposure to a single stress session facilitates

    subsequent contextual fear conditioning in rats. Evidence for a role of corticosterone.  Horm. Behav.44:338–45

    Corodimas KP, LeDoux JE, Gold PW, Schulkin J. 1994. Corticosterone potentiation of conditioned fear in

    rats. Ann. NY Acad. Sci. 746:392–93

    Czeh B, Perez-Cruz C, Fuchs E, Flugge G. 2008. Chronic stress-induced cellular changes in the medial

    prefrontal cortex and their potential clinical implications: Does hemisphere location matter? Behav. Brain

     Res. 190:1–13

    Debiec J, Ledoux JE. 2004. Disruption of reconsolidation but not consolidation of auditory fear conditioning

    by noradrenergic blockade in the amygdala.  Neuroscience 129:267–72

    de Kloet ER, Oitzl MS, Jo ¨ els M. 1999. Stress and cognition: Are corticosteroids good or bad guys?  Trends 

     Neurosci. 22:422–26

    de Kloet ER. 2004. Hormones and the stressed brain.  Ann. NY Acad. Sci. 1018:1–15

    de Quervain DJ. 2008. Glucocorticoid-induced reduction of traumatic memories: implications for the treat-ment of PTSD. Prog. Brain Res. 167:239–47

    DeRijk R, de Kloet ER. 2005.Corticosteroid receptorgeneticpolymorphismsand stress responsivity. Endocrine

    28:263–70

    Diamond DM, Campbell AM, Park CR, Halonen J, Zoladz PR. 2007. The temporal dynamics model of emo-

    tional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb

    and traumatic memories, and the Yerkes-Dodson law. Neural Plast. 2007:1–33, Art. 60803

    Donley MP, Schulkin J, Rosen JB. 2005. Glucocorticoid receptor antagonism in the basolateral amygdala and

     ventral hippocampus interferes with long-term memory of contextual fear. Behav. Brain Res. 164:197–205

    Dudai Y. 2004. The neurobiology of consolidations, or, how stableis theengram? Annu. Rev. Psychol. 55:51–86

    Dudai Y. 2006. Reconsolidation: the advantage of being refocused.  Curr. Opin. Neurobiol. 16:174–78

    Duvarci S, Par´ e D. 2007. Glucocorticoids enhance the excitability of principal basolateral amygdala neurons.

     J. Neurosci. 27:4482–91Fanselow MS, Poulos AM. 2005. The neuroscience of mammalian associative learning.  Annu. Rev. Psychol.

    56:207–34

    Feenstra MG, Vogel M, Botterblom MH, Joosten RN, de Bruin JP. 2001. Dopamine and noradrenaline

    efflux in the rat prefrontal cortex after classical aversive conditioning to an auditory cue. Eur. J. Neurosci.

    13:1051–54

    Fendt M, Fanselow MS. 1999. The neuroanatomical and neurochemical basis of conditioned fear.

     Neurosci. Biobehav. Rev. 23:743–60

    www.annualreviews.org   •   Stress Hormones and Fear Circuitry 307

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    20/27

    Ferry B, McGaugh JL. 1999. Clenbuterol administration into the basolateral amygdala post-training enhan

    retention in an inhibitory avoidance task. Neurobiol. Learn. Mem. 72:8–12

    Frankland PW, Josselyn SA, Anagnostaras SG, Kogan JH, Takahashi E, Silva AJ. 2004. Consolidation of

    and US representations in associative fear conditioning.  Hippocampus  14:557–69

    Fudge JL, Emiliano AB. 2003. The extended amygdala and the dopamine system: another piece of

    dopamine puzzle. J. Neuropsychiatry Clin. Neurosci.  15:306–16

    Gabriel M, Burhans L, Kashef A. 2003. Consideration of a unified model of amygdalar associative functio

     Ann. NY Acad. Sci.  985:206–17

    Gallagher M, Kapp BS, Musty RE, Driscoll PA. 1977. Memory formation: evidence for a specific neurocheical system in the amygdala. Science 198:423–25

    Garcia R, Paquereau J, Vouimba RM, Jaffard R. 1998. Footshock stress but not contextual fear condition

    induces long-term enhancement of auditory-evoked potentials in the basolateral amygdala of the fre

    behaving rat. Eur. J. Neurosci.  10:457–63

    Garcia R, Spennato G, Nilsson-Todd L, Moreau JL, Deschaux O. 2008. Hippocampal low-frequency sti

    ulation and chronic mild stress similarly disrupt fear extinction memory in rats.  Neurobiol. Learn. M

    89:560–66

    Goldstein DS. 2003. Catecholamines and stress. Endocr. Regul. 37:69–80

    Gourley SL, Kedves AT, Olausson P, Taylor JR. 2008. A history of corticosterone exposure regulates f

    extinction and cortical NR2B, GluR2/3, and BDNF.  Neuropsychopharmacology 34:707–16

    Gray TS. 1993. Amygdaloid CRF pathways. Role in autonomic, neuroendocrine, and behavioral response

    stress. Ann. NY Acad. Sci. 697:53–60Grillon C, Cordova J, Morgan CA, Charney DS, Davis M. 2004. Effects of the beta-blocker propranolol

    cued and contextual fear conditioning in humans. Psychopharmacology 175:342–52

    Harley CW. 2007. Norepinephrine and the dentate gyrus. Prog. Brain Res. 163:299–318

    Hu H, Real E, Takamiya K, Kang MG, Ledoux J, et al. 2007. Emotion enhances learning via norepinephr

    regulation of AMPA-receptor trafficking. Cell  131:160–73

    Huang YY, Martin KC, Kandel ER. 2000. Both protein kinase A and mitogen-activated protein kinase are

    quired in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiati

     J. Neurosci.  20:6317–25

    Hui GK, Figueroa IR, Poytress BS, Roozendaal B, McGaugh JL, Weinberger NM. 2004. Memory enhan

    ment of classical fear conditioning by post-training injections of corticosterone in rats.  Neurobiol. Lea

     Mem. 81:67–74

    Hui IR, Hui GK, Roozendaal B, McGaugh JL, Weinberger NM. 2006. Posttraining handling facilita

    memory for auditory-cue fear conditioning in rats.  Neurobiol. Learn. Mem. 86:160–63

    Izquierdo A, Wellman CL, Holmes A. 2006. Brief uncontrollable stress causes dendritic retraction in inf

    imbic cortex and resistance to fear extinction in mice.  J. Neurosci. 26:5733–38

    Izquierdo LA, Barros DM, Medina JH, Izquierdo I. 2002. Stress hormones enhance retrieval of fear con

    tioning acquired either one day or many months before. Behav. Pharmacol. 13:203–13

     Jackson ME, Moghaddam B. 2006. Distinct patterns of plasticity in prefrontal cortex neurons that enc

    slow and fast responses to stress.  Eur. J. Neurosci. 24:1702–10

     Ji J, Maren S. 2007. Hippocampal involvement in contextual modulation of fear extinction.  Hippocam

    17:749–58

     Ji JZ, Wang XM, Li BM. 2003. Deficit in long-term contextual fear memory induced by blockade of b

    adrenoceptors in hippocampal CA1 region. Eur. J. Neurosci. 17:1947–52

     Jin XC, Lu YF, Yang XF, Ma L, Li BM. 2007. Glucocorticoid receptors in the basolateral nucleus of amygd

    are required for postreactivation reconsolidation of auditory fear memory.   Eur. J. Neurosci.  25:3712

     Joels M, de Kloet ER. 1992. Control of neuronal excitability by corticosteroid hormones. Trends Neur

    15:25–30

    Kalin NH, Shelton SE. 2003. Nonhuman primate models to study anxiety, emotion regulation, and p

    chopathology.  Ann. NY Acad. Sci. 1008:189–200

    Kavushansky A, Richter-Levin G. 2006. Effects of stress and corticosterone on activity and plasticity in

    amygdala. J. Neurosci. Res. 84:1580–87

     308 Rodrigues ·  LeDoux· Sapolsky

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    21/27

    Kavushansky A, Vouimba RM, CohenH, Richter-Levin G. 2006. Activity andplasticity in theCA1, thedentate

    gyrus, and the amygdala following controllable vs. uncontrollable water stress.  Hippocampus  16:35–42

    Kim JJ, Fanselow MS. 1992. Modality-specific retrograde amnesia of fear.  Science 256:675–77

    Kohda K, Harada K, Kato K, Hoshino A, Motohashi J, et al. 2007. Glucocorticoid receptor activation is

    involved in producing abnormal phenotypes of single-prolonged stress rats: a putative post-traumatic

    stress disorder model. Neuroscience 148:22–33

    Korte SM. 2001. Corticosteroids in relation to fear, anxiety and psychopathology.   Neurosci. Biobehav. Rev.

    25:117–42

    LaBar KS, LeDoux JE. 2001. Coping with danger: the neural basis of defensive behaviors and fearful feelings.In Handbook of Physiology, Section 7: The Endocrine System, Vol. IV: Coping with the Environment: Neural and 

     Endocrine Mechanisms , ed. BS McEwen, pp. 139–54. New York: Oxford Univ. Press

    Lang PJ,Davis M. 2006. Emotion, motivation, andthe brain: reflex foundations in animal andhumanresearch.

     Prog. Brain Res. 156:3–29

    LeDoux J. 2007. The amygdala. Curr. Biol. 17:R868–74

    LeDoux JE. 1995. Emotion: clues from the brain.  Annu. Rev. Psychol. 46:209–35

    LeDoux JE. 1996.  The Emotional Brain: The Mysterious Underpinnings of Emotional Life . New York: Simon &

    Schuster. 384 pp.

    LeDoux JE. 2000. Emotion circuits in the brain.  Annu. Rev. Neurosci. 23:155–84

    LeDoux JE. 2002. Synaptic Self: How Our Brains Become Who We Are. New York: Viking. x. 406 pp.

    Lee HJ, Berger SY, Stiedl O, Spiess J, Kim JJ. 2001. Post-training injections of catecholaminergic drugs do

    not modulate fear conditioning in rats and mice.  Neurosci. Lett. 303:123–26LeeJL, DickinsonA, Everitt BJ. 2005. Conditioned suppression and freezing as measures of aversive Pavlovian

    conditioning: effects of discrete amygdala lesions and overtraining.  Behav. Brain Res. 159:221–33

    Liang KC, Juler RG, McGaugh JL. 1986. Modulating effects of posttraining epinephrine on memory: in-

     volvement of the amygdala noradrenergic system. Brain Res. 368:125–33

    Likhtik E, Popa D, Apergis-SchouteJ, Fidacaro GA,Par´ e D. 2008. Amygdala intercalated neurons are required

    for expression of fear extinction. Nature 454:642–45

    Liu X, Lonart G, Sanford LD. 2007. Transient fear-induced alterations in evoked release of norepinephrine

    and GABA in amygdala slices. Brain Res. 1142:46–53

    Luine V. 2002. Sex differences in chronic stress effects on memory in rats. Stress  5:205–16

    Lyons DM, Parker KJ. 2007. Stress inoculation-induced indications of resilience in monkeys. J. Trauma. Stress 

    20:423–33

     Maren S. 1999. Neurotoxic basolateral amygdala lesions impair learning and memory but not the performanceof conditional fear in rats.  J. Neurosci. 19:8696–703

     Maren S. 2001. Neurobiology of Pavlovian fear conditioning. Annu. Rev. Neurosci.  24:897–931

     Maren S. 2005. Synaptic mechanisms of associative memory in the amygdala.  Neuron 47:783–86

     Maren S, Quirk GJ. 2004. Neuronal signalling of fear memory. Nat. Rev. 5:844–52

     Maroun M, Richter-Levin G. 2003. Exposure to acute stress blocks the induction of long-term potentiation

    of the amygdala-prefrontal cortex pathway in vivo. J. Neurosci. 23:4406–9

     McCarty R, Gold PE. 1996. Catecholamines, stress, and disease: a psychobiological perspective. Psychosom.

     Med. 58:590–97

     McDonald AJ. 1991. Topographical organization of amygdaloid projections to the caudatoputamen, nucleus

    accumbens, and related striatal-like areas of the rat brain.  Neuroscience 44:15–33

     McDonald AJ. 1998. Cortical pathways to the mammalian amygdala. Prog. Neurobiol. 55:257–332

     McDonald AJ, Mascagni F, Guo L. 1996. Projections of the medial and lateral prefrontal cortices to theamygdala: a Phaseolus vulgaris  leucoagglutinin study in the rat. Neuroscience 71:55–75

     McEwen BS. 1999. Stress and hippocampal plasticity. Annu. Rev. Neurosci. 22:105–22

     McEwen BS. 2001. Plasticity of the hippocampus: adaptation to chronic stress and allostatic load. Ann. NY 

     Acad. Sci.  933:265–77

     McEwen BS. 2003. Mood disorders and allostatic load.  Biol. Psychiatry 54:200–7

     McEwen BS, Magarinos AM. 2001. Stress and hippocampal plasticity: implications for the pathophysiology 

    of affective disorders. Hum. Psychopharmacol. 16:S7–19

    www.annualreviews.org   •   Stress Hormones and Fear Circuitry 309

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    22/27

     McGaugh JL. 2000. Memory—a century of consolidation. Science 287:248–51

     McGaugh JL. 2003.  Memory and Emotion: The Making of Lasting Memories . London: Weidenfeld & Nicols

     xi. 162 pp.

     McGaugh JL, McIntyre CK, Power AE. 2002. Amygdala modulation of memory consolidation: interact

     with other brain systems.  Neurobiol. Learn. Mem. 78:539–52

     McIntyre CK, Hatfield T, McGaugh JL. 2002. Amygdala norepinephrine levels after training predict

    hibitory avoidance retention performance in rats. Eur. J. Neurosci. 16:1223–26

     Meaney MJ. 2001. Maternal care, gene expression, and the transmission of individual differences in st

    reactivity across generations. Annu. Rev. Neurosci. 24:1161–92 Miracle AD, Brace MF, Huyck KD, Singler SA, Wellman CL. 2006. Chronic stress impairs recall of extinct

    of conditioned fear. Neurobiol. Learn. Mem. 85:213–18

     Mitra R, Jadhav S, McEwen BS, Vyas A, Chattarji S. 2005. Stress duration modulates the spatiotemp

    patterns of spine formation in the basolateral amygdala.  Proc. Natl. Acad. Sci. USA  102:9371–76

     Mitra R, Sapolsky RM. 2008. Acute corticosterone treatment is sufficient to induce anxiety and amygda

    dendritic hypertrophy. Proc. Natl. Acad. Sci. USA  105:5573–78

     Mitra R, Sapolsky RM. 2009. Effects of enrichment predominate over those of chronic stress on fear-rela

    behavior in male rats. Stress . In press

     Mizoguchi K, Shoji H, Ikeda R, Tanaka Y, Maruyama W, Tabira T. 2008. Suppression of glucocortic

    secretion enhances cholinergic transmission in rat hippocampus.  Brain Res. Bull.  76:612–15

     Mueller D, Porter JT, Quirk GJ. 2008. Noradrenergic signaling in infralimbic cortex increases cell excitabi

    and strengthens memory for fear extinction.  J. Neurosci. 28:369–75 MurchisonCF, Zhang XY, Zhang WP, Ouyang M, Lee A, Thomas SA. 2004. A distinct role for norepinephr

    in memory retrieval. Cell  117:131–43

    Nader K. 2003. Memory traces unbound. Trends Neurosci. 26;65–72

    Nader K, Schafe GE, LeDoux JE. 2000. The labile nature of consolidation theory.  Nat. Rev. 1:216–19

    Neophytou SI, Aspley S, Butler S, Beckett S, Marsden CA. 2001. Effects of lesioning noradrene

    neurones in the locus coeruleus on conditioned and unconditioned aversive behaviour in the

     Prog. Neuropsychopharmacol. Biol. Psychiatry  25:1307–21

    Orr SP,MiladMR, Metzger LJ,LaskoNB, Gilbertson MW,Pitman RK.2006.Effects of beta blockade,PT

    diagnosis, and explicit threat on the extinction and retention of an aversively conditioned response. B

     Psychol. 73:262–71

    Par´ e D. 2003. Role of the basolateral amygdala in memory consolidation.  Progress Neurobiol. 70:409–20

    Par´ e D, Quirk GJ, Ledoux JE. 2004. New vistas on amygdala networks in conditioned fear.  J. Neurophy92:1–9

    Pavlides C, McEwen BS. 1999. Effects of mineralocorticoid and glucocorticoid receptors on long-term p

    tentiation in the CA3 hippocampal field. Brain Res. 851:204–14

    Pavlides C, Nivon LG, McEwen BS. 2002. Effects of chronic stress on hippocampal long-term potentiati

     Hippocampus  12:245–57

    Pavlides C, Ogawa S, Kimura A, McEwen BS. 1996. Role of adrenal steroid mineralocorticoid and glucoc

    ticoid receptors in long-term potentiation in the CA1 field of hippocampal slices.  Brain Res.  738:2

    35

    Phillips RG,LeDoux JE.1992. Differential contribution of amygdala and hippocampus to cued and contex

    fear conditioning. Behav. Neurosci. 106:274–85

    Pitkanen A, Pikkarainen M, Nurminen N, Ylinen A. 2000. Reciprocal connections between the amygdala

    the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann. NY Acad. 911:369–91

    PitkanenA, Savander V, LeDoux JE. 1997. Organization of intra-amygdaloid circuitries in the rat:an emerg

    framework for understanding functions of the amygdala. Trends Neurosci. 20:517–23

    Pitman RK, Delahanty DL. 2005. Conceptually driven pharmacologic approaches to acute trau

    CNS Spectr. 10:99–106

    Pitman RK, Sanders KM, Zusman RM, Healy AR, Cheema F, et al. 2002. Pilot study of secondary prevent

    of posttraumatic stress disorder with propranolol. Biol. Psychiatry 51:189–92

     310 Rodrigues ·  LeDoux· Sapolsky

  • 8/18/2019 Rodrigues Ledoux Sapolsky Arn 2009

    23/27

    Price JL. 2003. Comparative aspects of amygdala connectivity.  Ann. NY Acad. Sci. 985:50–58

    Przybyslawski J, Roullet P, Sara SJ. 1999. Attenuation of emotional and nonemotional memories after their

    reactivation: role of beta adrenergic receptors. J. Neurosci. 19:6623–28

    Pugh CR, Fleshner M, Rudy JW. 1997a. Type II glucocorticoid receptor antagonists impair contextual but 

    not auditory-cue fear conditioning in juvenile rats.  Neurobiol. Learn. Mem. 67:75–79

    Pugh CR, Tremblay D, Fleshner M, Rudy JW. 1997b. A selective role for corticosterone in contextual-fear

    conditioning. Behav. Neurosci. 111:503–11

    Quirarte GL, Roozendaal B, McGaugh JL. 1997. Glucocorticoid enhancement of memory storage involves

    noradrenergic activation in the basolateral amygdala.  Proc. Natl. Acad. Sci. USA  94:14048–53Quirk GJ, Garcia R, Gonz ´ alez-Lima F. 2006. Prefrontal mechanisms in extinction of conditioned fear. Biol.

     Psychiatry 60:337–43

    Quirk GJ, Mueller D. 2008. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology

    33:56–72

    Radley JJ, RocherAB, Janssen WG, Hof PR, McEwen BS,Morrison JH. 2005. Reversibility of apical dendritic

    retraction in the rat medial prefrontal cortex following repeated stress.  Exp. Neurol. 196:199–203

    Radley JJ, Rocher AB, Miller M, Janssen WG, Liston C, et al. 2006. Repeated stress induces dendritic spine

    loss in the rat medial prefrontal cortex.  Cereb. Cortex 16:313–20

    RadleyJJ, RocherAB, RodriguezA, EhlenbergerDB, Dammann M, et al.2008. Repeated stressalters dendritic

    spine morphology in the rat medial prefrontal cortex.  J. Comp. Neurol. 507:1141–50

    Radley JJ, Sisti HM, Hao J, Rocher AB, McCall T, et al. 2004. Chronic behavioral stress induces apical

    dendritic reorganization in pyramidal neurons of the medial prefrontal cortex.  Neuroscience 125:1–6Ramos BP, Arnsten AF. 2007. Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Phar-

    macol. Ther. 113:523–36

    Rau V, DeCola JP, Fanselow MS. 2005. Stress-induced enhancement of fear learning: an animal model of 

    posttraumatic stress disorder. Neurosci. Biobehav. Rev. 29:1207–23

    Rau V, Fanselow MS. 2008. Exposure to a stressor produces a long lasting enhancement of fear learning in

    rats. Stress  18:1

    Richter-Levin G. 2004. The amygdala, the hippocampus, and emotional modulation of memory.

     Neuroscientist  10:31–39

    Richter-Levin G, Akirav I. 2003. Emotional tagging of memory formation—in the search for neural mecha-

    nisms. Brain Res. Brain Res. Rev. 43:247–56

    Rocher C, Spedding M, Munoz C, Jay TM. 2004. Acute stress-induced changes in hippocampal/prefrontal

    circuits in rats: effects of antidepressants. Cereb. Cortex 14:224–29Rodrigues SM, Sapolsky RM. 2009. Disruption of fear memory through dual-hormone gene therapy.  Biol.

     Psychiatry 65:441–44

    Rodrigues SM, Schafe GE, LeDoux JE. 2004. Molecular mechanisms underlying emotional learning and

    memory in the lateral amygdala. Neuron 44:75–91

    Rodr´ ıguez Manzanares PA, Isoardi NA, Carrer HF, Molina VA. 2005. Previous stress facilitates fear mem-

    ory, attenuates GABAergic inhibition, and increases synaptic plasticity in the rat basolateral amygdala.

     J. Neurosci. 25:8725–34

    Romanski LM, Clugnet MC, Bordi F, LeDoux JE. 1993. Somatosensory and auditory convergence in the

    lateral nucleus of the amygdala. Behav. Neurosci. 107:444–50

    Roozendaal B, Hui GK, Hui IR, Berlau DJ, McGaugh JL, Weinberger NM. 2006. Basolateral amygdala nora-

    drenergic activity mediates corticosterone-induced enhancement of auditory fear conditioning. Neurobiol.

     Learn. Mem.  86:249–55Roozendaal B, McGaugh JL. 1997. Glucocorticoid receptor agonist and antagonist administration into

    the basolateral but not central amygdala modulates memory storage.  Neurobiol. Learn. Mem.  67:176–

    79

    RosenkranzJA, Moore H, GraceAA. 2003. The prefrontal cortex regulates lateral amygdala neuronalplasticity 

    and responses to previously conditio