ryzhkov helium-3 2008

Upload: sergei-ryzhkov

Post on 09-Apr-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/7/2019 Ryzhkov Helium-3 2008

    1/31

    HELIUM-3 - BASED FUSION PLASMA

    Sergei V. RyzhkovThermal Physics Department (E6)

    Bauman Moscow State Technical UniversityMoscow, Russia

    E-mail: [email protected]

    SVR 2008

    Alushta-2008 - International Conference and

    School on Plasma Physics and Controlled Fusion

    Alushta (Crimea), Ukraine, September 22-27, 2008

    Sept. 26, Friday. Session X. 3-6

    mailto:[email protected]:[email protected]
  • 8/7/2019 Ryzhkov Helium-3 2008

    2/31

    Simple Cylindrical Configurations

    Dont mix up with FRP, FRM and RFP !!!Astron is ring of relativistic electrons within a magnetic mirror device.ASTRON (the E-layer) never succeeded at achieving field reversal

    FUSIONLAB in BMSTUhttp://fusionlabgroup.com/

    SVR 2008

    Mirror Trap

    Prolate FRC

    Oblate Spheromak

    Advanced fuels

    Open and Closed Systems by plasma confinement

    and field lines

    http://fusionlabgroup.com/http://fusionlabgroup.com/
  • 8/7/2019 Ryzhkov Helium-3 2008

    3/31

    TABLE I. Experimental Plasma Parameters Ranges

    Field ReversedConfiguration

    Mirror Device Spheromak

    Radius (orseparatrix), rs

    0.02 0.40 m 0.02 0.40 m

    0.25 12 m

    1016 7.5 x 1022 m-3

    0.03 10 keV

    0.004 keV

    0.005 15 T

    12 70 %

    0.01 1 ms

    0.01 0.30 m

    Length, ls 0.2 1.5 m 0.2 0.7 m

    Electron density, ne 0.005 5 x 1021 m-3 0.001 1 x 1020 m-3

    Ion temperature, Ti 0.05 3 keV 0.05 0.5 keV

    Electrontemperature, Te

    0.03 0.5 keV 0.02 0.5 keV

    External B-field, Be 0.05 2 T 0.03 3 T

    Average beta, 50 95 % 5 20 %

    Energy confinement

    time, E

    0.05 0.5 ms 0.02 2 ms

    SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    4/31

    Alternative Experiments

    J. Santarius, APS Meeting, 2006

    SVR 2008

    Main chamber 6 m long

    http://www.aa.washington.edu/AERP/RPPL/programs/tcs.html

    LSX: 2.5 m long FRTP chamber

    2 m long translation section

    TCSU: Ultra high vacuum

    6 m long

    Central cell 7 m longG. Fiksel, ICPP 2008 A.Anikeev, Zvenigorod 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    5/31

    TABLE II. MF Experimental Devices (in alphabetical order)

    FRC: Mirror: Spheromak:CBFR University of

    California, Irvine, p-11BAMBAL-M - Budker

    InstituteBCTX UC Berkeley,

    heating of a decaying S

    FIREX - Cornell U, Ithaca

    MunsatUColorado,Boulder

    CLM Columbia University BSX, CT injection, Caltech,

    relevance to astrophys. jetsFIX Osaka University,

    NUCTE-3 Nihon Univ.

    GAMMA 10 Tandem MirrorPRC,University of Tsukuba

    HIT-CT Himeji, Japan,CTIXUCDavis,acceleration

    FRX-L LANL, MIF/MTF

    compression, high density

    GDT, SHIP BINP, LLNL,

    tokamak refueling

    HIT-SI U. Washington

    new for form. S inductivelyKT, BN, TL, TOR TRINITI,

    compression, translationGOL-3 Multiple Mirror Trap

    Budker InstuteSPHEX UMIST, pf

    structure, applied toroid field

    Lebedev Physical Institute

    RAS, Moscow

    FLM - Uppsala Univ.; MAP-

    II - Univ. of Tokyo, Hanyang

    SSPX LLNL, high currents,

    good confinementMRX Princeton, oblateflux-conserver, stability

    HANBIT Device KoreaBasic Science Ins

    SSSX, multi-probe surveysof the reconnection bet. 2 S

    TCS, STX, TRAP, PHD, IPA

    RMF, raise T, flux

    MultiCusp Trap

    Kurchatov Institute

    TS-3,4 Tokyo, merging of

    spheromaks, FRC, other TCFRM, Int. Coil Device, LD, LHD, LPD, RFP, rotomak, RT-1, TST-2, Z, -pinch

    SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    6/31

    Field Reversed Configurations:a) racetrack; b) Hills vortex/sphere, c) elongated

    Non-uniform FRC equilibria

    Open-filed lines (DEC)High (plasma/magnetic pressure)Poloidal magnetic field

    1 2 3 4 5

    0.2

    0.4

    0.6

    0.8

    1.0

    -0.6 -0.4 -0.2 0.2 0.4 0.6

    0.2

    0.4

    0.6

    0.8

    1.0

    SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    7/31

    Hills Vortex and Racetrack

    B0 = 10 000; Bw = 10 000; rc = 150; rs = 100; L = 500; b = 400;

    B0 = 8500; Bw = 8500; rc = 10; rs = 5; L = 50; b = 40 = 1.5

    SVR 2008

    Fusion Study Experiments

  • 8/7/2019 Ryzhkov Helium-3 2008

    8/31

    Analytical Equilibrium for FRC

    Sphere/ Hills vortex (HV) and Quasi-Equilibrium (SQE)

    B is the nominal magnetic field, Be = Bc= B0 is the field at;

    kand are small shaping parameters, and ~ 4/3.

    ( )UhU

    zR

    rBzrj c

    2/

    2

    0

    2

    sec2

    2),(

    =UBzrB c tanh),( =

    Uhpzrpm

    2sec),( =

    =

    0

    2

    2

    c

    m

    Bp

    ( )

    2

    1

    sec),( Uhnp

    pnzrn

    m

    m

    m =

    =

    ( )

    ( ) ( )

    12

    1

    sec),(

    =

    = UhT

    p

    pTzrT m

    m

    m

    ( )

    +

    ==

    u

    uuuU

    1

    1ln

    2

    tanh 1 ( )22/ 1 ududUU ==

    ( ) 122 = zRru ( ) ( )( )2144

    0 21 sLzRzR =

    constBBp c =

    =

    +

    0

    2

    0

    2

    22

    ( )222

    )/()/(12

    bzarBr

    HV =( )222

    2

    2

    2zra

    a

    BrHV =

    SVR 2008

    SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    9/31

    Analytical Equilibrium for Elongated FRC

    Solovev/ Hills vortex (EHV) and Steinhauer Quasi-Equilibrium (SAE)

    ( )2222

    2

    0

    4

    3 = ra

    a

    rBEHV

    +=

    2/322

    32

    0

    )(1

    2

    r

    arBEHV

    ext

    +

    +=

    2

    2

    2

    2

    2

    2

    12

    2

    0

    2

    0 42 a

    z

    a

    r

    a

    rE

    a

    rE

    aBSAE

    ext

    [ ] [ ]

    +

    +

    ++

    ++

    2/1222/1222

    )()( zbr

    zb

    zbr

    zbE

    )32/()4/)(1()4/)(6(1

    11

    2 6422

    2

    2

    22

    NNN

    N

    b

    z

    a

    rBrSAE +++++

    +

    =

    +

    +

    +

    4

    4

    22

    222

    4

    442

    2

    2

    2

    22422

    2

    3

    841

    4)

    81(

    21

    4 b

    z

    ba

    zr

    a

    r

    b

    z

    a

    r

    where B0 is the external magnetic field, R2 =r2 +z2 , z/k,

    k=b/a, =a/b, a=rs, b=ls. N is the shape index (1-EHV,0-RT)

    [ ]22

    1

    2

    2

    5

    12

    )2(

    34/

    EE

    EEaRbN s

    ++

    +=

    [ ]2/12

    )/(1

    1

    +

    =

    SVR 2008

    SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    10/31

    The FRC kinetic parameterS* is the ratio of the separatrix radius to the ion skin depth

    S*/E< 3.5 ( 7-reactor). S* = rs/(c/pi) ~ rs/i. Elongation E=ls/rs, k Ls/rs

    SVR 2008

    FRC Operating Regimes

    R. Siemon, ITC 2001, no RC

    SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    11/31

    The Spheromak has a q-profile,FRC Large Safety Factor

    Typical Confinement Region in(r, P, E) space for racetrack

    E is the total energy of a proton, P is its

    canonical angular momentum. The separatrixradius rs=1 , and half length

    ls=4 , external magnetic field Be=1 .

    The most probable q profile (TCS) hassignificant magnetic sheardq/d, where is

    the poloidal flux function.

    The safety factor

    The edge value of the safety factor

    qedge 2.2First known instance of a very high-

    plasma with a safety factor greater than 1.

    The nominal stability is achieved if

    g is the growth rate of the gravitational

    mode in a FRC.

    zBBEq

    2~

    0

    1

    =

    =

    rz

    sedge

    dr

    dB

    B

    lq

    = rBdlBq

    z

    21)(

    2/)/(2/1

    00 sgi lnmB >

    Highly sheared flows are likely to play a

    stabilizing role and possibly a transportreducing role.

    SVR 2008

    SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    12/31

    FRC Power BalanceThe global plasma power balance (the power losses are due to charged particle transport, neutrons,

    and bremsstrahlung radiation) is given by, (1)

    where Pf- fusion power, Pin - injection power, Pq - charged-particle transport power, Pn - neutronpower, Pb - bremsstrahlung power, and Pq - synchrotron radiation power. Power in units ofMW/m3, with Tin keV.

    (2)

    where and are the density of fuel ions, is the average reaction rate for reaction type i, and isthe fusion power of the reaction with , - charges of ion species i.

    The charged particle transport power is evaluated,(3)

    where is the FRC plasma volume, is the total ion density, is the ion temperature, is thedimensionless volume, and is the energy confinement time. This is the same as the thermal

    energy divided by energy confinement time., (4)

    where is the part of reacted tritium nuclei.The power per unit volume with relativistic correction due to bremsstrahlung (Bauman fusionlabgroup

    formula) iswhere is the effective charge. , (6)

    where Te, e and me are the electron temperature, charge and mass, respectively, and cis the speed oflight.

    The synchrotron power is (Trubnikov's formula) to estimate the power loss due to synchrotronradiation in trap and compact torus.

    (7)where rref is the reflection coefficient of the mirrors located at the plasma boundary, Cis the constant

    for a layer, cylinder, or torus. For example, 9 10-29

    for the tandem mirror and 4,1 10-17

    for FRC. for plasma in both open systems (Mirror Trap and FRC) is summarized as:

    f in q n b sP P P P P P+ = + + +

    1 2

    1 2( ),i i

    z z

    f i i fiP n n v E =

    ( ) /0032

    i e e

    qe

    n T n T V duVP

    +=

    1

    1

    2

    2 2

    DD DT D D T n ff DD DT

    n n nP v E v E = +

    43 2 1/ 2 2 3 4 2 34.836 10 (1.1 0.59 3.06 2.56 0.85 ) 1.78 0.15 0.58 ,b e e eff P n T Z x x x x x x x = + + + + + 3 2=10 /( )e ex T e m c

    5/ 2 1/ 2(1 )( ) ( ) ,e ref

    s es

    n rP C B T

    r

    =

    3= + + + + + = const p T D eHe 3 . D fuelHeT T T const = = =

    effZ

    0V 0n iT/

    V

    e

    1in 2in iv fE

    1iz

    2iz

    SVR 2008

    SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    13/31

    Bremsstrahlung Power

    (Bauman FusionLabGroup formula)

    0 50 100 150 200 250

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    TeHkeVL

    Pb

    HMWm

    3L

    0 50 100 150 200 2500

    1

    2

    3

    4

    Rider

    McNally

    Svensson

    Bauman

    ).58.015.078.1

    )85.056.206.359.0

    1.1(10836.4

    32

    432

    2/1243

    xxx

    xxxx

    ZTnp effeeb

    ++

    +++

    =

    3 2=10 /( )e ex T e m c

    Total (with corrections for dipole &quadrupole) radiation power in the

    electrontemperature range 1-500 keV.

    The impurity coefficient Z = 5/3, ne=2 1020 m-3

    SVR 2008

    TABLE D 3H T k k d FRC R tSVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    14/31

    TABLE. D-3He Tokamak and FRC Reactors

    Parameter Apollo ARIES-III ARTEMIS D-3He FRC

    Electrical power 1000 MW 1000 1000 MW 1000

    Fusion power 2144 MW 2682 1610 MW 1962

    Bremss + Synchr. radiation 652+1027 MW Fraction0.72 357 MW 776+8.7

    Neutron power 147 MW 110 77 MW 51.7

    Injected (Current Dr.) power (138 MW) (172) 5 MW 62.6 MW

    Net efficiency 0.43 Recirc. 0.24 0.36-0.62 0.49

    Neutron wall load peak Aver. 0.1 MW/m2 Aver. 0.08 0.27 MW/m2 0.15

    3He to D density ratio 0.63 ~ 1 0.5 1

    Major (separatrix) radius 7.89 m 7.5 1.12 m 1.23Minor radius (separt. length) 2.5 m 2.5 17 m 30.75

    Ion temperature 57 keV 55 87.5 keV 68.5

    Electron density 1.9 x 1020 m-3 3.3 x 1020 6.6 x 1020 m-3 5.4 x 1020

    Ion density 1.3 x 1020 m-3 2.1 x 1020 3.46 x 1020

    TF on axis (external B-field) 10.9 (19.3) T 7.6 (6.7) T 6.38

    Averaged beta 6.7 % Toroid. 24 % 90 % 74.8 %

    Energy confinement time 16 s 11.8,p/E=2 2.1 s 1.44 s

    Plasma current 53 MA 30 160 MA 298.8

    Electron temperature 51 keV 53 87.5 keV 68.5

    SVR 2008

    Main Reactions:SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    15/31

    Main Reactions:D + T n (14.07 MeV) + 4He (3.52 MeV).D + D n (2.45 MeV) + 3He (0.82 MeV),D + D p (3.02 MeV) + T (1.01 MeV),

    D + 3He p (14.68 MeV) + 4He (3.67 MeV).Aneutronic/ Low Radioactive Reactions:

    3He + 3He 2p + 4He + 12.86 MeV.p + 6Li 4He + 3He + 4.018 MeV.

    p + 11B 3 4He + 8.681 .3He + T D + 4He + 14.32 MeV. (3He + T n + p + 4He + 12.096 MeV)

    6Li + 3He p + 2 4He + 16.878 MeV. (6Li + 3He n + p + 7Be - 2.112 MeV)D + 6Li 2 4He + 22.371 MeV. (D + 6Li n + 7Be + 3.381 MeV)

    Fuel Cycle Radioactive fuel Direct radioactivity Indirect radioactiv

    D-T T n n, T

    D-D - n, T n

    D-3He - - n, T

    3

    He -3

    He - - -p-6Li - - n, T, 7Be, 11C

    p-11B - - n, 14C

    3H e - T T n n, T

    6Li - 3He - n, 7Be n, T

    D - 6Li - n, 7Be n, T

    SVR 2008

    SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    16/31

    Alternative Systems + Advanced Technology

    Fig. . D-T and D-3He Design

    Nonproliferation

    Near term medical isotope production, cancer therapy,

    FRC fueler for tokamak design (FFT), detection of explosives and chemical wastes.18O + p n + 18F; 94Mo + p n + 94mTc; 14N + p 4He + 11C;

    16O + p 4He + 13N; 13C + p n + 13N; 15N + p n + 15O.

    Mid term destruction of fissile material Long term small EPP plants, spaceand radioactive wastes. propulsion, hydrogen and synthetic fuel production.

    SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    17/31

    D-3He-6Li Fusion Cycleis a combination of conventional

    (more deuterium) and aneutronic fuels:

    ). 2 stages reactor. The part of theD-3He fusion power going to support the

    p-6Li reaction.Main reactions are shown

    b). 1 reactor with D-3He-6Li mixture(assumed lunar helium-3)

    c). Hybrid system (combination offirst and second schemes). Additional

    reactions shown in the last box.

    The auxiliary reactor:

    1) Polarized beams

    2) Catalyzed cycles

    3) QSSPA

    4) Reactor-breeder5) Colliding Beam Reactor

    SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    18/31

    Quasi-steady FRC Fusion Reactor

    Fig. . PHDX and TCS-U in the University ofWashington (RPPL) andCompact Tori in the Lebedev Physical

    Institute RAS

    0,5 m diameter, 0,8 m length

    0,1 m diameter, 2 m length

    0,8 m diameter, 1,5 m length

    SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    19/31

    Transport in Compact Torus (CT)

    Classical or Bohm or Anomalous?

    Two-fluid effects Poloidal flows Two-fluid analysisNON-LINEAR WAVES IN SHEARED FLOWSNon-ideal effects, particularly finite Larmor radius

    Distribution function f

    (r,v,t) for -species of ash particles (p, , T) is described by

    Fokker-Planck equation:

    where the first term at the right hand of equation is the Fokker-Planck collisional operator;the second is the Boltzman collisional operator taking into account nuclear elasticinteractions; S

    is the source of -species;

    is the loss time. The last term is

    modelling the ash removing.

    ( [ , ])a a a a

    a

    f f ez f v E v B

    t r m v

    + + + =

    a a aa

    FP B a

    f f f S

    t t

    = + +

    SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    20/31

    Particles Orbits MAGO

    Fig.1. Proton (14.7 MeV) trajectory in (X-Y)space. Typical example for particle orbits inLAE with initial parameters B=1 T, x=y=0.4 m,

    z=0, (theta)=90, (beta)=0.

    MAGO (Russian abbreviation formagnetic implosion) in Russia andas MTF (Magnetized Target Fusion)in the United States is an alternativeto the main approaches (magneticconfinement systems and inertialconfinement fusion). Iskra 5,6

    Uses a magnetic field within afusion plasma to suppress

    thermal conduction.

    SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    21/31

    Applications of AFs and CTs

    Thermonuclear Engine

    Magnetic Fusion Rocket (MFR)

    Proton/Neutron Source

    Reactor

    Thick Liquid Walled - Liquid LitiumLow recycling (wall pumping)

    Resource ~ 50 y

    Commercial Power Plant

    SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    22/31

    Conceptual Designs

    Fig.. ITER, Artemis (D-3He FRC), and ARIES III (D-3He Tokamak)

    R/a = 6.2 m/2 m, circumference 17 mDiameter 4 m, length 25 m

    Plasma radius 1.12 m, length 17 m

    Plasma major radius 7,5 m, minor radius 2,5 m

    L. El-Guebaly, J.F. Santarius, ARIES Team. FTI, 2008.Advanced Research Innovation and Evaluation Study

    H. Momota, NIFS, 1992.

    SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    23/31

    Inertial Electostatic Confinement (IEC)Steady-state D-3He proton production in an IEC fusion device

    - ion source with low pressure

    The first known non electrical application of

    D-3He fusion energy the medical isotope of technetium

    production, using molybdenum94Mo ( p , n ) 94mTc; 16O ( p , 4He ) 13N

    S. Krupakar Murali, Ph.D. thesis 2004.

    SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    24/31

    Magneto Inertial Fusion (MIF)/Magnetized Target Fusion (MTF)

    Plasma jet

    Arrows indicate

    flow direction

    Plasma gun

    Magnetized

    target plasma

    Plasma

    liner

    Stagnation Target Afterburner

    point"

    Radius(m) 0.00537 0.00943

    n (1027 m-3) 6.0 5.9

    T (keV) 10 0.02

    B (T) 240 299

    Merging Target Jets

    radius"

    Radius (m) 0.10 p=145 Mbar

    n (m-3) 1024 initial 1024

    Velocity 27 km/sT (keV) 0.002 0.001

    B (T) 1 Energy req 100 MJ

    These

    parameters at

    instant of impact

    and at peak

    compression for

    DT-liner (Zn, Ar,

    Xe pusher)

    R i t/F

    SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    25/31

    Requirement/Fea

    tureMFE MTF ICF

    Starting density 1014 cm-3 1017cm-3 1021cm-3

    Startingtemperature

    20 keV 200 eV cyrogenic

    Pulsed1000 seconds or

    longer

    Yes, a few

    microseconds

    Yes, a few

    nanosecondsDriver

    characteristics>150 MW, 25 MA,

    (ITER)10 MJ, 50 MA

    pulsed power1.8 MJ laser (NIF

    class)

    Cost of driver $10 Billion $50 Million $ 1.2 Billion

    Fusion Yield ~0.5-1.5 GW ~ 20 MJ ~ 5 MJ

    Magnetic fieldrequired

    Yes,superconducting

    yes no

    Plasma wallinteractions

    Yes, wall erosionis a problem

    Mix of metal andplasma is bad

    Rayleigh-Taylorlimitsconvergence

    Plasma Beta < 1~1 to >> 1 ( the

    plasma maylean on wall)

    ----

    SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    26/31

    Natural Gas Resources in East Siberia and Republic

    Sakha (Yakutia) ~ 301012 m3 GazpromMain components, %

    Gas field

    Methane Nitrogen Helium Ethane 3-6

    Kovykta (Kovyktinskoe) 91,39 1,52 0,28 4,91 1,78

    Chayandinskoe 85,48 6,44 0,5 4,57 2,58

    Yurubcheno-Tokhomskoe 81,11 6,39 0,18 7,31 5,06

    Srednebotuobinskoe 88,61 2,93 0,2-0,6 4,95 3,12

    Sobinsko-Paiginskoe 67,73 26,29 0,6 3,43 1,55V. Timoshilov, Oil & gas vertical 7, 2006.

    Even % is a volume fraction, then for3He/4He = 0,710-6 1 m3 contains 0,005 0,710-6=0,3510-8 m3 of helium-3. Total 301012 3,510-9 = 105 m3 or 1,5104 kg, i.. ~ 15 tones!Just in Eastern Siberia! US + Algeria + Canada + Japan (Niigata bassin - 3He/4He higherratio) + China + Australia (reserve and resource)

    Approximate power inputs on helium detachment (low temperature separation or producedrectification) from gases contained 0,02; 0,05; 0,5% He - 250, 100 and 10 kWh/m3.

    SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    27/31

    Terrestrial and Extraterrestrial Resources of3He

    Sample Helium content

    (volume x 10-6)

    3He/4He(atom x10-6)

    3He Potential(kg)

    Atmosphere

    Mantle gas vents

    US natural gas wells:

    Storage

    RF natural gas reserves:

    Storage

    World resources

    5,24

    -

    3000 (7 10-10 3He volume ratio)

    106

    ~ 48 1012 m3

    (3,5 10-9 volume ratio of3He)

    ~ 1014 m3 (3 1010 helium)

    (g /g)

    1,4 x 105 ion/m3

    30 (20% of surface, 5mdepth)

    7(80%of surface,10m d.)

    2,2 3,5 x 105

    2,2 3,5 x 105

    1,4

    11 21

    0,2

    0,2

    ~ 0,2 0,5

    ~ 0,1 0,3

    4 x 106

    3/year

    187

    29

    ~ 3500 (!!!)

    ~ 5500 (!)

    Solar wind

    Lunar surface:

    Maria

    Highlands

    Jupiter

    Saturn

    480

    400

    400

    140

    140

    3 107 ion/m2 s

    6 x 108

    5 x 108

    7 x 1022

    2 x 1022

    Some numbers - Wittenberg L.J., Santarius J.F., Kulcinski G.L., Fusion Technology 10, 1986.

    3He activitiesSVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    28/31

    1st Lunar Development Symposium, Atlantic City, 22-24 September 1986GLK, JFS, LJW (KSW).1st Wisconsin Symposium on Helium-3 and Fusion Power, 21-22 August 1990, Madison.

    US-USSR Workshop on D-3He Reactor Studies,25 September2 October 1991, Moscow.2nd Wisconsin Symposium on Helium-3 and Fusion Power, 19-21 July 1993, Madison.The Intern. Lunar Exploration Working Group (ILEWG) is a public forum created in 1994.9th International Conference on Exploration and Utilisation of the Moon (ICEUM9) held 22 - 26

    October 2007 in Sorrento (2005 Toronto's Lunar Conf, ICEUM5 Hawaii 2003).

    $1100/5l for3He, liquid 4He ~ $5/kg, gas 3He ~ 1,64M$/kg ($1,64 billion a ton), =134 g/m3

    The abundance of helium on the Earth are estimated as 3x1010 m3. In the crust, the concentrationof He is in 200 bigger than in the atmos. RF total deep-laid gas - 48 x 1012 m3 (1680 1012 f3).East Siberia, Yakutia resources of natural gas - 301012m3 (helium-rich >0.5%).

    Moon: ~ 500 million tones (regolith). Uranium:3

    He/4

    He = 1/3000, Jupiter: 1020

    t (atmosphere),Saturn + asteroids + comets (asteroids more rich of helium-3).

    3He-3He - 12,86 MeV (2,06x10-12 J). 1 gram ~ 2x1023 particles of helium-3. 1 ton of3He:12,86x106 x 1,6x10-19 x 2x1029 = 20,6x1016 J heat energy. I.. 1 t of3He ~ 5,4 million of oil!

    D-3He - 18,36 MeV (3x10-12 J). 1 ton of3He: 18,36x106 x 1,6x10-19 x 2x1029 = 59x1016 Jthermal energy. I.. 1 t of3He ~ 15,5 millions of oil!

    Oil - ~$150/bar. Urals (main russian brand) coefficient ~ 7,28 bar/t. 1 oil ton costs 1092$.At two billion dollars a t, the energy cost of3He is equivalent to oil at $7 per barrelWe can go up to $10-15 billion/t for Helium-3 from the Moon!

    Even, for Wittenberg figures (7 x 10-10 for3He Volume Fraction in natural gas) we have:just for Siberia 30x1012 710-10 = 21103 m3 of3He 2,8103 kg, i.. 2,8 t (tones, not a few kg) !Irkutsk region (He reserve in 2025) ~ 30 106 m3. World: 27,8 109 1,4 10-6 x 0,134 = 5,2 t He-3 !!!

    He activities

  • 8/7/2019 Ryzhkov Helium-3 2008

    29/31

  • 8/7/2019 Ryzhkov Helium-3 2008

    30/31

    D-3He Fusion Papers:

    20. V.I. Khvesyuk, S.V. Ryzhkov, J.F. Santarius, G.A. Emmert, C.N. Nguyen, and L.C. Steinhauer, D-3He Field-Reversed Configuration Fusion Power Plants, Transactions of Fusion Technology 39, 410 (2001).

    21. R.F. Post and J.F. Santarius, Open Confinement Systems and the D-3He Reaction, Fusion Technology, 22,13 (1992).

    22. S.V. Ryzhkov, V.I. Khvesyuk, A.A. Ivanov. Progress in an alternate confinement system called a FRC,Fusion Science and Technology 43, 304 (2003).

    23. S.G. Bespoludennov, V.I. Khripunov, V.I. Pistunovich, G.A. Emmert, J.F. Santarius, G.L. Kulcinski, D-3

    HeTokamak - Reactor, Fourteenth International Conference on Plasma Physics and Controlled Nuclear FusionResearch, 30 September - 7 October 1992, Wrzburg, Germany (IAEA, Vienna, 1993), Peer-reviewed conference.

    24. M.V. Krivosheev, V.N. Litunovsky, Compact D-3He fueled fusion reactor based on an FRC, Trans. of FusionTechnol. 27, 337 (1995).

    25. F. Najmabadi, R. W. Conn, et al., "The ARIES-III Tokamak Fusion Reactor Study - The Final Report,UCLA report UCLA-PPG-1384 (1994). See http://aries.ucsd.edu/LIB/REPORT/ARIES-3/final.shtml.

    26. W. Kernbichler, Operational parameters for D-3He in field-reversed configurations, Fusion Technol. 21, 2297(1992).

    27. B. Coppi, P. Detragiache, S. Migliuolo, M. Nassi, B. Rogers, D-3He burning, second stability region, and theIgnitor experiment, Fusion Technol. 25, 353 (1994).

    28. C.G. Bathke and the ARIES team, Systems analysis in support of the selection of the ARIES-RS designpoint, Fusion Eng. and Design 38, 59 (1997).

    29. G.L. Kulcinski, G.A. Emmert, J.P. Blanchard et al., Summary of APOLLO, a D-3He tokamak reactor design,Fusion Technol. 21, 2292 (1992).

    30. H. Momota, A. Ishida, Y. Kohzaki et al., Conceptual design of D-3He FRC reactor ARTEMIS, FusionTechnol. 21, 2307 (1992). 31. Moir R.W. et al., Thick liquid-walled, field-reversed configuration. Preprint UCRL-JC-139086(2000). 32. J.F. Santarius, E.A. Mogahed, G.A. Emmert, H.Y. Khater, C.N. Nguyen, S.V. Ryzhkov, M.D. Stubna, L.C.

    Steinhauer, G.H. Miley, Final report for the field-reversed configuration power plant critical-issue scoping study.Fusion Technology Institute, University of Wisconsin, Madison. Report UWFDM-1129 (2000).

    33. S.V. Ryzhkov, Compact Toroid and Advanced Fuel - Together to the Moon?!, Fusion Science and Technol.,

    47 ( 1), 342 (2005).

    SVR 2008

  • 8/7/2019 Ryzhkov Helium-3 2008

    31/31

    CONCLUSIONS:

    1. FRC viable high power density alternative to the tokamak

    2. Advanced fuels such as p, D, and 11B are plentiful on Earth, but large

    scale deployment of D-3

    He power plants would require developing eitherbreeding or the large resource (~ 109 kg) on the lunar surface

    3. JAEA, NASA, NASDA, Russian Space (Cosmos) Agency are seriouslyinvestigating the near term return of humans to the Moon, including theassessment and mining technology. Solar system exploration anddevelopment will be in progress, and lunar operations for science andpossibly 3He acquisition are likely to have begun. 3He acquisition requiresessentially developed technology

    4. The importance of energy for the global environmental and theoretical

    research program exists for the high beta configurations best suited toburning advanced fusion fuels

    5. As such, they deserve further study, but the present worldwide budget foradvanced fuel research is less than $1M...