search for higgs pair production with jjjj final...

47
Draft version 0.3 ATLAS NOTE January 16, 2017 Search for Higgs pair production with decays to WW (jjjj) and γγ in 1 36.5 fb -1 proton-proton collision data at 13 TeV in the ATLAS detector 2 ATLAS Collaboration 1 , Yu Zhang 1 , Jin Wang 2. , Jason Veatch 3. , Kai Henßen 3. , Stan Lai 3. 3 1. Institute of High Energy Physics, Chinses Academy of Siences, Beijing, China 4 2. University of Sydney, Sydney, Australia 5 3. II. Physikalisches Institut, Georg-August-Universit¨ at, G ¨ ottingen, Germany 6 Abstract 7 A search is performed for resonant and non-resonant Higgs pair production with one 8 Higgs boson decaying to full hadronic WW * and the other to γγ using proton-proton colli- 9 sion data corresponding to an integrated luminosity of 36.5 fb -1 at a 13 TeV centre-of-mass 10 energy recorded with the ATLAS detector. No deviation from the Standard Model predic- 11 tion is observed. The observed (expected) upper limit at 95% confidence level on the cross 12 section for gg hh is XXX pb (XXX pb) for the non-resonant Higgs pair production. For 13 resonant Higgs pair production, the observed (expected) upper limits at 95% confidence 14 level on cross section times the branching ratio of X hh range from XXX pb (XXX pb) to 15 XXX pb (XXX pb) as a function of the resonant mass from 260 GeV to 500 GeV assuming 16 that the narrow-width approximation holds. 17 c Copyright 2017 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.

Upload: others

Post on 25-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

Draft version 0.3

ATLAS NOTEJanuary 16, 2017

Search for Higgs pair production with decays to WW(jjjj) and γγ in1

36.5 fb−1 proton-proton collision data at 13 TeV in the ATLAS detector2

ATLAS Collaboration1, Yu Zhang1, Jin Wang2., Jason Veatch3., Kai Henßen3., Stan Lai3.3

1.Institute of High Energy Physics, Chinses Academy of Siences, Beijing, China42.University of Sydney, Sydney, Australia5

3.II. Physikalisches Institut, Georg-August-Universitat, Gottingen, Germany6

Abstract7

A search is performed for resonant and non-resonant Higgs pair production with one8

Higgs boson decaying to full hadronic WW∗ and the other to γγ using proton-proton colli-9

sion data corresponding to an integrated luminosity of 36.5 fb−1 at a 13 TeV centre-of-mass10

energy recorded with the ATLAS detector. No deviation from the Standard Model predic-11

tion is observed. The observed (expected) upper limit at 95% confidence level on the cross12

section for gg → hh is XXX pb (XXX pb) for the non-resonant Higgs pair production. For13

resonant Higgs pair production, the observed (expected) upper limits at 95% confidence14

level on cross section times the branching ratio of X → hh range from XXX pb (XXX pb) to15

XXX pb (XXX pb) as a function of the resonant mass from 260 GeV to 500 GeV assuming16

that the narrow-width approximation holds.17

c© Copyright 2017 CERN for the benefit of the ATLAS Collaboration.Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.

Page 2: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 1

Contents18

1 Statements 319

1.1 version 0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

1.2 version 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

2 Introduction 422

3 Data and Monte Carlo samples 523

3.1 Data samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

3.2 Monte Carlo samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

3.2.1 MC samples for signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

3.2.2 MC samples for SM single Higgs backgrounds . . . . . . . . . . . . . . . . . . 527

4 Object definition 728

4.1 Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729

4.2 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730

4.3 Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731

4.4 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832

4.5 Overlap removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833

5 Event selection 934

6 Selection optimization 1135

6.1 Baseline strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1136

7 Signal and background estimations 1637

7.1 Signal modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1638

7.2 Simulation of Higgs background processes . . . . . . . . . . . . . . . . . . . . . . . . . 1639

7.3 Estimating continuum background processes . . . . . . . . . . . . . . . . . . . . . . . . 2140

8 Systematic uncertainties 3041

8.1 Luminosity uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3042

8.2 Theory uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3043

8.3 Object uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3144

8.3.1 Leptons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3145

8.3.2 Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3146

8.3.3 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3147

8.3.4 b-tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3148

8.4 Background modeling uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3149

9 Statistical interpretation 3250

10 Unblinded result 3451

11 Summary 3552

Appendices 3853

Page 3: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 2

A Discussion on selection optimization 3854

A.1 Jet combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3855

A.2 Mass window of diphoton plus jet system . . . . . . . . . . . . . . . . . . . . . . . . . 3856

A.3 pTγγ cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3857

Page 4: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 3

1 Statements58

1.1 version 0.059

22.1 fb−1 of data and 260 GeV signal sample are used for first selection optimization.60

To do list:61

• optimize the jet combination. Selecting leading 4 or 3 jets is not the optimal strategy.62

• check signal of other mass point and investigate more kinematic variables for further selection63

optimization.64

• signal and background modeling.65

• systematics study.66

1.2 version 1.067

• further discuss the selection optimization but still keep the baseline selection68

• boosted analysis will not go to Moriond201769

• We need to fix the problem of spurious signal and determine the final background modeling.70

• The experimental systematics will come soon.71

Page 5: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 4

2 Introduction72

The discovery of Higgs boson in 2012 [1, 2] by the ATLAS and CMS collaboration at the LHC is73

a victory of the mechanism of electroweak symmetry breaking (EWSB) and it opened a new door to74

test the boson sector of the Standard Model (SM). The further studies of the Higgs boson coupling to75

fermions and bosons as well as the measurments of the spin and parity properties show the consistency76

with the the prediction of the SM[3, 4, 5]. The measurement of the self-coupling of the Higgs boson is77

also crucial to test the mechanism of EWSB. Due to their expected small cross sections predicted by the78

SM [6, 7, 8], this measurement is sensitive only at the high luminosity LHC. However, some beyond SM79

such as Minimal Supersymmetric Standard Model (MSSM) [9], Two Higgs doublet (2HDM) [10] can80

potentially boost the production rate. With these models, a heavy CP-even Higgs can decay into two SM81

Higgs (h) which leads to a resonant search in comparison to the non-resonant one as SM predicts.82

Both the ATLAS and CMS collaborations have extensively searched for resonant and non-resonant83

higgs pair production [11, 12, 13, 14]. The results of the decay channels of hh → bbbb, hh → γγbb,84

hh → γγWW∗ → γγlvqq and hh → bbττ have been published by ATLAS. In this note, the search for85

hh→ γγWW∗ with both W decaying hadronically has been reported. The resonance mass mH considered86

in this paper ranges from 260 GeV to 500 GeV. In contrast to γγlvqq final state, this channel has higher87

signal rate but more QCD backgrounds. different Kinematic variables are investigated to further suppress88

QCD backgrounds.89

This paper is organized as follows. Data and Monte Carlo (MC) samples are described in Sec. 390

and the object reconstruction and identification are outlined in Sec. 4. The analyses including event91

selection and further optimization are presented in Secs. 5 and 6, respectively. The signal modeling and92

background estimation are discussed in Sec. 7. Different source of uncertainties from both experimental93

and theoretical sides are summarized in Sec. 8. The statistical and combination procedure between γγ3 j94

and γγ4 j categories is described in Sec. 9. Finally, the results of the analyses are reported in Sec. 11.95

Page 6: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 5

3 Data and Monte Carlo samples96

3.1 Data samples97

The data samples used in this analysis correspond to the data recorded by ATLAS in the whole 2015 (3.298

fb−1) and 33.3 fb−1 of 2016, which sums up to an integrated luminosity of 36.5 fb−1. The whole dataset99

is recorded with all subsystems of ATLAS operational 1.100

3.2 Monte Carlo samples101

SM single Higgs bacgkrounds and signals are estimated with MC samples that are documented in this102

section, while the continuum photon background of the SM processes with multiphotons and multijets is103

estimated in sideband 2 with the data-driven method as described in Section 7.3.104

The simulation under MC15c configuration is used in the analysis. The samples are generated with105

the consideration of multiple interactions per bunch crossing by introducing pileup noise at the stage106

of digitization. MC15c configuration incorporates the pileup condition that is an average of the actual107

pileup condition in 2015 data and an estimation for 2016 data.108

3.2.1 MC samples for signals109

Signal samples are generated with MG5 MC@NLO [15]. For both non-resonant and resonant110

productions, the event generation is performed using a next-to-leading-order SM Higgs pair model devel-111

opped by the Cosmology, Particle Physics and Phenomenology (CP3) theory group [16]. Events are gen-112

erated with a Higgs Effective Field Theory (HEFT) using MC@NLO method [17] and are reweighted113

to take into account top quark mass dependence. The top mass can become an important effect [18],114

particularly for the non-resonant case. The shower is implemented by Herwig++ [19] with UEEE5115

underlying-event tune [20], and the PDF set CTEQ6L1 [21] is used. The heavy scalar, H, is assumed116

to have a narrow width. Technically its decay width is set to 10 MeV in the event generation for the117

following masses: 260 GeV, 300 GeV, 400 GeV, 500 GeV, 750 GeV, 1 TeV, 1.5 TeV, 2 TeV, 2.5 TeV, and118

3 TeV. The generator level filter ParentChildFilter implements the selection of these decay products.119

Details on the signal samples are listed in Table 1. All signal samples are produced with the ATLAS fast120

simulation framework (AF2).121

3.2.2 MC samples for SM single Higgs backgrounds122

Simulated samples for SM single Higgs background are produced to investigate the components of this123

background in mγγ and to estimate their contributions. The SM single Higgs background considered here124

is assumed to be produced via five production modes: gluon-gluon fusion (ggh), vector boson fusion,125

(VBF), Higgsstrahlung (Wh and Zh) and Higgs associated production with a pair of top quarks (tth),126

where h is the light (SM-like) 125 GeV Higgs boson. These samples are simulated using the full ATLAS127

simulation and reconstruction chain. The mass of the SM Higgs boson is set to 125 GeV. More details128

on generator, parton shower and simulation tags are listed in Table 2.129

The cross sections at√

s = 13 TeV corresponding to each production mode are listed in Table 3. In130

the analysis, these cross sections will be multiplied by the h → γγ branching ratio of 0.00228, since all131

simulated samples are produced with SM Higgs decaying into photon pairs.132

1Good Run Lists are data15 13TeV.periodAllYear DetStatus-v79-repro20-02 DQDefects-00-02-02 PHYS StandardGRL All Good 25ns.xml for 2015 data and data16 13TeV.periodAllYear DetStatus-v82-pro20-12 DQDefects-00-02-04 PHYS StandardGRL All Good 25ns.xml for 2016 data

2The sideband is defined as mγγ ∈ [105, 160] GeV excluding the Higgs mass window as defined in Section 5.

Page 7: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 6

DSID Processes Generators, tunes and PDFs Tags342621 non-resonant MadGraph + Herwigpp UEEE5 CTEQ6L1 e4419 a766 a821 r7676 p2691343756 X → hh, 260 GeV MadGraph + Herwigpp UEEE5 CTEQ6L1 e5153 a766 a821 r7676 p2691343758 X → hh, 300 GeV MadGraph + Herwigpp UEEE5 CTEQ6L1 e5153 a766 a821 r7676 p2691343761 X → hh, 400 GeV MadGraph + Herwigpp UEEE5 CTEQ6L1 e5153 a766 a821 r7676 p2691343763 X → hh, 500 GeV MadGraph + Herwigpp UEEE5 CTEQ6L1 e5153 a766 a821 r7676 p2691343818 X → hh, 750 GeV MadGraph + Herwigpp UEEE5 CTEQ6L1 e5153 a766 a821 r7676 p2691343819 X → hh, 1000 GeV MadGraph + Herwigpp UEEE5 CTEQ6L1 e5153 a766 a821 r7676 p2691343820 X → hh, 1500 GeV MadGraph + Herwigpp UEEE5 CTEQ6L1 e5153 a766 a821 r7676 p2691343821 X → hh, 2000 GeV MadGraph + Herwigpp UEEE5 CTEQ6L1 e5153 a766 a821 r7676 p2691343822 X → hh, 2500 GeV MadGraph + Herwigpp UEEE5 CTEQ6L1 e5153 a766 a821 r7676 p2691343823 X → hh, 3000 GeV MadGraph + Herwigpp UEEE5 CTEQ6L1 e5153 a766 a821 r7676 p2691

Table 1: Simulated signal samples

DSID Processes Generators, tunes and PDFs Tags341000 ggh Powheg+Pythia8 AZNLO CTEQ6L1 e3806 s2608 r7772 r7676 p2669341001 VBF Powheg+Pythia8 AZNLO CTEQ6L1 e3806 s2608 r7772 r7676 p2669341067 Wh Pythia8 A14 NNPDF2.3LO e3796 s2608 s2183 r7772 r7676 p2669341068 Zh Pythia8 A14 NNPDF2.3LO e3796 s2608 s2183 r7772 r7676 p2669341069 tth Pythia8 A14 NNPDF2.3LO e3796 s2608 s2183 r7772 r7676 p2669

Table 2: Simulated SM single Higgs background samples.

production cross sectionsggh 48.52 pbVBF 3.779 pbWh 1.369 pbZh 0.8824 pbtth 0.5065 pb

gg→ hh 33.41 fb

Table 3: Cross sections for SM single Higgs processes at√

s = 13 TeV with mh = 125.09 GeV and theSM Higgs pair productions, gg→ hh.

Page 8: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 7

4 Object definition133

The object definition is similar to what is used by the HGam group. The analysis framework of hh →134

γγWW∗ is based on the HGamAnalysisFramework that is centrally developed by HGam group. The tag135

of the framework is HGamAnalysisFramework-00-02-55-11 which is used to produce official MxAOD136

samples of version h013a.137

4.1 Photons138

• The ET of leading (sub-leading) photon is required to be larger than 25 GeV.139

• The |η| of photon is considered up to 2.37, vetoing the crack region 1.37 < |η| < 1.52.140

• Tight photons are required, as is the default in HGam group. The photon identification algorithm is141

based on the lateral and longitudinal energy profiles of the shower measured in the electromagnetic142

calorimeter.143

• The isolation working point FixedCutLoose is used. It is one of the recommended points from144

the isolation forum. Photons are required to pass both calorimeter-based and track-based isolation145

requirements.146

• Photons are passed through the e/γ ambiguity tool, as is the default in the HGam group. The ambi-147

guity tool is developed to discriminate photons and electrons that can otherwise have overlapping148

selections. In particular, converted photons from electrons in the silicon can lead to large e/γ fake149

rate. The ambiguity tool makes requirements on the number of silicon hits and the conversion rates150

to keep this rate under control without significant loss of signal efficiency.151

4.2 Jets152

• The anti-kt algorithm [22] with the size parameter of R = 0.4 is used to reconstruct jets from153

topological clusters in the calorimeters that are calibrated to the EM scale.154

• Jets undergo an energy calibration.155

• Jets are required to have pT > 25 GeV and |η| < 2.5.156

• Jets from pileup are suppressed by applying a JVT (Jet Vertex Tagger) cut. The jet is rejected if157

JVT< 0.59 for pT < 60 GeV and |η| < 2.4.158

• Events with a jet passing the LooseBad cut are rejected. The LooseBad jet quality requirement is159

designed to reject fake jets caused by detector readout problems and non-collision backgrounds.160

4.3 Electrons161

Electrons are reconstructed from energy clusters in the EM calorimeter matched with tracks reconstructed162

in the inner detector.163

• ET is required to be larger than 10 GeV.164

• |η| is required to be less than 2.47 vetoing the transition region with 1.37 < |η| < 1.52.165

• The |d0| significance (d0/σ(d0)) with respect to the primary vertex in the event is required to be166

less than 5.167

Page 9: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 8

• The |z0| with respect to the primary vertex in the event is required to be less than 0.5 mm.168

• Identification: Medium quality electrons are used.169

• Isolation: Loose electrons are used.170

4.4 Muons171

Muons are reconstructed from tracks in the inner detector and the muon spectrometer.172

• pT is required to be larger than 10 GeV.173

• |η| is required to be less than 2.7.174

• The |d0| significance with respect to the primary vertex in the event is required to be less than 3.175

• The |z0| with respect to the primary vertex in the event is required to be less than 0.5 mm.176

• Identification: Medium quality muons are used.177

• Isolation: GradientLoose is used.178

4.5 Overlap removal179

Since the collections of objects are reconstructed using different algorithms in parallel (i.e. there is no180

check to prevent a single cluster or track from being included in the reconstruction of two different object)181

it is necessary to implement a set of rules to remove objects nearby each other to avoid double counting.182

The rules are implemented sequentially as defined below:183

• The two leading photons are always kept.184

• Electrons with ∆R(e, γ) < 0.4 are removed.185

• Jets with ∆R( jet, γ) < 0.4 are removed.186

• Jets with ∆R( jet, e) < 0.2 are removed.187

• Muons with ∆R(µ, γ) < 0.4 or ∆R(µ, jet) < 0.4 are removed188

• Electrons with ∆R(e, jet) < 0.4 are removed.189

Page 10: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 9

5 Event selection190

The event selection procedure identifies two photons and then applies requirements on the multiplicities191

of jets in order to increase the signal purity and background rejection for events with multi-jets. This192

analysis selects events with a boosted topology as well as events with a resolved topology. The event193

selection for the analysis starts with the full di-photon selection from the h → γγ analysis in RUN II to194

select two high pT isolated photons.195

• Trigger: Events are required to pass at least one of the following diphoton triggers, using a log-196

ical OR: HLT g35 loose g25 loose or HLT g35 medium g25 medium or HLT 2g50 loose or197

HLT 2g20 tight.198

• Good Run List and Detector Quality: Events must belong to the luminosity blocks specified in199

the Good Run Lists:200

– data15 13TeV.periodAllYear DetStatus-v79-repro20-02 DQDefects-00-02-02 PHYS201

StandardGRL All Good 25ns.xml for 2015 data202

– data16 13TeV.periodAllYear DetStatus-v82-pro20-12 DQDefects-00-02-04 PHYS203

StandardGRL All Good 25ns.xml for 2016 data204

These GRLs reject events with data integrity errors in the calorimeters and incomplete events205

where some detector information is missing are rejected, as well as events which are corrupted due206

to power supply trips in the tile calorimeter.207

• Primary Vertex: The primary vertex is selected using the neural network algorithm from HGam208

group. The photons’ four momenta, JVT and track isolation are corrected with respect to this209

origin, and the mass of the diphoton system is accordingly recalculated.210

• 2 loose photons: At least two loose photons with ET > 25 GeV and within the detector acceptance211

are selected.212

• The other cuts on photons involving Identification (tight ID), Isolation, Rel.Pt cuts. The relative213

pT cut requires the pT of leading (sub-leading) photon to be larger than 0.35(0.25) of diphoton214

invariant mass. The diphoton invariant mass is required to be within the range mγγ ∈ [105, 160]215

GeV.216

• Higgs mass window: |mγγ−mh| < 2σmγγ is also required where mh = 125.09 GeV is the measured217

SM Higgs boson mass and σmγγ = 1.7 GeV is the experimental diphoton mass resolution. This218

selection is only used to define signal region and sideband.219

• Lepton veto: Events are required to contain exactly zero electrons or muons.220

• b-veto: In order to suppress backgrounds with top quarks and ensure orthogonality to other hh221

searches (bbγγ, bbbb, bbττ, etc.), the event is rejected if there are any b-tagged jets. The b-tagger222

is MV2c10 with a b-tagging efficiency of 70%.223

• jet multiplity: Considering the jet pT at truth level, the two categories are defined by exact 3 jets224

or at least 4 jets to enlarge signal efficiency.225

The efficiencies of common event selection are listed in Table 4. These efficiencies are derived for226

signals from simulated samples. After the selection of the two photons, the signal efficiencies range227

from 36.5% to 42.4%, while after the additional selection on the jets and the leptons on the di-photon,228

the signal efficiencies range from 12.6% to 28.3%, for a resonant mass from 260 and 500 GeV.229

Page 11: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 10

SM Resonant hhHiggs pair 260 GeV 300 GeV 400 GeV 500 GeV

All Events 100.0% 100.0% 100.0% 100.0% 100.0%Duplicate 100.0% 100.0% 100.0% 100.0% 100.0%GRL 100.0% 100.0% 100.0% 100.0% 100.0%Pass Trigger 71.6% 67.3% 67.7% 69.7% 72.8%2 loose photons 59.1% 56.3% 55.9% 57.3% 59.9%Tight ID 49.4% 46.3% 45.6% 47.5% 50.2%Isolation 44.7% 39.2% 39.1% 42.6% 45.9%Rel.Pt cuts 41.2% 36.6% 35.5% 38.7% 42.6%105 < mγγ < 160 GeV 41.0% 36.5% 35.4% 38.6% 42.4%lepton veto 40.9% 35.1% 35.3% 38.5% 42.3%B-veto 38.2% 33.6% 33.6% 36.1% 39.2%jet multiplicity 25.6% 12.6% 16.1% 23.2% 28.3%

Table 4: Efficiencies for the common event selection criteria

Page 12: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 11

6 Selection optimization230

The event selection is further optimized to select the WWyy full hardronic events. In the optimization,231

the signal cross section σ(pp → hh) is assumed to be 1 pb. The signal modeling and the estimation of232

the SM Higgs background are both from MC. Data sideband |mγγ − 125.09| > 3.4GeV is used to model233

the continuum background. As the signal jets from W boson are very soft, one of the signal jets is likely234

to fail the jet pT cut. Therefore the events are split into exact 3 jet category and at least 4 jet category to235

cover this. The pT of signal jets at truth level can be found in Figure 1.236

The general selection optimization is as following. First, define a mass window of diphoton con-237

taining 85 % signal events for resonant search. Second, a scan on pTγγ is performed to improve the238

significance since the SM Higgs will be boosted in di-Higgs event. The significance is calculated by Eq239

1, where the yields of BSM signal and SM Higgs are estimated from MC and the continuum background240

yield is estimated from an exponential fit on data sideband.241

σsignal =

√2 ×{

(Nsignal + NS M Higgs + Ncontinuum) × ln(1 +Nsignal

NS M Higgs + Ncontinuum) − Nsignal

}(1)

pT_j11

0 20 40 60 80 100 120 140 160 180 200

Eve

nts/

5.0

0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35WWyy260WWyy300WWyy400WWyy500WWyy

(a) leading jet of on-shell W

pT_j12

0 20 40 60 80 100 120 140 160 180 200

Eve

nts/

5.0

0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45 WWyy260WWyy300WWyy400WWyy500WWyy

(b) subleading jet of on-shell W

pT_j21

0 20 40 60 80 100 120 140 160 180 200

Eve

nts/

5.0

0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45WWyy260WWyy300WWyy400WWyy500WWyy

(c) leading jet of off-shell W

pT_j22

0 20 40 60 80 100 120 140 160 180 200

Eve

nts/

5.0

0

0

0.1

0.2

0.3

0.4

0.5

WWyy260WWyy300WWyy400WWyy500WWyy

(d) leading jet of off-shell W

Figure 1: pT of four signal jets at truth level

6.1 Baseline strategy242

The first strategy used in this analysis simply chooses the 85% signal efficiency diphoton mass window243

for 3 jet and 4 jet categories and scans the pT of the diphoton to maximize the signal significance as244

mentioned above. This is done for different resonant mass from 260 GeV to 500 GeV. The invariant245

Page 13: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 12

mass distribution of diphoton for 3 jet and 4 jet categories is shown in Figure 2. And Figure 3 shows the246

defined mass windows that contain 85 % of signal yields. The distribution of pTγγ is shown in Figure247

4. The scan on pTγγ as a function of significance is shown on Figure 5, Figure 6, Figure 7, Figure 8,248

Figure 9 for resonance masses from 260 GeV to 500 GeV, respectively. Table 5 summarizes the final249

optimization cuts and results. More details about the additional optimization can be seen in Appendix A.250

4jγγm

0 200 400 600 800 1000

Eve

nts/

5.0

0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09 WWyy260WWyy300WWyy400WWyy500WWyydata_sideband

(a) 3 jet category

4jγγm

0 200 400 600 800 1000

Eve

nts/

5.0

0

0

0.01

0.02

0.03

0.04

0.05WWyy260WWyy300WWyy400WWyy500WWyydata_sideband

(b) 4 jet category

Figure 2: invariant mass of γγ + 3 or 4 jets

Hm

250 300 350 400 450 500

jjjj

γγU

pper

and

Low

er c

ut o

n m

200

300

400

500

600

700

800

900

10003jet_LD categorymass windown with signal efficiency of 85 %

455

205

480

240

580

315

700

415

(a) 3 jet category

Hm

250 300 350 400 450 500

jjjj

γγU

pper

and

Low

er c

ut o

n m

200

400

600

800

1000

12004jet_LD categorymass windown with signal efficiency of 85 %

600

250

645

280

745

360

815

460

(b) 4 jet category

Figure 3: mass window of mγγ4(3) j containing 85 % of signal events

pT_yy

0 20 40 60 80 100 120 140 160 180 200

Eve

nts/

5.0

0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2WWyy260WWyy300WWyy400WWyy500WWyydata_sideband

(a) 3 jet category

pT_yy

0 20 40 60 80 100 120 140 160 180 200

Eve

nts/

5.0

0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18WWyy260WWyy300WWyy400WWyy500WWyydata_sideband

(b) 4 jet category

Figure 4: pTγγ distribution in 3 jet and 4 jet category

Page 14: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 13

γγm

110 120 130 140 150 160

Eve

nts

/ ( 2

.5 )

0

50

100

150

200

250

300

350

400

450 )γγexp(a*m

a:-0.035

[121.6,128.4] : 580.599γγm

(a) data sideband fit of 3 jet category

cutγγ

pT

0 50 100 150 200 250 300 350 400

sign

ifica

nce

0

0.005

0.01

0.015

0.02

0.025 mH = 260 GeV

3jet category

-1 Ldt = 36.5 fb∫

< 55 GeVγγcut : pT

signal: 0.425

SM Higgs: 6.734

continuum: 580.599

significance: 0.018

(b) data sideband fit of 4 jet category

γγm

110 120 130 140 150 160

Eve

nts

/ ( 2

.5 )

0

20

40

60

80

100

120

140

160 )γγexp(a*m

a:-0.035

[121.6,128.4] : 180.216γγm

(c) cut scan of 3 jet category

cutγγ

pT

0 50 100 150 200 250 300 350 400

sign

ifica

nce

0

0.005

0.01

0.015

0.02

0.025 mH = 260 GeV

4jet category

-1 Ldt = 36.5 fb∫

< 70 GeVγγcut : pT

signal: 0.240

SM Higgs: 2.017

continuum: 180.216

significance: 0.018

(d) cut scan of 4 jet category

Figure 5: scan the pTγγ cut and plot the data sideband fit for mH = 260 GeV.

γγm

110 120 130 140 150 160

Eve

nts

/ ( 2

.5 )

0

100

200

300

400

500 )γγexp(a*m

a:-0.024

[121.6,128.4] : 779.446γγm

(a) data sideband fit of 3 jet category

cutγγ

pT

0 50 100 150 200 250 300 350 400

sign

ifica

nce

0

0.005

0.01

0.015

0.02

0.025 mH = 300 GeV

3jet category

-1 Ldt = 36.5 fb∫

> 40 GeVγγcut : pT

signal: 0.497

SM Higgs: 18.182

continuum: 779.446

significance: 0.018

(b) data sideband fit of 4 jet category

γγm

110 120 130 140 150 160

Eve

nts

/ ( 2

.5 )

0

20

40

60

80

100

120

140

160

180 )γγexp(a*m

a:-0.027

[121.6,128.4] : 289.794γγm

(c) cut scan of 3 jet category

cutγγ

pT

0 50 100 150 200 250 300 350 400

sign

ifica

nce

0

0.005

0.01

0.015

0.02

0.025

0.03 mH = 300 GeV

4jet category

-1 Ldt = 36.5 fb∫

> 25 GeVγγcut : pT

signal: 0.368

SM Higgs: 6.870

continuum: 289.794

significance: 0.021

(d) cut scan of 4 jet category

Figure 6: scan the pTγγ cut and plot the data sideband fit for mH = 300 GeV.

Page 15: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 14

γγm

110 120 130 140 150 160

Eve

nts

/ ( 2

.5 )

0

10

20

30

40

50

60

70

80 )γγexp(a*m

a:-0.014

[121.6,128.4] : 120.371γγm

(a) data sideband fit of 3 jet category

cutγγ

pT

0 50 100 150 200 250 300 350 400

sign

ifica

nce

0

0.01

0.02

0.03

0.04

0.05

0.06 mH = 400 GeV

3jet category

-1 Ldt = 36.5 fb∫

> 120 GeVγγcut : pT

signal: 0.475

SM Higgs: 7.881

continuum: 120.371

significance: 0.042

(b) data sideband fit of 4 jet category

γγm

110 120 130 140 150 160

Eve

nts

/ ( 2

.5 )

0

5

10

15

20

25

30

35 )γγexp(a*m

a:-0.016

[121.6,128.4] : 51.689γγm

(c) cut scan of 3 jet category

cutγγ

pT

0 50 100 150 200 250 300 350 400

sign

ifica

nce

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09 mH = 400 GeV

4jet category

-1 Ldt = 36.5 fb∫

> 120 GeVγγcut : pT

signal: 0.480

SM Higgs: 4.054

continuum: 51.689

significance: 0.064

(d) cut scan of 4 jet category

Figure 7: scan the pTγγ cut and plot the data sideband fit for mH = 400 GeV.

γγm

110 120 130 140 150 160

Eve

nts

/ ( 2

.5 )

02468

101214

1618202224 )γγexp(a*m

a:-0.010

[121.6,128.4] : 30.604γγm

(a) data sideband fit of 3 jet category

cutγγ

pT

0 50 100 150 200 250 300 350 400

sign

ifica

nce

0

0.02

0.04

0.06

0.08

0.1

0.12 mH = 500 GeV

3jet category

-1 Ldt = 36.5 fb∫

> 175 GeVγγcut : pT

signal: 0.505

SM Higgs: 4.047

continuum: 30.604

significance: 0.086

(b) data sideband fit of 4 jet category

γγm

110 120 130 140 150 160

Eve

nts

/ ( 2

.5 )

0

2

4

6

8

10

12 )γγexp(a*m

a:-0.007

[121.6,128.4] : 12.972γγm

(c) cut scan of 3 jet category

cutγγ

pT

0 50 100 150 200 250 300 350 400

sign

ifica

nce

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2 mH = 500 GeV

4jet category

-1 Ldt = 36.5 fb∫

> 180 GeVγγcut : pT

signal: 0.553

SM Higgs: 1.984

continuum: 12.972

significance: 0.142

(d) cut scan of 4 jet category

Figure 8: scan the pTγγ cut and plot the data sideband fit for mH = 500 GeV.

Page 16: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 15

γγm

110 120 130 140 150 160

Eve

nts

/ ( 2

.5 )

0

10

20

30

40

50 )γγexp(a*m

a:-0.009

[121.6,128.4] : 85.817γγm

(a) data sideband fit of 3 jet category

cutγγ

pT

0 50 100 150 200 250 300 350 400

sign

ifica

nce

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07 non-resonant hh

3jet category

-1 Ldt = 36.5 fb∫

> 155 GeVγγcut : pT

signal: 0.479

SM Higgs: 13.123

continuum: 85.817

significance: 0.048

(b) data sideband fit of 4 jet category

γγm

110 120 130 140 150 160

Eve

nts

/ ( 2

.5 )

0

5

10

15

20

25

30

35

40 )γγexp(a*m

a:-0.007

[121.6,128.4] : 64.277γγm

(c) cut scan of 3 jet category

cutγγ

pT

0 50 100 150 200 250 300 350 400

sign

ifica

nce

0

0.02

0.04

0.06

0.08

0.1non-resonant hh

4jet category

-1 Ldt = 36.5 fb∫

> 155 GeVγγcut : pT

signal: 0.642

SM Higgs: 7.720

continuum: 64.277

significance: 0.076

(d) cut scan of 4 jet category

Figure 9: scan the pTγγ cut and plot the data sideband fit for non-resonant.

non-res 260 GeV 300 GeV 400 GeV 500 GeVmass window [GeV] - - [205, 455] [250, 600] [240, 480] [280, 645] [315, 580] [360, 745] [415, 700] [460, 815]

pTγγ[GeV] cut > 155 > 155 < 55 < 70 > 40 > 25 > 120 > 120 > 175 > 180signal yield 0.48 0.64 0.43 0.24 0.50 0.37 0.48 0.48 0.51 0.55SM Higgs 13.12 7.72 6.73 2.02 18.18 6.87 7.88 4.05 4.05 1.98continuum 85.82 64.28 580 180 779 289 120 51 31 13significance 0.048 0.076 0.018 0.018 0.018 0.021 0.042 0.064 0.086 0.142

combined significance 0.090 0.025 0.028 0.077 0.166

Table 5: summary of selection, yield and significance

Page 17: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 16

7 Signal and background estimations251

7.1 Signal modeling252

Similar to h → γγ analysis, the signal shape of this analysis can be modeled by Double-Sided Crystal-253

ball(DSCB) function of Crystal-ball plus Gaussian function(CBGA). Figure 10 show the fit on mγγ. The254

difference of these two functions is the high-mass tail. From the fit quality, Double-Sided Crystal-ball255

describes the shape better.256

(a) CBGA fit in 3 jet category (b) DSCB fit in 3 jet category

(c) CBGA fit in 4 jet category (d) DSCB fit in 4 jet category

Figure 10: CBGA and DSCB fit in mH = 260 GeV

7.2 Simulation of Higgs background processes257

Standard Model production of a single Higgs boson with the h → γγ decay mode are estimated using258

Monte Carlo simulation. Other decay modes are not considered because they do not contribute to the259

Higgs-mass peak in the mγγ spectrum. The processes considered are gluon-gluon fusion, vector boson260

fusion, Higgsstrahlung, and Higgs production :in association with tt. In gluon-gluon fusion events, all261

jets are the result of ISR. In vector boson fusion events, ISR and FSR are responsible for the extra jets262

Page 18: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 17

(a) CBGA fit in 3 jet category (b) DSCB fit in 3 jet category

(c) CBGA fit in 4 jet category (d) DSCB fit in 4 jet category

Figure 11: CBGA and DSCB fit in mH = 300 GeV

Page 19: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 18

(a) CBGA fit in 3 jet category (b) DSCB fit in 3 jet category

(c) CBGA fit in 4 jet category (d) DSCB fit in 4 jet category

Figure 12: CBGA and DSCB fit in mH = 400 GeV

Page 20: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 19

(a) CBGA fit in 3 jet category (b) DSCB fit in 3 jet category

(c) CBGA fit in 4 jet category (d) DSCB fit in 4 jet category

Figure 13: CBGA and DSCB fit in mH = 500 GeV

Page 21: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 20

(a) CBGA fit in 3 jet category (b) DSCB fit in 3 jet category

(c) CBGA fit in 4 jet category (d) DSCB fit in 4 jet category

Figure 14: CBGA and DSCB fit in non-resonant search

Page 22: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 21

in addition to the forward jets from the scattered quarks in vector boson fusion and the hadronic decay263

products of the W- or Z-boson in Higgsstrahlung. In the case of tt+h events, a sufficient number of264

jets are produced from the decay of the two top quarks. The mγγ shape SM Higgs is also modeled by265

Double-Sided Crystal-ball or Crystal-ball plus Gaussian function.266

Double-Sided Crystal-ball is chosen to describe the SM Higgs background. ( Currently Drystal-ball plus267

Gaussian is implemented in the workspace )268

(a) CBGA fit in 3 jet category (b) DSCB fit in 3 jet category

(c) CBGA fit in 4 jet category (d) DSCB fit in 4 jet category

Figure 15: CBGA and DSCB fit of SM Higgs background in mH = 260 GeV

7.3 Estimating continuum background processes269

The continuum background consist of γγ, γ − jet and jet-jet events. The method of spurious signal is270

used to choose the optimal function to describe the continuum background shape. The principle is to271

perform S+B fit to large statistic background-only MC sample. The fitted yield is called spurious signal,272

Nsp. The Nsp must pass some requirements. It must be smaller than 10 % of the expected signal yield273

and 20 % of the fitted signal uncertainty. If all the candidate functions pass the criteria, the function274

with least degree of freedom is chosen. One sample of 100M fast simulation diphoton plus up to 3 jets275

is produced in HGam group and it is used in spurious signal analysis. The candidate function could be276

Page 23: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 22

(a) CBGA fit in 3 jet category (b) DSCB fit in 3 jet category

(c) CBGA fit in 4 jet category (d) DSCB fit in 4 jet category

Figure 16: CBGA and DSCB fit of SM Higgs background in mH = 300 GeV

Page 24: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 23

(a) CBGA fit in 3 jet category (b) DSCB fit in 3 jet category

(c) CBGA fit in 4 jet category (d) DSCB fit in 4 jet category

Figure 17: CBGA and DSCB fit of SM Higgs background in mH = 400 GeV

Page 25: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 24

(a) CBGA fit in 3 jet category (b) DSCB fit in 3 jet category

(c) CBGA fit in 4 jet category (d) DSCB fit in 4 jet category

Figure 18: CBGA and DSCB fit of SM Higgs background in mH = 500 GeV

Page 26: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 25

(a) CBGA fit in 3 jet category (b) DSCB fit in 3 jet category

(c) CBGA fit in 4 jet category (d) DSCB fit in 4 jet category

Figure 19: CBGA and DSCB fit of SM Higgs background in non-resonant search

Page 27: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 26

category function Max(S) Max(S/∆S ) Max(S/S re f ) statusnon-res 3jet ExpPoly2 3.221 2.443 5.929 Failnon-res 4jet Exponential 1.372 1.677 1.919 Fail

260 3jet ExpPoly2 -9.178 -4.468 -18.258 Fail260 4jet Exponential -3.461 -2.62 -12.097 Fail300 3jet ExpPoly2 -6.457 -2.128 -11.272 Fail300 4jet ExpPoly2 3.961 -1.873 9.349 Faiil400 3jet ExpPoly2 3.910 3.035 7.254 Fail400 4jet ExpPoly2 -1.157 -1.447 -2.133 Fail500 3jet ExpPoly2 -1.379 -2.01 -2.40 Fail500 4jet Exponential 0.849 2.07291 1.38102 Fail

Table 6: The table shows maximum spurious signal , S/∆S , S/S re f of best function in [115, 135] GeV.

exponential, 2nd-exponential, Di-jet shape. Figure 24 shows the spurious signal test result. The numbers277

are summarized in Table 6. Due to the limited statistic after all the selection, the shape of background MC278

is not very smooth so fluctruation is everywhere in the spurious test and none of the candidate funcions279

pass the criteria. Now the input of the workspace is exponential.280

Page 28: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 27

hbtp! γγm

110 115 120 125 130 135 140 145 150

Mu

15−

10−

5−

0

5

10

15

ExponentialExpPoly2Dijet

(a) S/S re f of 3jet category for non-resonant

γγm

110 115 120 125 130 135 140 145 150

Z

6−

4−

2−

0

2

4

6ExponentialExpPoly2Dijet

(b) S/∆S of 3jet category for non-resonant

γγm

110 115 120 125 130 135 140 145 150

Mu

6−

4−

2−

0

2

4

6ExponentialExpPoly2Dijet

(c) S/S re f of 4jet category for non-resonant

γγm

110 115 120 125 130 135 140 145 150

Z4−

2−

0

2

4 ExponentialExpPoly2Dijet

(d) S/∆S of 4jet category for non-resonant

Figure 20:

γγm

110 115 120 125 130 135 140 145 150

Mu

80−

60−

40−

20−

0

20

40

60

80ExponentialExpPoly2Dijet

(a) S/S re f of 3jet category for mH = 260GeV

γγm

110 115 120 125 130 135 140 145 150

Z

10−

5−

0

5

10ExponentialExpPoly2Dijet

(b) S/∆S of 3jet category for mH = 260GeV

γγm

110 115 120 125 130 135 140 145 150

Mu

30−

20−

10−

0

10

20

30ExponentialExpPoly2Dijet

(c) S/S re f of 4jet category for mH = 260GeV

γγm

110 115 120 125 130 135 140 145 150

Z

6−

4−

2−

0

2

4

6ExponentialExpPoly2Dijet

(d) S/∆S of 4jet category for mH = 260GeV

Figure 21:

Page 29: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 28

γγm

110 115 120 125 130 135 140 145 150

Mu

100−

50−

0

50

100ExponentialExpPoly2Dijet

(a) S/S re f of 3jet category for mH = 300GeV

γγm

110 115 120 125 130 135 140 145 150

Z

20−

10−

0

10

20 ExponentialExpPoly2Dijet

(b) S/∆S of 3jet category for mH = 300GeV

γγm

110 115 120 125 130 135 140 145 150

Mu

40−

30−

20−

10−

0

10

20

30

40 ExponentialExpPoly2Dijet

(c) S/S re f of 4jet category for mH = 300GeV

γγm

110 115 120 125 130 135 140 145 150

Z10−

5−

0

5

10 ExponentialExpPoly2Dijet

(d) S/∆S of 4jet category for mH = 300GeV

Figure 22:

γγm

110 115 120 125 130 135 140 145 150

Mu

15−

10−

5−

0

5

10

15 ExponentialExpPoly2Dijet

(a) S/S re f of 3jet category for mH = 400GeV

γγm

110 115 120 125 130 135 140 145 150

Z

6−

4−

2−

0

2

4

6 ExponentialExpPoly2Dijet

(b) S/∆S of 3jet category for mH = 400GeV

γγm

110 115 120 125 130 135 140 145 150

Mu

10−

5−

0

5

10 ExponentialExpPoly2Dijet

(c) S/S re f of 4jet category for mH = 400GeV

γγm

110 115 120 125 130 135 140 145 150

Z

8−

6−

4−

2−

0

2

4

6

8ExponentialExpPoly2Dijet

(d) S/∆S of 4jet category for mH = 400GeV

Figure 23:

Page 30: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 29

γγm

110 115 120 125 130 135 140 145 150

Mu

6−

4−

2−

0

2

4

6

ExponentialExpPoly2Dijet

(a) S/S re f of 3jet category for mH = 500GeV

γγm

110 115 120 125 130 135 140 145 150

Z

4−

2−

0

2

4 ExponentialExpPoly2Dijet

(b) S/∆S of 3jet category for mH = 500GeV

γγm

110 115 120 125 130 135 140 145 150

Mu

4−

2−

0

2

4 ExponentialExpPoly2Dijet

(c) S/S re f of 3jet category for mH = 500GeV

γγm

110 115 120 125 130 135 140 145 150

Z

6−

4−

2−

0

2

4

6 ExponentialExpPoly2Dijet

(d) S/∆S of 3jet category for mH = 500GeV

Figure 24: S/∆S and S/S re f in each category

Page 31: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 30

8 Systematic uncertainties281

8.1 Luminosity uncertainty282

The uncertainties on the integrated luminosity that is obtained from beam separation scans taken in whole283

2015 and 2016 are ±2.1% and ±4.5% [23], respectively.284

8.2 Theory uncertainties285

The LHCHXSWG recommended scale and PDF uncertainties on SM single Higgs processes are docu-286

mented in Ref [24], and they are used in the analysis as presented in Table 7.287

Processes +QCD Scale % -QCD Scale % ±PDF % ±αs %ggh +7.6 -8.1 ± 1.9 ± 2.6VBF +0.4 -0.3 ± 2.1 ± 0.5Wh +0.5 -0.7 ± 1.7 ± 0.9Zh +3.8 -3.0 ± 1.3 ± 0.9tth +5.8 -9.2 ± 3.0 ± 2.0

Table 7: SM single Higgs scale and PDF uncertainties.

The LHCHXSWG recommended scale and PDF uncertainties on SM Higgs pair production are used288

in the analysis as presented in Table 8.289

√s σNNLO

gg→hh Scale ±PDF % ±αs % EFT

13 TeV 33.41 fb+4.3%

±2.1% ±2.3% ±5%-6.0%

Table 8: SM Higgs pair process (ggF) scale and PDF uncertainties, taken from Ref [25], only applied tothe non-resonant analysis

Additional uncertainty of +2.1%/-2.0% applies to the h → γγ branching ratio, and +1.5%/-1.5% to290

the h → WW branching ratio according to recommendations from Ref [26], since the final upper limits291

is set on σ(gg→ hh) and σ(gg→ H) × BR(X → hh).292

see Table 9.293

sampleName full simulation(3jet) MadGraph(3jet) relative full simulation(4jet) MadGraph(4jet) relativeggH 0.0643791 0.0181966 -0.717353 0.021731 0.00512241 -0.764281WH 0.19021 0.223821 0.176703 0.0727109 0.0695991 -0.0427966ZH 0.186998 0.141362 -0.244044 0.068927 0.0751649 0.0905005

Table 9: theoretical

Page 32: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 31

8.3 Object uncertainties294

8.3.1 Leptons295

8.3.2 Photons296

8.3.3 Jets297

8.3.4 b-tagging298

8.4 Background modeling uncertainty299

As discussed in 7.3, the yield of spurious signal is taken as the uncertainty of background modeling and300

it will be put into the final statistic model.301

Page 33: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 32

non-resonant 260 GeV 300 GeV 400 GeV 500 GeVupper limit(fb) 23.4 70.3 54.7 26.9 10.1

Table 10: summary of upper limit of all the mas point. No systematic is included now.

9 Statistical interpretation302

The statistical procedure starts with the definition of the likelihood L defined as in Equation 2 for each303

category. The full likelihood is the product of the likelihood in all two categories.304

Lcat(Ncats , θ) ∝

∏mγγ∈cat

{∑proc

(Ncats (θs,yield)cat) × f cat

s (mγγ, θcats,shape)

+ Ncatb × f cat

b (mγγ, θcatb,shape)

+ Ncatspurious × θ

catspurious × f cat

s (mγγ, θcats,shape)}

(2)

The signal fS and background fB probability density functions (pdf) are the ones defined in the305

previous section 7. In the fit, the signal shapes, background shapes and background normalization are306

fixed and the signal normalization is left free.307

θ denotes the nuisance parameters, including the background shape and normalization parameters308

and the systematics. The model defined in Equation 2 is modified to add new parameters to account309

for the systematics uncertainties, allowing the expected signal and SM background to vary within limits310

dictated by the estimations of these parameters in previous subsections.311

The spurious signal is estimated as the uncertainties coming from the background modeling and it is312

implemented as an additional number of signal events.313

The best fit values will be obtained by maximizing the likelihood 2 (or minimizing the function314

−2ln(L)).315

A likelihood ratio based test statistic is used in the statistical analysis. It is defined as follows:316

qµ =

−2 ln L(µ, ˆθ(µ))

L(0,ˆθ(0))

if µ < 0

−2 ln L(µ, ˆθ(µ))

L(µ, ˆθ)if 0 ≤ µ ≤ µ

0 if µ > µ

(3)

whereL stands for the likelihood function for the statistical model of the analysis, θ is the set of nuisance317

parameters that introduce the systematic uncertainties as mentioned above, and the parameter of interest318

(POI) µ is the cross section of non-resonant production or the cross section of resonant production times319

the branching ratio of X → hh. Single hat stands for unconditional fit and double hat for conditional320

fit, i.e., POI µ is fixed to a certain value. With this test statistic, one derives the upper limits of the321

cross section for non-resonant production and the cross section times the branching ratio of X → hh322

for resonant production at 95% confidence level by using the CLs method [27] under the asymptotic323

approximation [28]. The results are shown in Figure 25 and the numbers are summarized in Table 10.324

No systematics is included now.325

Page 34: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 33

[GeV]Hm

250 300 350 400 450 500

hh )

→H

→(

ppσ

95%

upp

er li

mit

of

10

210

bandσ 2 ±

bandσ 1 ±

median

(a)

Figure 25: 95% upper limit of different mass point.

Page 35: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 34

10 Unblinded result326

Page 36: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 35

11 Summary327

Page 37: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 36

References328

[1] ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs329

boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1–29.330

http://www.sciencedirect.com/science/article/pii/S037026931200857X.331

[2] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment332

at the LHC, Phys. Lett. B 716 (2012) 30–61.333

http://www.sciencedirect.com/science/article/pii/S0370269312008581.334

[3] ATLAS Collaboration, Measurements of Higgs boson production and couplings in diboson final335

states with the ATLAS detector at the LHC, Phys.Lett. B726 (2013) 88–119.336

[4] The CMS Collaboration, Combination of standard model Higgs boson searches and337

measurements of the properties of the new boson with a mass near 125 GeV ,338

CMS-PAS-HIG-13-005, CERN, Geneva, 2013. http://cdsweb.cern.ch/record/1542387.339

[5] ATLAS and CMS Collaborations ATLAS-CONF-2015-044, Sep, 2015. https:340

//atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2015-044/.341

[6] S. Dawson, S. Dittmaier, and M. Spira, Neutral Higgs-boson pair production at hadron colliders:342

QCD corrections, Phys. Rev. D58 (1998) 115012, arXiv:hep-ph/9805244 [hep-ph].343

[7] J. Grigo, J. Hoff, K. Melnikov, and M. Steinhauser, On the Higgs boson pair production at the344

LHC, Nucl. Phys. B875 (2013) 1, arXiv:1305.7340 [hep-ph].345

[8] D. de Florian and J. Mazzitelli, Higgs Boson Pair Production at Next-to-Next-to-Leading Order in346

QCD, Phys.Rev.Lett. 111 (2013) 201801.347

[9] H. E. Haber and G. L. Kane, The search for supersymmetry: Probing physics beyond the standard348

model, Phys. Rept. 117 (1985) 75.349

[10] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P. Silva, Theory and350

phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1–102, arXiv:1106.0034351

[hep-ph].352

[11] ATLAS Collaboration, G. Aad et al., Search For Higgs Boson Pair Production in the γγbb Final353

State using pp Collision Data at√

s = 8 TeV from the ATLAS Detector, Phys.Rev.Lett. 114 (2015)354

no. 8, 081802, arXiv:1406.5053 [hep-ex].355

[12] ATLAS Collaboration, ATLAS Collaboration, Search for Higgs boson pair production in the bbbb356

final state from pp collisions at√

s = 8 TeV with the ATLAS detector, Eur. Phys. J. C75 (2015)357

412, arXiv:1506.00285 [hep-ex].358

[13] CMS Collaboration, CMS Collaboration, Search for resonant pair production of Higgs bosons359

decaying to two bottom quark-antiquark pairs in proton-proton collisions at 8 TeV , Phys. Lett.360

B749 (2015) 560, arXiv:1503.04114 [hep-ex].361

[14] ATLAS Collaboration, G. Aad et al., Searches for Higgs boson pair production in the362

hh→ bbττ, γγWW∗, γγbb, bbbb channels with the ATLAS detector, Phys. Rev. D92 (2015)363

092004, arXiv:1509.04670 [hep-ex].364

[15] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, MadGraph 5 : Going Beyond,365

JHEP 06 (2011) 128, arXiv:1106.0522 [hep-ph].366

Page 38: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 37

[16] Web pages. F. Maltoni, Higgs pair production.367

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/HiggsPairProduction, Dec 2013.368

[17] S. Frixione and B. R. Webber, Matching NLO QCD computations and parton shower simulations,369

JHEP 06 (2002) 029, arXiv:hep-ph/0204244 [hep-ph].370

[18] J. Grigo, J. Hoff, and M. Steinhauser, Higgs boson pair production: top quark mass effects at NLO371

and NNLO, Nucl. Phys. B900 (2015) 412–430, arXiv:1508.00909 [hep-ph].372

[19] J. Bellm et al., Herwig++ 2.7 Release Note, arXiv:1310.6877 [hep-ph].373

[20] S. Gieseke, C. Rohr, and A. Siodmok, Colour reconnections in Herwig++, Eur. Phys. J. C72374

(2012) 2225, arXiv:1206.0041 [hep-ph].375

[21] P. M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, W.-K. Tung, and C. P.376

Yuan, Implications of CTEQ global analysis for collider observables, Phys. Rev. D78 (2008)377

013004, arXiv:0802.0007 [hep-ph].378

[22] M. Cacciari, G. P. Salam, and G. Soyez, The anti- k t jet clustering algorithm, Journal of High379

Energy Physics 2008 (2008) no. 04, 063.380

[23] LuminosityForPhysics,381

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/LuminosityForPhysics.382

[24] CERN Yellow Report 4, https:383

//twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageAt13TeV.384

[25] LHC Higgs Cross Section HH Sub-group, https://twiki.cern.ch/twiki/bin/view/385

LHCPhysics/LHCHXSWGHH#Current_recommendations_for_di_H.386

[26] LHC Higgs Cross Section Working Group, https://twiki.cern.ch/twiki/bin/view/387

LHCPhysics/CERNYellowReportPageBR#Higgs_2_fermions.388

[27] A. L. Read, Presentation of search results: The CL(s) technique, J.Phys. G28 (2002) 2693–2704.389

[28] G. Cowan et al., Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C71390

(2011) 1554, arXiv:1007.1727 [physics.data-an].391

Page 39: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 38

Appendices392

A Discussion on selection optimization393

This section introduces another strategy considered in this analysis. It applies constrains on the invariant394

masses of the reconstructed on-shell W, off-shell W and the BSM Higgs, and optimizes the pTγγ cuts395

similarly as Strategy 1.396

A.1 Jet combination397

The on-shell W boson can be reconstructed with different cobmination of the jets, as listed in Table 11.398

The corresponding match efficiency is listed in Table 12. The option that chooses the dijet system with its399

mass closest to W mass gives best mass resoultion and is therefore used here. The off-shell W candidate400

is reconstructed with the rest jets in the events. The invariant mass distribution of the dijet for signal401

samples with different resonance masses is shown in Figure 26. Figure 29 shows the 2D distribution of402

invariant mass of selected on-shell and off-shell W boson. From the plot, a rough W mass window cut,403

|mon−shell W − 80GeV | < 20GeV and mo f f−shell W < 80GeV , is determined. After a further investigation,404

it is found that this constraint is not helpful to the sinificance, so this constraint is not introduced at the405

end. Figure 27 shows the distribution of m j j and Figure 28 shows the scan.406

method to select on-shell W descriptionleading 4 jets select the 4 leading jets. take leading two jets as on-shell W and subleading two jets as off-shell W.

leading and closest select a leading jet and another closest as on-shell W bosondijet mass closest to W mass select dijet which invariant mass is closest to W mass

closest dijet select the closest dijet

Table 11: method description of W boson reconstruction

A.2 Mass window of diphoton plus jet system407

In the resonant search, mass spectrum of diphoton plus 3 or 4 jets can indicate the mass of capital Higgs,408

so a mass constrain is performed in resonant analysis. The mass distribution of γγ+3(4) jets is shown in409

Figure 30 after jet selection and W mass constrain. A mass window which contains 85 % signal events410

is defined in Figure 31.411

A.3 pTγγ cut412

For both resonant and non-resonant search, pTγγ has good separation power. Its distribution is shown413

in Figure 4. A scan on pTγγ is performed to determine the best cut value for resonant and non-resonant414

!h

method to selection on-shell W 260 300 400 500 non-restruth match 0.385 0.375 0.442 0.498 0.489

leading di-jet 0.060 0.052 0.081 0.122 0.110dijet mass closest to W mass 0.103 0.108 0.159 0.185 0.172

leading jet and closest 0.015 0.026 0.054 0.090 0.107closest dijet 0.004 0.011 0.034 0.062 0.076

Table 12: This table shows match efficiency of different method. Truth means that ∆R between reco jetand truth jet is smaller than 0.4. Method of ”dijet mass closest to W mass ” has the best match efficiencyand the efficiency is increasing as mass increases. The selection is inclusive diphoton, lepton veto, bjetveto and at least 4 central jets.

Page 40: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 39

j1j2m

0 20 40 60 80 100 120 140 160 180 200

Eve

nts/

5.0

0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2matched_recoleading_dijetclosest_to_W_massleading_and_closestclosest_dijet

(a) 3 jet category of non-resonnat

j1j2m

0 20 40 60 80 100 120 140 160 180 200

Eve

nts/

5.0

0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35matched_recoleading_dijetclosest_to_W_massleading_and_closestclosest_dijet

(b) 4 jet category of non-resonant

j1j2m

0 20 40 60 80 100 120 140 160 180 200

Eve

nts/

5.0

0

0

0.1

0.2

0.3

0.4

0.5

0.6 matched_recoleading_dijetclosest_to_W_massleading_and_closestclosest_dijet

(c) 3 jet category of mH = 260 GeV

j1j2m

0 20 40 60 80 100 120 140 160 180 200

Eve

nts/

5.0

0

0

0.1

0.2

0.3

0.4

0.5

0.6matched_recoleading_dijetclosest_to_W_massleading_and_closestclosest_dijet

(d) 4 jet category of mH = 260 GeV

j1j2m

0 20 40 60 80 100 120 140 160 180 200

Eve

nts/

5.0

0

0

0.1

0.2

0.3

0.4

0.5 matched_recoleading_dijetclosest_to_W_massleading_and_closestclosest_dijet

(e) 3 jet category of mH = 300 GeV

j1j2m

0 20 40 60 80 100 120 140 160 180 200

Eve

nts/

5.0

0

0

0.1

0.2

0.3

0.4

0.5 matched_recoleading_dijetclosest_to_W_massleading_and_closestclosest_dijet

(f) 4 jet category of mH = 300 GeV

j1j2m

0 20 40 60 80 100 120 140 160 180 200

Eve

nts/

5.0

0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 matched_recoleading_dijetclosest_to_W_massleading_and_closestclosest_dijet

(g) 3 jet category of mH = 400 GeV

j1j2m

0 20 40 60 80 100 120 140 160 180 200

Eve

nts/

5.0

0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 matched_recoleading_dijetclosest_to_W_massleading_and_closestclosest_dijet

(h) 4 jet category of mH = 400 GeV

j1j2m

0 20 40 60 80 100 120 140 160 180 200

Eve

nts/

5.0

0

0

0.05

0.1

0.15

0.2

0.25 matched_recoleading_dijetclosest_to_W_massleading_and_closestclosest_dijet

(i) 3 jet category of mH = 500 GeV

j1j2m

0 20 40 60 80 100 120 140 160 180 200

Eve

nts/

5.0

0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35matched_recoleading_dijetclosest_to_W_massleading_and_closestclosest_dijet

(j) 4 jet category of mH = 500 GeV

Figure 26: invariant mass distribution of on-shell W candidate in different signal samples. The peak at 0means that one or two jets are missing at reco level.

Page 41: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 40

j1j2m

0 20 40 60 80 100 120 140 160 180 200

Eve

nts/

5.0

0

0

0.05

0.1

0.15

0.2

0.25

WWyy260WWyy300WWyy400WWyy500WWyydata_sideband

(a) 3 jet category

j1j2m

0 20 40 60 80 100 120 140 160 180 200

Eve

nts/

5.0

0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45WWyy260WWyy300WWyy400WWyy500WWyydata_sideband

(b) 4 jet category

Figure 27: Data/MC comparison of m j j closest to W mass shows very poor separation power.

non-res 260 GeV 300 GeV 400 GeV 500 GeVmass window [GeV] - - [205, 455] [250, 560] [240, 480] [265, 600] [315, 580] [355, 685] [415, 700] [430, 775]

pTγγ[GeV] cut > 155 > 155 < 55 < 70 > 40 > 25 > 130 > 120 > 175 > 170signal yield 0.48 0.64 0.43 0.24 0.50 0.37 0.48 0.48 0.51 0.55SM Higgs 13.12 7.72 6.73 2.00 18.18 7.00 7.88 6.46 4.10 2.70continuum 85.82 64.28 546 177 754 293 81 53 28 19significance 0.048 0.076 0.018 0.018 0.018 0.022 0.044 0.065 0.089 0.139

combined significance 0.090 0.025 0.028 0.077 0.166

Table 13: summary of selection, yield and significance

search. The expected signifcance calculated with expected signal yield, SM Higgs yield and continuum415

background yield in the scan using Equation 1 is shown in Figure 32, Figure 33, Figure 34, Figure 35,416

Figure 36 for different signal models. The final optimization cuts and all the expected numbers are listed417

in Table 13.418

Page 42: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 41

-80|<X GeVjj

{m

0 5 10 15 20 25 30 35 40

sign

ifica

nce

0

0.005

0.01

0.015

0.02

0.025

non-resonant hh

3jet category

-1 Ldt = 36.5 fb∫

-80| < 39 GeVjj

cut : |m

signal: 0.778

SM Higgs: 39.041

continuum: 1560.050

significance: 0.019

(a) 3 jet category of non-resonant

-80|<X GeVjj

{m

0 5 10 15 20 25 30 35 40

sign

ifica

nce

0

0.005

0.01

0.015

0.02

0.025

non-resonant hh

3jet category

-1 Ldt = 36.5 fb∫

-80| < 39 GeVjj

cut : |m

signal: 0.778

SM Higgs: 39.041

continuum: 1560.050

significance: 0.019

(b) 4 jet category of non-resonant

-80|<X GeVjj

{m

0 5 10 15 20 25 30 35 40

sign

ifica

nce

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02 mH = 260 GeV

3jet category

-1 Ldt = 36.5 fb∫

-80| < 39 GeVjj

cut : |m

signal: 0.549

SM Higgs: 39.041

continuum: 1560.050

significance: 0.014

(c) 3 jet category of mH = 260GeV

-80|<X GeVjj

{m

0 5 10 15 20 25 30 35 40

sign

ifica

nce

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02 mH = 260 GeV

3jet category

-1 Ldt = 36.5 fb∫

-80| < 39 GeVjj

cut : |m

signal: 0.549

SM Higgs: 39.041

continuum: 1560.050

significance: 0.014

(d) 4 jet category of mH = 260GeV

-80|<X GeVjj

{m

0 5 10 15 20 25 30 35 40

sign

ifica

nce

0

0.002

0.004

0.0060.008

0.01

0.012

0.014

0.016

0.0180.02

0.022 mH = 300 GeV

3jet category

-1 Ldt = 36.5 fb∫

-80| < 39 GeVjj

cut : |m

signal: 0.624

SM Higgs: 39.041

continuum: 1560.050

significance: 0.016

(e) 3 jet category of mH = 300GeV

-80|<X GeVjj

{m

0 5 10 15 20 25 30 35 40

sign

ifica

nce

0

0.002

0.004

0.0060.008

0.01

0.012

0.014

0.016

0.0180.02

0.022 mH = 300 GeV

3jet category

-1 Ldt = 36.5 fb∫

-80| < 39 GeVjj

cut : |m

signal: 0.624

SM Higgs: 39.041

continuum: 1560.050

significance: 0.016

(f) 4 jet category of mH = 300GeV

-80|<X GeVjj

{m

0 5 10 15 20 25 30 35 40

sign

ifica

nce

0

0.005

0.01

0.015

0.02

0.025mH = 400 GeV

3jet category

-1 Ldt = 36.5 fb∫

-80| < 39 GeVjj

cut : |m

signal: 0.753

SM Higgs: 39.041

continuum: 1560.050

significance: 0.019

(g) 3 jet category of mH = 400GeV

-80|<X GeVjj

{m

0 5 10 15 20 25 30 35 40

sign

ifica

nce

0

0.005

0.01

0.015

0.02

0.025mH = 400 GeV

3jet category

-1 Ldt = 36.5 fb∫

-80| < 39 GeVjj

cut : |m

signal: 0.753

SM Higgs: 39.041

continuum: 1560.050

significance: 0.019

(h) 4 jet category of mH = 400GeV

-80|<X GeVjj

{m

0 5 10 15 20 25 30 35 40

sign

ifica

nce

0

0.005

0.01

0.015

0.02

0.025

0.03 mH = 500 GeV

3jet category

-1 Ldt = 36.5 fb∫

-80| < 39 GeVjj

cut : |m

signal: 0.839

SM Higgs: 39.041

continuum: 1560.050

significance: 0.021

(i) 3 jet category of mH = 500GeV

-80|<X GeVjj

{m

0 5 10 15 20 25 30 35 40

sign

ifica

nce

0

0.005

0.01

0.015

0.02

0.025

0.03 mH = 500 GeV

3jet category

-1 Ldt = 36.5 fb∫

-80| < 39 GeVjj

cut : |m

signal: 0.839

SM Higgs: 39.041

continuum: 1560.050

significance: 0.021

(j) 4 jet category of mH = 500GeV

Figure 28: The constraint of m j j mass window can not improve the significance.

Page 43: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 42

off-shell W candidatem0 20 40 60 80 100 120 140 160 180 200

on-s

hell

W c

andi

date

m

0

20

40

60

80

100

120

140

160

180

200

0

100

200

300

400

500

off-shell W vs mon-shell Wm

(a) 3 jet category of data sideband

off-shell W candidatem0 20 40 60 80 100 120 140 160 180 200

on-s

hell

W c

andi

date

m

0

20

40

60

80

100

120

140

160

180

200

0

5

10

15

20

25

30

35

40

off-shell W vs mon-shell Wm

(b) 4 jet category of data sideband

off-shell W candidatem0 20 40 60 80 100 120 140 160 180 200

on-s

hell

W c

andi

date

m

0

20

40

60

80

100

120

140

160

180

200

0

100

200

300

400

500

off-shell W vs mon-shell Wm

(c) 3 jet category of non-resonant

off-shell W candidatem0 20 40 60 80 100 120 140 160 180 200

on-s

hell

W c

andi

date

m

0

20

40

60

80

100

120

140

160

180

200

0

5

10

15

20

25

30

35

40

off-shell W vs mon-shell Wm

(d) 4 jet category of non-resonant

off-shell W candidatem0 20 40 60 80 100 120 140 160 180 200

on-s

hell

W c

andi

date

m

0

20

40

60

80

100

120

140

160

180

200

0

100

200

300

400

500

off-shell W vs mon-shell Wm

(e) 3 jet category of mH = 260 GeV

off-shell W candidatem0 20 40 60 80 100 120 140 160 180 200

on-s

hell

W c

andi

date

m

0

20

40

60

80

100

120

140

160

180

200

0

5

10

15

20

25

30

35

40

off-shell W vs mon-shell Wm

(f) 4 jet category of mH = 260 GeV

off-shell W candidatem0 20 40 60 80 100 120 140 160 180 200

on-s

hell

W c

andi

date

m

0

20

40

60

80

100

120

140

160

180

200

0

100

200

300

400

500

off-shell W vs mon-shell Wm

(g) 3 jet category of mH = 300 GeV

off-shell W candidatem0 20 40 60 80 100 120 140 160 180 200

on-s

hell

W c

andi

date

m

0

20

40

60

80

100

120

140

160

180

200

0

5

10

15

20

25

30

35

40

off-shell W vs mon-shell Wm

(h) 4 jet category of mH = 300 GeV

off-shell W candidatem0 20 40 60 80 100 120 140 160 180 200

on-s

hell

W c

andi

date

m

0

20

40

60

80

100

120

140

160

180

200

0

100

200

300

400

500

off-shell W vs mon-shell Wm

(i) 3 jet category of mH = 400 GeV

off-shell W candidatem0 20 40 60 80 100 120 140 160 180 200

on-s

hell

W c

andi

date

m

0

20

40

60

80

100

120

140

160

180

200

0

5

10

15

20

25

30

35

40

off-shell W vs mon-shell Wm

(j) 4 jet category of mH = 400 GeV

off-shell W candidatem0 20 40 60 80 100 120 140 160 180 200

on-s

hell

W c

andi

date

m

0

20

40

60

80

100

120

140

160

180

200

0

100

200

300

400

500

off-shell W vs mon-shell Wm

(k) 3 jet category of mH = 500 GeV

off-shell W candidatem0 20 40 60 80 100 120 140 160 180 200

on-s

hell

W c

andi

date

m

0

20

40

60

80

100

120

140

160

180

200

0

5

10

15

20

25

30

35

40

off-shell W vs mon-shell Wm

(l) 4 jet category of mH = 500 GeV

Figure 29: 2D distribution of selected on-shell W mass vs off-shell W mass

Page 44: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 43

4jγγm

0 200 400 600 800 1000

Eve

nts/

5.0

0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09 WWyy260WWyy300WWyy400WWyy500WWyydata_sideband

(a) leading jet of on-shell W

4jγγm

0 200 400 600 800 1000

Eve

nts/

5.0

0

0

0.01

0.02

0.03

0.04

0.05

0.06WWyy260WWyy300WWyy400WWyy500WWyydata_sideband

(b) subleading jet of on-shell W

Figure 30: pT of four signal jets at truth level

Hm

250 300 350 400 450 500

jjjj

γγU

pper

and

Low

er c

ut o

n m

200

300

400

500

600

700

800

900

10003jet_CW categorymass windown with signal efficiency of 85 %

455

205

480

240

580

315

700

415

(a) mass window of 3 jet category

Hm

250 300 350 400 450 500

jjjj

γγU

pper

and

Low

er c

ut o

n m

200

300

400

500

600

700

800

900

1000

11004jet_CW categorymass windown with signal efficiency of 85 %

560

250

600

265

685

355

775

430

(b) mass window of 4 jet category

Figure 31: mass window containing 85 % signal events

Page 45: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 44

γγm

110 120 130 140 150 160

Eve

nts

/ ( 2

.5 )

0

50

100

150

200

250

300

350

400

450 )γγexp(a*m

a:-0.035

[121.6,128.4] : 546.498γγm

(a) data sideband fit of 3 jet category

cutγγ

pT

0 50 100 150 200 250 300 350 400

sign

ifica

nce

0

0.005

0.01

0.015

0.02

0.025mH = 260 GeV

3jet category

-1 Ldt = 36.5 fb∫

< 55 GeVγγcut : pT

signal: 0.425

SM Higgs: 6.734

continuum: 546.498

significance: 0.018

(b) data sideband fit of 4 jet category

γγm

110 120 130 140 150 160

Eve

nts

/ ( 2

.5 )

0

20

40

60

80

100

120

140)γγexp(a*m

a:-0.034

[121.6,128.4] : 177.220γγm

(c) cut scan of 3 jet category

cutγγ

pT

0 50 100 150 200 250 300 350 400

sign

ifica

nce

0

0.005

0.01

0.015

0.02

0.025 mH = 260 GeV

4jet category

-1 Ldt = 36.5 fb∫

< 70 GeVγγcut : pT

signal: 0.240

SM Higgs: 1.998

continuum: 177.220

significance: 0.018

(d) cut scan of 4 jet category

Figure 32: scan the pTγγ cut and plot the data sideband fit for mH = 260 GeV.

γγm

110 120 130 140 150 160

Eve

nts

/ ( 2

.5 )

0

50

100

150

200

250

300

350

400

450)γγexp(a*m

a:-0.025

[121.6,128.4] : 754.142γγm

(a) data sideband fit of 3 jet category

cutγγ

pT

0 50 100 150 200 250 300 350 400

sign

ifica

nce

0

0.005

0.01

0.015

0.02

0.025 mH = 300 GeV

3jet category

-1 Ldt = 36.5 fb∫

> 40 GeVγγcut : pT

signal: 0.497

SM Higgs: 18.182

continuum: 754.142

significance: 0.018

(b) data sideband fit of 4 jet category

γγm

110 120 130 140 150 160

Eve

nts

/ ( 2

.5 )

0

20

40

60

80

100

120

140

160

180)γγexp(a*m

a:-0.028

[121.6,128.4] : 293.297γγm

(c) cut scan of 3 jet category

cutγγ

pT

0 50 100 150 200 250 300 350 400

sign

ifica

nce

0

0.005

0.01

0.015

0.02

0.025

0.03 mH = 300 GeV

4jet category

-1 Ldt = 36.5 fb∫

> 25 GeVγγcut : pT

signal: 0.373

SM Higgs: 7.004

continuum: 293.297

significance: 0.022

(d) cut scan of 4 jet category

Figure 33: scan the pTγγ cut and plot the data sideband fit for mH = 300 GeV.

Page 46: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 45

γγm

110 120 130 140 150 160

Eve

nts

/ ( 2

.5 )

0

10

20

30

40

50

)γγexp(a*m

a:-0.013

[121.6,128.4] : 81.152γγm

(a) data sideband fit of 3 jet category

cutγγ

pT

0 50 100 150 200 250 300 350 400

sign

ifica

nce

0

0.01

0.02

0.03

0.04

0.05

0.06mH = 400 GeV

3jet category

-1 Ldt = 36.5 fb∫

> 130 GeVγγcut : pT

signal: 0.415

SM Higgs: 6.455

continuum: 81.152

significance: 0.044

(b) data sideband fit of 4 jet category

γγm

110 120 130 140 150 160

Eve

nts

/ ( 2

.5 )

0

5

10

15

20

25

30

35

40 )γγexp(a*m

a:-0.017

[121.6,128.4] : 52.784γγm

(c) cut scan of 3 jet category

cutγγ

pT

0 50 100 150 200 250 300 350 400

sign

ifica

nce

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09mH = 400 GeV

4jet category

-1 Ldt = 36.5 fb∫

> 120 GeVγγcut : pT

signal: 0.494

SM Higgs: 4.096

continuum: 52.784

significance: 0.065

(d) cut scan of 4 jet category

Figure 34: scan the pTγγ cut and plot the data sideband fit for mH = 400 GeV.

γγm

110 120 130 140 150 160

Eve

nts

/ ( 2

.5 )

0

2

4

6

8

10

12

14

16

18

20 )γγexp(a*m

a:-0.006

[121.6,128.4] : 27.837γγm

(a) data sideband fit of 3 jet category

cutγγ

pT

0 50 100 150 200 250 300 350 400

sign

ifica

nce

0

0.02

0.04

0.06

0.08

0.1

0.12mH = 500 GeV

3jet category

-1 Ldt = 36.5 fb∫

> 175 GeVγγcut : pT

signal: 0.505

SM Higgs: 4.047

continuum: 27.837

significance: 0.089

(b) data sideband fit of 4 jet category

γγm

110 120 130 140 150 160

Eve

nts

/ ( 2

.5 )

0

2

4

6

8

10

12

14

16

18

20

22)γγexp(a*m

a:-0.007

[121.6,128.4] : 19.462γγm

(c) cut scan of 3 jet category

cutγγ

pT

0 50 100 150 200 250 300 350 400

sign

ifica

nce

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2 mH = 500 GeV

4jet category

-1 Ldt = 36.5 fb∫

> 170 GeVγγcut : pT

signal: 0.657

SM Higgs: 2.695

continuum: 19.462

significance: 0.139

(d) cut scan of 4 jet category

Figure 35: scan the pTγγ cut and plot the data sideband fit for mH = 500 GeV.

Page 47: Search for Higgs pair production with jjjj final statesindico.ihep.ac.cn/event/6725/contribution/0/material/slides/0.pdfWith these models, a heavy CP-even Higgs can decay into two

January 16, 2017 – 11 : 56 DRAFT 46

γγm

110 120 130 140 150 160

Eve

nts

/ ( 2

.5 )

0

10

20

30

40

50 )γγexp(a*m

a:-0.009

[121.6,128.4] : 85.817γγm

(a) data sideband fit of 3 jet category

cutγγ

pT

0 50 100 150 200 250 300 350 400

sign

ifica

nce

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07 non-resonant hh

3jet category

-1 Ldt = 36.5 fb∫

> 155 GeVγγcut : pT

signal: 0.479

SM Higgs: 13.123

continuum: 85.817

significance: 0.048

(b) data sideband fit of 4 jet category

γγm

110 120 130 140 150 160

Eve

nts

/ ( 2

.5 )

0

5

10

15

20

25

30

35

40 )γγexp(a*m

a:-0.007

[121.6,128.4] : 64.277γγm

(c) cut scan of 3 jet category

cutγγ

pT

0 50 100 150 200 250 300 350 400

sign

ifica

nce

0

0.02

0.04

0.06

0.08

0.1non-resonant hh

4jet category

-1 Ldt = 36.5 fb∫

> 155 GeVγγcut : pT

signal: 0.642

SM Higgs: 7.720

continuum: 64.277

significance: 0.076

(d) cut scan of 4 jet category

Figure 36: scan the pTγγ cut and plot the data sideband fit for non-resonant.