sensitive measurements using cold atoms · 2017. 4. 25. · bec optical trap potential e 2 2 1 u...

29
Sensitive measurements using cold atoms 冷却原子を用いた精密計測 Quantum Information Processing Summer School 2010 Hotel Sunrise Chinen, Okinawa, Japan August 21, 2010 Takuya Hirano 平野 琢也 Department of physics, Gakushuin Univerisity 学習院大学理学部物理学科

Upload: others

Post on 19-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Sensitive measurements using cold atoms冷却原子を用いた精密計測

    Quantum Information Processing Summer School 2010Hotel Sunrise Chinen, Okinawa, Japan August 21, 2010

    Takuya Hirano平野 琢也

    Department of physics, Gakushuin Univerisity学習院大学理学部物理学科

  • Research on gaseuos BEC

    1995 The first creation of gaseous BEC: Rb, Na, Li

    two areas

    “quantum electronics” “condensed matter physics”

    “atomic condensate as a coherent gas”or “Atom lasers”

    “BEC as a new quantum fluid”or “BEC as a many-body system”

    Nobel Lecture, December 8, 2001By WOLFGANG KETTERLE

    applications

    cold molecules“ultra-cold chemistry”

    atom lithography

    precision measurementsgravity, angular velocity,time, magnetic field, …

    nonequilibrium physics

    unforeseen applications

    optical latticequantum simulation

  • Outline

    1. Introduction

    2. A brief review of atomic BEC

    3. Atomic magnetometer

    4. Magnetometer using BEC

    5. Quantum magnetometer

  • Making of atomic BECMagneto-Optical Trap(MOT)

    I

    I

    Blaser

    N~109

    Magnetic trap

    rz

    Bias coil Gradient coil(radial)

    Curvature coil(axial) current

    atoms

    Evaporative cooling

    RF

    10mm

    1.2mm

    5mm

    50MHz

    5MHz

    2MHz

    1.2MHz NBEC~106

  • 1.2mm

    1.2m

    m

    thermal bimodal pure

    Time Of Flight measurement of atomic BEC

    Critical temperature:~500nK

  • Atoms in a magnetic trap

    87Rb

    F=2

    F=1

    mF2

    1

    0

    -1

    -2

    Magnetic sublevels

    5S1/2

    1

    0

    -1

    Hyperfine states

    Magnetic potential for F = 2

    E 〉= 2mF

    〉= 1m F

    〉= 0m F

    〉−= 1m F

    〉−= 2m F

    position

    No spin degrees of freedom in a Magnetic trap

  • Atoms in an optical trap

    Optical trap

    Far-off detuned laser

    BEC

    Optical trap potential

    2E21U ⋅−= α

    ∆−∝

    P

    α : polarizability, E :electric fieldP : laser power∆ : detuning (flaser-fresonace)

    5S1/2

    5P1/2

    5P3/2

    D1D2

    D1 : 795 nmD2 : 780 nm

    lens

    spin degrees of freedom are liberated in an optical trap

    87Rb

    850 nm

  • Lifetime of BEC in Optical Trap - Stretched State (F=2, mF=-2) -

    104

    105

    106

    Num

    ber

    of

    conde

    nced

    atom

    s

    Trap time (s)

    magnetic trapwith rf shield

    optical trap

    0 2 4 6 8 10 12 14 16

    s4~

    s7~

    trap optical

    trap magnetic

    τ

    τ

    loss rate

    photon scattering rate

    2×10-3 /s

    (in the region of N < 1×105)

  • A short summary of atomic BEC

    • Condensation not only in the momentum space but also in the coordinate space

    • Typical number of atoms 105-107, dimension 10-100 µm, life time < several sec.

    • Internal degrees of freedom are librated in an optical trap: spinor BEC

    F =0 (S =0, I =0)4He*, 40Ca,174Yb, 176Yb

    87Rb, 23Na, 7Li, 41K

    F =1, 2

    85Rb F =2, 3133Cs F =3, 452Cr F =3 (S =3, I =0)

    unstable

  • Rb BEC with internal degrees of freedom

    ・Magnetic sublevels can be coherently coupled, and their populations can be controlled.

    ・Scattering lengths can be controlled via Feshbach Reaonance.・Rich variety of physics

    Spin-exchange collision, Ground-state phase,Phase separation, Spin-squeezing, Quantized vortex, etc…

    87Rb

    F=1

    F=2 -2 -1 0 +1 +2

    +1 0 -1

    mF low-field seekerhigh-field seeker

  • Crossed Far-Off Resonant Trap (FORT)

    Trap depth: ~ 1.0 µK

    r (radial)

    z (axial)

    g

    FORT Beam (radial)

    coil for magnetic trap

    λ : 850 nm

    beam waist radiusradial : 90 µm (21Hz)axial : 32 µm (140Hz)

    5 deg.

    FORT Beam(axial)

    Energy level diagram of 87Rb(ground hyperfine states)

    Δ=58 kHz

    Initial state

    mF =+2+1

    0

    -1

    -2

    B = 20 G

    14.078 MHz

    14.020 MHz

    F = 1

    6.8 GHz

    Zeeman splitting at

    B=20GF = 2

    mF =+1

    0

    -1

    4x105atoms

    Experimental setup and spin-state manipulation

  • Energy level diagram of 87Rb at 20 G

    Time evolution and imaging

    TOF15ms for F =2

    Transmission0 1

    F = 1 and 2

    Stern-Gerlachmethod (SG)

    18ms for F =1

    +2 +1 0 -1 -2-1 0 +1

    Spin-state manipulation

    F = 2

    mF

    mF

    initial state

    +2 +1 0 -1 -2

    rf

    +1 0 -1

    Microwave 6.8GHz+ rf 2.0 MHz

    2-photon transition(magnetic dipole transition)

    F = 1

    |2,-1>

    |1,+1>g

    z

  • Optical Magnetometer

    review article: D. Budker and M. Romalis, Nature Phys. 3, 227 (2007).

    pump light

    B

    probe light

  • "A subfemtotesla multichannel atomic magnetometer," I. K. Kominis, T. W. Kornack, J. C. Allred & M. V. Romalis, Nature, Vol. 422, pp. 596-599 (2003).

    VtnTB

    2

    δ = )12(/ += Ig B hµγ

  • "A subfemtotesla multichannel atomic magnetometer," I. K. Kominis, T. W. Kornack, J. C. Allred & M. V. Romalis, Nature, Vol. 422, pp. 596-599 (2003).

    1チャンネルの雑音(磁気シールドの熱雑音)

    隣接チャンネルの差からもとめた固有雑音

  • Why magnetometer is important: Numerous and diverse applications

    • detection of magnetic field from brain and heartnon-invasive studies of individual cortical modules in the brain

    • detection of signals of NMR and MRI• detection of microparticles• detection of magnetic anomalies

    SQUID脳磁計(横河電機: MEGvision)

    Magnetic fields recorded from a brain in response to an auditory stimulation by a series of short clicks (averaged over about 600 presentations). The prominent feature at 100 ms after the stimulus is the evoked response in the auditory cortex, most clearly seen as a difference in the magnetic fields recorded by different channels. In contrast, ambient field drifts, such as those seen before the stimulus, generate similar signals in all channels. (Xia, H., Baranga, A. B., Hoff man, D. & Romalis, M. V. Magnetoencephalography with an atomic magnetometer. Appl. Phys. Lett. 89, 211104 (2006).)

  • Outline

    1. Introduction

    2. A brief review of atomic BEC

    3. Atomic magnetometer

    4. Magnetometer using BEC

    5. Quantum magnetometer

  • "High-Resolution Magnetometry with a Spinor Bose-Einstein Condensate," M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, Phys. Rev. Lett., Vol. 98, 200801 (2007).

    Direct Nondestructive Imaging of Magnetization in a Spin-1 Bose-Einstein Gas,J. M. Higbie, L. E. Sadler, S. Inouye, A. P. Chikkatur, S.R. Leslie, K. L. Moore, V. Savalli, and D. M. Stamper-Kurn,PRL 95, 050401 (2005).

  • "High-Resolution Magnetometry with a Spinor Bose-Einstein Condensate," M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, Phys. Rev. Lett., Vol. 98, 200801 (2007).

  • Quantum magnetometer

    “Squeezed spin states,” Masahiro Kitagawa and Masahito Ueda, Phys. Rev. A 47, 5138–5143 (1993)

    Angular momentum system

    ),,( zyx SSSS =r

    Cyclic commutation relation

    kijkji SiSS ε=],[222

    41))(( kji SSS ≥∆∆

    For N atoms in mF=F along the quantization axis z,FNSz =

    A magnetic field along y axis causes a rotation of S in x-z plane. Polarization of light propagating along x will be rotated propotional to Sx. This measumentis limited by the projection noise of the atom,

    2/2

    )( 2 FNSS zx ==∆and light shot noise of polarization measurement.

  • "Sub-Projection-Noise Sensitivity in Broadband Atomic Magnetometry," M. Koschorreck, M. Napolitano, B. Dubost, and M. W. Mitchell, Phys. Rev. Lett., Vol. 104, 093602 (2010).

    Laser cooled Rb atoms, 106, 25µK, dipole trap20 times QND measurement w/o dipole trap

    “Spin Squeezing of a Cold Atomic Ensemble with the Nuclear Spin of One-Half”,T. Takano, M. Fuyama, R. Namiki, and Y. Takahashi, Phys. Rev. Lett. 102, 033601 (2009).

  • "Squeezed-Light Optical Magnetometry," Florian Wolfgramm, Alessandro Cerè, Federica A. Beduini, Ana Predojević, Marco Koschorreck, and Morgan W. Mitchell , Phys. Rev. Lett., Vol. 105, 053601 (2010).

    Hot Rb atoms, 794.7 nm, D1 line

    -3.2 dB, 3.2 x 10-8 T/√Hz

  • 0 20 40 60 80 100

    0

    1

    2

    3

    4

    Num

    ber

    of at

    om

    s (×

    10

    5 )

    Trap time (ms)

    8

    Decay of F=2, mF=0 BEC in OT at B = 1.5G

    Time evolutionmF = -1 0 +1

    mF=±1 components appeared during decay process.Atoms in BEC initially polarized in F=2, mF=0 state.

    Total-spin-conserved spin-relaxation processTrap time

    (ms)

    0

    10

    20

    30

    80

    mF=0mF=±1mF=±2total

    Kuwamoto et al. Phys. Rev. A 69, 063604 (2004).

  • Rb BEC with internal degrees of freedom

    C1

    C2

    Cyclic

    Antiferro-magnetic

    Ferro-magnetic

    Ciobanu, Yip, & Ho, PRA 61, 033607 (2000).Koashi & Ueda, PRL84, 1066 (2000).

    731074

    74

    4202

    2

    242

    1

    aaam

    c

    aam

    c

    +−=

    −=

    h

    h

    π

    π

    87Rb

    F=1

    F=2 -2 -1 0 +1 +2

    +1 0 -1

    mF low-field seekerhigh-field seeker

    ・ Ground-state phase of 87Rb BEC

    Measured coefficients

    ( )21 4c mπh( )22 4c mπh

    ( )0.99 0.06 Ba+ ±( )0.53 0.58 Ba− ±

    Widera et al., New Journal of Physics 8, 152 (2006)

    87Rb

    New quantum phase!!

  • Hiroki Sato & Masahito UedaPhys.Rev.A 72, 053628 (2005)

    Above configuration appears at 100mG.

    Evolution of mF = -2 & mF = +2 BEC mixture

    mF = -2 & +2initial configuration

    If F = 2 87Rb spinorBEC is “cyclic”,

    mF = -2 & 0 & +250~300 ms evolution

    external magnetic field : 45mGTrap time

    (ms)

    50

    200

    mF=-2 mF=+2

    300

    0

    100

    Total remained atoms

    Relative population

    No other components grew ...

  • Miscibility of BECs

    Mixture of binary BECs miscible immiscible?

    BECs or BECsBECs

    22112

    12 aaa > 22112

    12 aaa >Phase-separation conditionPhase-separation condition

    time-evolution

    Difference of scattering length gives rise to phase-separation.

    [2] D.S. Hall et al., PRL 81, 1539 (1998).[3] K.M. Mertes et al., PRL 99, 190402 (2007).

    (87Rb |F=2, mF= +1> and |1, -1>)

    Scattering length in (2,-1) + (1,+1) states

    [1] A. Widera et al., New J. Phys. 8, 152 (2006).95.00 Ba( *[2])22 95.68 Ba a= 11 100.40 Ba a= 21 97.66 Ba a=[1] [1] *[2]

  • Feshbach Resonance in mixed spin states

    change in magnetic field strength

    R

    resonance between atomic and molecular states

    T. Voltz et al., PRA 68, 012702(R) (2003).

    A. Merte et al., PRL 89, 283202 (2002).

    two-body loss rates scattering length

    @ 1007 G(1,+1)+(1,+1)

    M. Erhard et al., PRL 69, 032705 (2004).

    @ 9.09 G

    E.G. van Kempen et al., PRL 88, 093201 (2002).

    @ 9.1 G

    @ 1.9 G

    • Prediction • Experiment Magnetic field dependence of two-body loss rates(2,+1)+(1,-1)

    (2,-1)+(1,+1)

    (2,-1)+(1,+1)

  • Phase-separation near Feshbach resonance

    (2,-1)

    (2,-1)

    (1,+1)

    (1,+1)

  • 現状:磁気シールドルームでBEC装置の再構築中

    -0.01

    -0.008

    -0.006

    -0.004

    -0.002

    0

    0.002

    0.004

    0.006

    0.008

    0.01

    23:2

    9'1

    9

    01:0

    9'1

    9

    02:4

    9'1

    9

    04:2

    9'1

    9

    06:0

    9'1

    9

    07:4

    9'1

    9

    09:2

    9'1

    9

    時間

    磁場

    (G

    山手線運休時間

    今後の研究計画・F=2 Rb BECによる磁力計(バークレイはF=1)・F=1とF=2のスイッチング・フェッシュバッハ共鳴の磁力計への応用:磁場に敏感な現象・標準量子限界を超える感度:スピンスクイージング,光のスクイージング