side channel blowers

6
94 Pumps, Compressors and process Components 2011 Compressors Side channel blowers Introduction The idea for a “ring vortex com- pressor” goes back to Prof. Eugen Oesterlen, who taught at the Tech- nische Hochschule in Hanover. In 1937 he proposed an air compressor based on the already known side channel pump principle. The initial test com- pressors were destroyed during air raids in 1945. In 1955 his ideas about “ring vortex compressors” gained new attention. Since the high pressure cha- racteristics that these devices were found to have made it possible to achieve substantial differential pres- sures at low rpm speeds, the compres- sors were intended for use in vacu- um cleaners that were to be powered by 2-pole asynchronous motors. Un- til then, high-speed radial blowers driven by a.c./d.c. motors had been the standard. These motors, however, required carbon brushes, which wore out quickly. Following years of development work, the first ring compressor went Optimization of side channel blowers from an environmental standpoint Dr.-Ing. habil. R. Dittmar, Dr.-Ing. T. Grohmann, Dipl.-Ing. M. Kempf into standard production in 1964. With an impeller diameter of 256 mm, it achieved a pressure difference of 5 kPa at a volumetric flow rate of 90 m 3 /h. However, its sound pressure level of 79 dB(A) was still high, and its efficiency of less than 40 % was still low. Despite these modest figures compared with other pressure-gene- rating devices, the “ring” or side chan- nel compressors, with their unique hydraulic characteristics, took over in important markets, such as the prin- ting, pneumatic conveying, sewage aeration, and packaging industries. Design and operation When represented in a Cordier dia- gram, which compares various pres- sure-generating devices in dimension- less form /1/, side channel blowers assume a position between radial machines and piston machines; see Figure 1. Thus, side channel blowers are the type of pump/compressor that offers the highest single-stage pres- sure levels ψ. They can achieve values up to 30. Figure 2 shows a cross-sec- tion through a side channel blower. The gas is drawn in through the suc- tion ports and silencers. After the gas enters the side channel, the exchange of momentum with the blades of the rotating impeller compresses the gas and transports it to the pressure port. It then passes through the absorption silencer and leaves the machine. To- day, side channel blowers are built in single- and multiple-stage designs for multi-stage pressure ratios up to 3 and for volumetric suction flow rates up to 3000 m 3 /h. Demands of plant opera- tors for environmental improvements and pressure from new laws and regu- lations are leading to ongoing innova- tions in blower technology. The main focus is on: efficiency, controllability and power/weight ratio, noise and modifications to implement envi- ronmentally friendly technologies. Fig. 1: Cordier diagram /1/ Fig. 2: Design and operation of a side channel blower Diameter number δ Speed number σ Axial machines Diagonal machines Radial machines Side channel maschines Rotary lobe machines Recip. piston machines

Upload: praveenreddy0027

Post on 28-Nov-2014

166 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Side Channel Blowers

94  Pumps, Compressors and process Components 2011

Compressors

Side channel blowers

Introduction

The  idea  for  a  “ring  vortex  com-pressor”  goes  back  to  Prof.  Eugen Oesterlen,  who  taught  at  the  Tech-nische Hochschule in Hanover. In 1937 he pro posed an air compressor based on  the  already  known  side  channel pump  principle.  The  initial  test  com-pressors  were  destroyed  during  air raids in 1945. In 1955 his ideas about “ring vortex compressors” gained new attention. Since the high pressure cha-racteristics  that  these  devices  were found  to  have  made  it  possible  to achieve  substantial  differential  pres-sures at low rpm speeds, the compres-sors  were  intended  for  use  in  vacu-um cleaners that were to be powered by  2-pole  asynchronous  motors.  Un-til  then,  high-speed  radial  blowers driven  by  a.c./d.c.  motors  had  been the standard. These motors, however, required  carbon  brushes,  which  wore out quickly.

Following  years  of  development work,  the  first  ring  compressor  went 

Optimization of side channel blowers from an environmental standpointDr.-Ing. habil. R. Dittmar, Dr.-Ing. T. Grohmann, Dipl.-Ing. M. Kempf

into  standard  production  in  1964. With  an  impeller  diameter  of  256 mm, it achieved a pressure difference of  5  kPa  at  a  volumetric  flow  rate  of 90 m3/h. However,  its sound pres sure level of 79 dB(A) was still high, and its efficiency  of  less  than  40 %  was  still low.  Despite  these  modest  figures compared  with  other  pressure-gene-rating devices, the “ring” or side chan-nel  compressors,  with  their  unique hydraulic  characteristics,  took  over  in important  markets,  such  as  the  prin-ting,  pneumatic  conveying,  sewage aeration, and packaging industries. 

Design and operation

When  represented  in  a  Cordier  dia-gram,  which  compares  various  pres-sure-generating devices in dimension-less  form  /1/,  side  channel  blowers assume  a  position  between  radial machines  and  piston  machines;  see Figure  1.  Thus,  side  channel  blowers are the type of pump/compressor that offers  the  highest  single-stage  pres-

sure levels ψ. They can achieve values up  to  30.  Figure  2  shows  a  cross-sec-tion  through  a  side  channel  blower. The  gas  is  drawn  in  through  the  suc-tion ports and silencers. After the gas enters the side channel, the exchange of momentum with the blades of the rotating  impeller  compresses  the  gas and transports it to the pressure port. It then passes through the absorption silencer  and  leaves  the  machine.  To-day, side channel blowers are built  in single- and multiple-stage designs for multi-stage pressure ratios up to 3 and for volumetric suction flow rates up to 3000  m3/h.  Demands  of  plant  opera-tors for environmental improvements and pressure from new laws and regu-lations are leading to ongoing innova-tions  in  blower  technology. The  main focus is on:– efficiency,– controllability and power/weight   ratio,– noise and – modifications  to  implement  envi-

ronmentally friendly technologies.

Fig. 1: Cordier diagram /1/ Fig. 2: Design and operation of a side channel blower

Diameter number δ

Spee

d n

um

ber 

σ

Axial machines

Diagonal machines

Radial machines

Side channel maschines

Rotary lobe machines

Recip. piston machines

Page 2: Side Channel Blowers

Pumps, Compressors and process Components 2011  95

Compressors

Side channel blowers

Several examples are described below.

Efficiency

As regards polytropic efficiency

(1)

where

(2)

In general, hydraulic efficiency is cons-trained by losses due to fluid friction, volumetric  efficiency  is  constrained by  flow  through  gaps,  and  mechani-cal efficiency is constrained by friction effects between the  impeller and the casing and contact friction in bearings and  seals.  While  fluid  friction  is  of little  consequence,  especially  at  high flow rates ϕ and low pressures Ψ, effi-ciency at high pressures is dependent on gap losses. This suggests that there are opportunities for optimization for individual performance curve ranges. 

Volumetric efficiency– Reducing  the  gap  losses  between 

the impeller, cover and casing,– Geometric  optimizations  at  the  in-

terrupter,  depending  on  the  tip speed u, the pressure ratio p2

/p1, and 

the number of blades,– Taking  into  account  the  optimal 

blocking  ratio  for  the  design  range (blade  cell  volume/total  volume  of blade ring);

Hydraulic efficiency– Reduction of pressure losses through 

the use of more favorable port posi-tion and design,

– Modified  side  channel  cross-sec-tions, variable in the circumferential direction,

– Reduction of losses due to impact at the base of the blade,

– Design of low-separation flow chan-nels in the blade cells;

The potential for improving ηmech is li-

mited  and  will  not  be  discussed  fur-ther here. Fig. 3: Environmentally relevant improvements in side channel blowers in the past 20 years

1997 2006 2010

Improvedgap sealing

Reduction oflaminar sep. in blade cell

Optimalport design/position

Modified path ofside channel flow

Interrupteroptimization

Dyn. gap sealing

Year

Figure  3  shows,  among  other  things, the  relative  efficiency  improvements due  to  individual  optimization  mea-sures over the past 20 years.

As a result, a 50 % increase in effi-ciency  was  achieved.  In  other  words, today only 2/3 of the shaft output of 1990  is  needed  to  achieve  the  same hydraulic  performance.  The  efficien-cies  of  modern  side  channel  blowers are  approaching  those  of  positive displacement  machines  and  radial blowers.

By  focusing  design  work  on  the performance  characteristics  of  side channel blowers, engineers have been 

Page 3: Side Channel Blowers

96  Pumps, Compressors and process Components 2011

Compressors

Side channel blowers

able  to  achieve  favorable  efficiencies at specific target operating points; see Figure 4.

At  this  operating  point  the  re-quired shaft output can be minimized by  dimensioning  the  blower  to  have carefully matched parameters, such as side  channel  cross-sectional  area  AK

, impeller  diameter  D,  and  blade  area A

S.  In the example shown in Figure 4, 

the  required  power  was  reduced  by 50 % at the given operating point.

The statutory demands on the ef-ficiency  of  electric  drive  motors  are also  increasing  continuously.  For  ex-ample,  Directive  DIN  EN  60034-30 must  be  implemented  by  mid-2011. It requires an increase in the efficiency of IEC standard motors of 2 to 4 % de-pending on the shaft output /2/.

Power/weight ratio, controllability

Frequency  converter  technology  for electrical motors, which has been im-proving steadily since the early 1990s, is allowing the range of applications in which  side  channel  blowers  are  used to  be  expanded  considerably. The  de-gree of variation can be  reduced, sin-ce  a  single  controlled  blower  can  be used  to  achieve  rpm  ratios  of  up  to 10.  Furthermore,  frequency  conver-

ter  technology  also  makes  it  possible to dynamically set any desired opera-ting points  in the performance curve. For  example,  it  is  possible  to continuous ly adapt pressures, tempe-ratures,  and  volumetric  flows  to  the current  process  parameters  /3,  4/  by adding electronic modules. In this way, losses  caused  by  conventio nal  thrott-ling  devices,  bypasses,  or  switching operations  can  be  avoided,  operating costs  can  be  cut,  and  environmental impact can be reduced. Figure 5 shows 

the  performance  map  of  a  single-stage  high-performance  blower  with local  flow  velocities  in  the  transsonic range.  It can be seen that the control range extends across suction volume-tric flows of up to 1100 m3/h and suc-tion-side  differential  pressures  of  up to 60 kPa. The higher efficiency of over 50 % in the center of the map is note-worthy. High tip speeds u permit size reductions while maintaining hydrau-lic  performance;  this  manifests  itself in a higher power/weight ratio: 

Fig. 4: Performance curves for an operating point OP with a) non-modified blower geometry andb) geometry modified for optimal efficiency at the given OP

Fig. 5: Suction-side performance map of a single-stage high-performance side channel blower

(3)

As  can  be  seen  in  Figure  3,  the power-weight  ratio  of  side  channel blowers has increased during the past 20  years  by  a  factor  of  nearly  10.  In other  words,  only  10 %  of  the  former design envelope is required to achieve the  same  hydraulic  performance. The weight  and  the  amount  of  material used  in these devices have decreased significantly.  This  too  represents  a contribution  to  environmentally  con-scious innovation.

Noise

Increasingly  strict  noise  emission standards  are  forcing  manufacturers and operators of industrial facilities to reduce the noise generated by machi-nery.  In  /5/  the  permissible  noise  le-vels were reduced by 5 dB(A). The new action  value  (daily  exposure  value)  is now 80 dB(A).

Page 4: Side Channel Blowers

Pumps, Compressors and process Components 2011  97

Compressors

Side channel blowers

In  order  to  meet  the  new  require-ments, primary machine design mea-sures make the most sense since they avoid the possibility of affecting other facility  components.  Figure  6  shows the  dominant  noise  sources  in  side channel blowers.

It  is  characteristic  of  these  units that  the  turbulent  intermixing  zones in the ports and in the side channel – along  with  the  motor  fan  –  produce broad-spectrum noise upon which the tonal noise components, which them-selves are highly objectionable in sub-jective  terms,  is  superimposed.  They are produced when the blades pass by the  interrupter  between  the  suction and  pressure  ports.  As  the  blade  ap-

Oilfree Mehrer-compressors have a long history in robust gas process technology and petrochemical industry. They are well known for their purity, range and reliability.

You are in charge of the process.We supply the matching compressor. Customized Compression

www.mehrer.de

®

PG

3E

Josef Mehrer GmbH & Co KGP.O. Box 10 07 53, 72307 Balingen, GermanyPhone +49 (0)7433 2605-0, Fax +49 (0)7433 2605-41 E-Mail [email protected], Web www.mehrer.de

Petrochemical, Gas Processing, Refineries

proaches the  interrupter on the pres-sure  side,  pressure  variations,  which radiate outward  in the form of noise, are produced. On the interrupter suc-tion  side,  the  processes  that  occur when  the  pressure  is  relieved  as  the blade cells open are responsible for the noise  that  is  emitted.  Under  certain operating  conditions  periodic  turbu-lence separations occurring along the faces of the blades are a further source of tonal noise. The noise calculation is based on the Lighthill equation, which is  fundamental  in  aeroacous tics;  (4) found in /9/.

The left side characterizes the acous tic field; the right side with  its three ad-ditive  terms  characterizes  the  acous-tic sources. The first term enclosed in the  braces  describes  broad-spectrum turbulent flow noises; the second des-cribes  fluid  interactive  forces  at  fixed boundary  surfaces,  and  the  third  re-presents  mass  flows  that  vary  over time. The  turbulent  flow  areas  in  the side channel, the changes of direction, the  silencers,  and  the  motor  fan  may be assigned to the first term. Fluid in-teractive  forces  are  generated  at  the pressure-side  interrupter  and  by  tur-bulent  separations  that  occur  on  the faces of the blades; see second term in (4).  The  nonstationary,  periodic  pres-sure  relaxation  processes  that  occur on the suction side of the interrupter can be represented by the third term

Fig. 6: Noise sources of side channel blowers

turbulentflow

magnetic noises

motor fan noise Pressure release processes,Blade entry

Pressure side Suction side

periodic turbulent separations

(4)

.

After  the  source  terms  have  been  ex-pressed  relative  to  location and  time, their  acoustic  effects  may  be  calcula-ted /6, 7, 8/. For a single-stage blower fitted with hoses on both sides, the A-weighted overall sound pressure level is

(5)

Page 5: Side Channel Blowers

98  Pumps, Compressors and process Components 2011

Compressors

Side channel blowers

where  K1  stands  for  a  design  series-

specific  constant  and  L´p  stands  for the  motor  fan  sound  level  at  rotatio-nal speed n´. For a side channel blower under  high  loads,  in  other  words  for high  differential  pressures  Δp  across the  blower,  the  following  applies  to the  narrow-band  blade  tonal  sound level at frequency 

acoustics  it  is  a  common  practice  to define  acoustic  efficiency  as  the  ratio of acoustic to hydraulic output.

In water treatment and sewage treat-ment  facilities  using  ozone  or  oxy-gen, the specifications that apply to– seal integrity,– the oxygen resistance of all   materials used, and– noise emissionsare strict. Likewise,  in  order  to  transfer  gas  in fuel cells– high operating reliability and a long 

life cycles,– low drive power,– low noise levels, and– high control accuracyare required.

Technical  specifications  for  the blower and its accessories must also be  ob served  when  blowers  are  used in  sewage  aeration  systems  and  in flue  gas  analysis  and  filtration  sys-tems. The large number of modifica-tions made on machines used for en-vironmental  applications  presents  a major  challenge  for  manufacturers in terms of design variation manage-ment,  quality  assurance,  and  cost control.

Summary

Side  channel  blower  technology  has advanced  noticeably  in  recent  years. Efficiency  levels,  which  now  ap-proach  those  of  volumetric  pressu-re-generating machines, high power/weight  ratios,  the  ability  to  control devices  over  a  broad  range  of  rota-tional  speeds,  and  low  noise  levels have improved the image of this type of blower. 20 years ago it was consi-dered  by  many  to  be  a  dying  breed. The high single-stage pressure levels, which  cannot  be  achieved  by  other compressors, pumps and similar ma-chines,  permit  high  pressure  ratios at  low speeds. This offers design ad-vantages  for  high-load  components and for shaft bearing systems. Appli-cation-specific  modifications  of  the blower  now  permit  it  to  be  used  in sensitive  areas  like  medical  and  en-vironmental  technology  as  well  as in markets of the future like “residu-al energy utilization” and “renewable energies.” 

Fig. 7: Narrow-band spectrum of a side channel blower

(6)

(7)

Here,  the  level  increases  substantial-ly with tip speed u; it decreases as the number of blades z increases. The last additive  term characterizes  the “rapi-dity” of the entry of the blade into the pressure-side  interrupter  –  in  other words,  what  angle  ϕmax

  is  available until all of the edges of the blade s

max 

are  completely  enclosed  by  the  inter-rupter.  Accordingly,  in  a  side  channel blower  a  large  angle  ϕ

max  results  in 

small blade tonal sound levels. A  narrow-band  spectrum  typical 

of  a  side  channel  blower  is  shown  in Figure 7.

For the initial machine one sees an in-tense  tonal  increase  in  the  sound  le-vel  at  4.5  kHz.  By  optimizing  the  in-terrupter  and  blades,  it  was  possible to  reduce  this  level  by  13  dB,  a  level that is subjectively experienced by hu-man beings as roughly “half as  loud.” For specific noise comparisons in aero-

(8)

Figure 3, which shows acoustic effici-ency  for  the  past  20  years,  illustrates the  progress  that  has  been  made  in combating noise. The reduction of the acoustic  output  to  1/3  of  the  initial value corresponds, with the same hy-draulic  performance,  to  a  noise  level reduction  of  about  5  dB.  Currently, a  research  consortium  consisting  of manu facturers and universities is wor-king hard to reduce further the noise produced by compressors, pumps and similar machines and also, in particu-lar, to take the psychoacoustic aspects into account.

Specific blowers for environmental technology

In  recent  years,  specific  side  channel blowers have been developed to meet the high demands of the environmen-tal industry. 

Here are some examples:For  conveying  biogas,  only  compres-sors having– low leak rates,– non-corrosive surfaces exposed to  gas, and – in some cases ATEX conformity  are suitable.

Page 6: Side Channel Blowers

Pumps, Compressors and process Components 2011  99

Compressors

Side channel blowers

Subscripts

ak  AcousticDS  Pressure sideG  Blowerhyd  HydraulicK  Side channelmech  Mechanicalpol  PolytropicR  Resting variableS  Bladevol  VolumetricW  Shaft1  Entry2  Exit

References

/1/ Grabow, G.: Das erweiterteCORDIER-Diagramm  für  Fluidenergie- maschinen  und  Verbrennungsmo-toren,  Deutscher  Verlag  für  Grund-stoffindustrie, Leipzig/Stuttgart, 1993

/2/  DIN  EN  60034-30,  Beuth-Verlag, 2009

/3/ Schreiber,C.: Investigation –Control,  GDD-Report  92.08.09,  2009, unpublished

/4/ GDD, Druckerzeuger für strömen-de Medien, DE-Gebrauchsmuster[German utility model] 2002 20 578.9

/5/ EC Noise Directive 2003/10/EC of Feb. 15, 2003

/6/  Dittmar,  R.:  Side  Channel  Noise, Overview  and  Summary,  GDD-Report 96.05.07, unpublished

/7/  Grohmann,  T.:  Lokalisierung  und Klassifizierung  tonaler  Schallquellen in Seitenkanalgebläsen, Diss. Univ. Erlangen-Nuremberg, 2009

/8/ Dittmar, R.: Geräusch von Seiten-kanalverdichtern, GDD-Report 96.01.02, 2002, unpublished

/9/  Lighthill,  M.J.:  On  sound  genera-ted  aerodynamically,  Part  I:  General theory; Part II: Turbulence as a Source of Sound; Proc.Roy.Soc. London (A)211 and 222 (1952, p. 564–587); (1954, p. 1–31)

Dr.-Ing. habil. Rudi Dittmar,Manager Development Engineering Gardner Denver Deutschland GmbH, Bad NeustadtDr.-Ing. Thomas Grohmann,Development EngineerGardner Denver Deutschland GmbH, Bad NeustadtDipl.-Ing. (TU) Mario Kempf,Development EngineerGardner Denver Deutschland GmbH, Bad Neustadt

Symbols and abbreviations:

A m2 Area

a m/s Speed of sound

c´ m/s Fluctuation velocity

D m Impeller diameter

N/m3 Fluctuation force relative to volume

fST

Hz Blade frequency

K1, K

2dB Constants

Lp

dB Sound pressure level at 1 m distance

M Nm Torque

kg/s Mass flow

kg/(sm3) Mass flow relative to volume

n – Polytropic exponent

n, n´ min–1 rpm

P W Power

p´ N/m2 Sound pressure

p N/m2 Pressure

q kg/(ms4) Acoustic source term

R m2/(s2K) Gas constant

smax

m Length of wetted blade outside edges

T K Temperature

t s Time

u m/s Tip speed

V m3 Volume

m3/h Volumetric flow

z – Number of blades

δ – Diameter number

η – Efficiency

ρ kg/m3 Density

σ – Speed number

ϕ – Flow number

ϕmax

degrees Interrupter enclosure angle on the pressure side

ψ – Pressure number

ω 1/s Angular frequency