single-cell rna-seq data analysis using chipster - csc · csc –suomalainen tutkimuksen,...

108
CSC – Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis using Chipster 24.9.2019 Eija Korpelainen, Maria Lehtivaara

Upload: others

Post on 30-Apr-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

CSC – Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus

Single-cell RNA-seq data analysisusing Chipster

24.9.2019

Eija Korpelainen, Maria Lehtivaara

Page 2: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Understanding data analysis - why?

• Bioinformaticians might not always be available when needed

• Biologists know their own experiments best

oBiology involved (e.g. genes, pathways, etc)

oPotential batch effects etc

• Allows you to design experiments better less money wasted

• Allows you to discuss more easily with bioinformaticians

8.10.20192

Page 3: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

What will I learn?

• Analysis of single cell RNA-seq data

oFind subpopulations (clusters) of cells and marker genes for them

oCompare two samples (e.g. treatment vs control)

o Identify cell types that are present in both samples

oObtain cell type markers that are conserved in both samples

oCompare the samples to find cell-type specific responses to treatment

• How to operate the Chipster software

8.10.20193

Page 4: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Introduction to Chipster

Page 5: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

• Provides an easy access to over 400 analysis tools

o Command line tools

o R/Bioconductor packages

• Free, open source software

• What can I do with Chipster?

o analyze and integrate high-throughput data

o visualize data efficiently

o share analysis sessions

o save and share automatic workflows

Chipster

Page 6: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Technical aspects

• Client-server system

o Enough CPU and memory for large analysis jobsoCentralized maintenance

• Easy to install

oClient uses Java Web Starto Server available as a virtual machine image

Page 7: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis
Page 8: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis
Page 9: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Mode of operationSelect: data tool category tool run visualize result

Page 10: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

When running analysis tools, pay attention to parameters!

• make sure the input files are correctly assigned if there are

multiple files (see below)

• choose the right reference genome

• check especially the bolded parameters

Page 11: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Job manager

• You can run many analysis jobs

at the same time

• Use Job manager to:

oview status

ocancel jobs

oview time

oview parameters

Page 12: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Analysis history is saved automatically -you can add tool source code to reports if needed

Page 13: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Analysis sessions

• Remember to save the analysis session within 3 days

oSession includes all the files, their relationships and metadata (what tool and parameters were used to produce each file)

oSession is a single .zip file

oNote that you can save two sessions of the same data

o one with raw data (FASTQ files)

o one smaller, working version where the FASTQ files are deleted after alignment

• You can save a session locally (= on your computer)

• …and in the cloud

obut note that the cloud sessions are not stored forever!

o If your analysis job takes a long time, you don’t need to keep Chipster open:

oWait that the data transfer to the server has completed (job status = running)

o Save the session in the cloud and close Chipster

oOpen Chipster within 3 days and save the session containing the results

Page 14: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Workflow panel

• Shows the relationships of the files

• You can move the boxes around, and zoom in and out.

• Several files can be selected by keeping the Ctrl key

down

• Right clicking on the data file allows you to

oSave an individual result file (”Export”)

oDelete

oLink to another data file

oSave workflow

Page 15: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Workflow – reusing and sharing your analysis pipeline

• You can save your analysis steps as a reusable automatic ”macro”

oall the analysis steps and their parameters are saved as a script file

oyou can apply workflow to another dataset

oyou can share workflows with other users

Page 16: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Saving and using workflows

• Select the starting point for your workflow

• Select ”Workflow / Save starting from selected”

• Save the workflow file on your computer with a

meaningful name

oDon’t change the ending (.bsh)!

• To run a workflow, select

oWorkflow -> Open and run

oWorkflow -> Run recent (if you saved the workflow recently).

Page 17: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Analysis tool overview

• 200 NGS tools for

RNA-seq

single cell RNA-seq

small RNA-seq

16S rRNA amplicon seq

exome/genome-seq

ChIP-seq

FAIRE/DNase-seq

CNA-seq

• 140 microarray tools for

gene expression

miRNA expression

protein expression

aCGH

SNP

integration of different data

• 60 tools for sequence analysis

BLAST, EMBOSS, MAFFT

Phylip

Page 18: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Visualizing the data

• Data visualization panel

o Maximize and redraw for better viewing

o Detach = open in a separate window, allows you to view several images at the same time

• Two types of visualizations

1. Interactive visualizations produced by the client program

o Select the visualization method from the pulldown menu

o Save by right clicking on the image

2. Static images produced by analysis tools

o Select from Analysis tools / Visualisation

o View by double clicking on the image file

o Save by right clicking on the file name and choosing ”Export”

Page 19: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Interactive visualizations by the client

• Genome browser

• Spreadsheet

• Histogram

• Venn diagram

• Scatterplot

• 3D scatterplot

• Volcano plot

• Expression profiles

• Clustered profiles

• Hierarchical clustering

• SOM clustering

Available actions:

• Select genes and create a gene list

• Change titles, colors etc

• Zoom in/out

Page 20: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Static images produced by R/Bioconductor

• Dispersion plot

• Heatmap

• tSNE plot

• Violin plot

• PCA plot

• MA plot

• MDS plot

• Box plot

• Histogram

• Dendrogram

• K-means clustering

• Etc…

Page 21: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Options for importing data to Chipster

• Import files/ Import folder

• Import from URLoUtilities / Download file from URL directly to server

• Import from BaseSpace

• Open an analysis sessionoFiles / Open session

• Import from SRA databaseoUtilities / Retrieve FASTQ or BAM files from SRA

• Import from Ensembl databaseoUtilities / Retrieve data for a given organism in Ensembl

• What kind of data files can I use in Chipster?oCompressed files (.gz) and tar packages (.tar) are ok

oFASTQ, BAM, read count files (.tsv)

Page 22: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

How to import a large tar package of files from a server and use only some of the files?

• Import the tar package by selecting File / Import from / URL directly to server

• Check what files it contains using the tool Utilities / List contents of a tar file

• Selectively extract the files you want with Utilities / Extract .tar or .tar.gz file

8.10.201922

Page 23: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Problems? Send us a support request -request includes the error message and link to analysis session (optional)

Page 24: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

New web based Chipster available for testing!

Page 25: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

How to get a user account?

• Finnish academics:

oCOMING SOON: myCSCportal (https://my.csc.fi/welcome)

ouse Scientist’s User Interface service (https://sui.csc.fi) with HAKA credentials

o click on the purple HAKA link

o log in with your HAKA username and password

o fill in the sign up form as shown in https://research.csc.fi/csc-guide-getting-access-to-csc-services#1.2.1

o If you don’t have HAKA credentials, email [email protected]

oUsers who already have a regular CSC username and password can use those for Chipster

• Others:

oSet up a local Chipster server at your institute (free of charge)

oBuy access to CSC’s Chipster server (500 euros / person /year)

oUse EGI’s Chipster server (free of charge)

• See https://chipster.csc.fi/access.shtml for details

Page 26: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

More info

[email protected]

• http://chipster.csc.fi

• Chipster tutorials in YouTube

• https://chipster.csc.fi/manual/courses.html

Page 27: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Acknowledgements to Chipster users and contributors

Page 28: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Introduction to single cell RNA-seq

Page 29: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Single cell RNA-seq

• New technology, data analysis methods are being actively developed

• Allows to find cell types and cell-specific changes in transcriptome

8.10.201929

Page 30: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Different technologies for capturing single cell transcriptomes

• Plate-based: SMART-Seq2, STRT-Seq, CEL-Seq

• Droplet-based: 10X Chromium, Drop-Seq, Indrop, Fluidigm C1

• Microwell-based: ICell8, Seq-Well

• Libraries are usually 3’ tagged: only a short sequence at the 3’ end of the

mRNA is sequenced

Slide by Heli Pessa

Page 31: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Different technologies for capturing single-cell transcriptomes

10X

Encapsulation of cells RNA capture

Barcoded single-cell transcriptomes

Cells

OilBarcoded RNA capture beads

Library prep and sequencing

Indrop

Drop-Seq

Seq-Well

Slide by Heli Pessa

Page 32: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

RNA capture

• Barcoded RNA capture beads

• Capture oligo preparation

• Ligation of short oligonucleotides (10X and Indrop): known set of barcodes

• Split-and-pool synthesis (Drop-Seq): random barcodes

Slide by Heli Pessa

UMI

Linker-5’-TTTTTTTAAGCAGTGGTATCAACGCAGAGTACJJJJJJJJJJJJNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT3 ’

3’AAAAAAAAAAAAAAAAAAAAAAAAAANNNNNNNNNN…5'

PCR primer site Cell barcode

mRNA

polyT

Capture oligo

Page 33: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

cDNA synthesisRNA capture

Reverse transcription

Template switch

cDNA

Slide by Heli Pessa

Bead oligo 5’TTTTTTTTTTTTTTTTTTTTT NNNNNNNNNNNNNNNNNCCC3’

mRNA 3’AAAAAAAAAAAAAAAAAAAAANNNNNNNNNNNNNNNNN5’

cDNA

UMI

Linker-5’-TTTTTTTAAGCAGTGGTATCAACGCAGAGTACJJJJJJJJJJJJNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT3 ’

3’AAAAAAAAAAAAAAAAAAAAAAAAAANNNNNNNNNN…5'

PCR primer site Cell barcode

mRNA

Bead oligo 5’TTTTTTTTTTTTTTTTTTTTT NNNNNNNNNNNNNNNNN CCCATTCACTCTGCGTTGATACCACTGCTT 3’

mRNA 3’AAAAAAAAAAAAAAAAAAAAANNNNNNNNNNNNNNNNN GGGTAAGTGAGACGCAACTATGGTGACGAA 5’

Linker-TTTTTTTAAGCAGTGGTATCAACGCAGAGTACJJJJJJJJJJJJNNNNNNNNTTTTTTTTTTTNNNNNNNNNNNNNNNNNCCCATTC ACTCTGCGTTGATACCACTGCTT

PCR primer site

PCR primer site

Page 34: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Single cell library preparation

• Preamplification of full length cDNA

• Sequencing adapter ligation or tagmentation

• Library amplification plenty of PCR copies!

• Paired-end sequencing

Read1: cell barcode (CB) and molecular barcode (UMI)

Read2: cDNA sequence

Slide by Heli Pessa

JJJJJJJJJJJJNNNNNNNNTTTTTTTTTTTTTTTTNNNNNNNNNNNNNNNNNNNNNNNNNNN

Read 1: Cell barcode & UMI Read 2: gene sequence

Page 35: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Data preprocessing overview

8.10.201937

Page 36: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

What can go wrong?

1. Ideally there is one healthy cell in the droplet. However, sometimes

oThere is no cell in the droplet, just ambient RNA

Detect “empties” based on the small number of genes expressed and remove

oThere are two (or more) cells in a droplet

Detect duplets (and multiplets) based on the large number of genes expressed and remove

o The cell in the droplet is broken/dead

Detect based on high proportion of reads mapping to mitochondrial genome and remove

2. Sometimes barcodes have synthesis errors in them, e.g. one base is missing

Detect by checking the distribution of bases at each position and fix the code or remove the cell

8.10.201938

Page 37: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Single cell RNA-seq data analysis

Page 38: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Single cell RNA-seq data is challenging

• High amount of dropouts

oA gene is expressed but the expression is not detected due to technical limitations the detected expression level for many genes is zero

• Data is noisy. High level of variation between the cells due to

oCapture efficiency (percentage of mRNAs captured)

oReverse transcription efficiency

oAmplification bias (non-uniform amplification of transcripts)

oCell-cycle stage and size

oSignificant differences in sequencing depth (number of UMIs/cell)

• Complex distribution of expression values

oCell heterogeneity and the abundance of zeros give rise to multimodal distributions

Many methods used for bulk RNA-seq data won’t work

8.10.201940

Page 39: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

scRNA-seq data analysis steps for producing a digital gene expression matrix (DGE)

8.10.201941

QC of raw reads

Preprocessing

Alignment

Annotation

DGE matrix

• Check the quality of sequencing reads

• Trim if necessary

• Align to reference genome

• Match the alignment positions to known locations of genes

• Count reads/UMIs for each gene

• Store UMI counts in a table

• And now we are ready for the interesting stuff…

Page 40: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Finding clusters of cells and their marker genes

Page 41: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Analysis steps for clustering

1. Check the quality of cells

2. Filter out low quality cells

3. Normalize expression values

4. Identify highly variable genes

5. Scale data, regress out unwanted variation

6. Reduce dimensions using principal component analysis (PCA) on the variable genes

7. Determine significant principal components (PCs)

8. Use the PCs to cluster cells with graph based clustering

9. Use the PCs to visualize clusters with non-linear dimensional reduction (tSNE or UMAP)

10. Detect and visualize marker genes for the clusters8.10.201943

Page 42: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Seurat

• One the most popular R packages for single cell RNA-seq data

analysis

• Provides tools for all the steps mentioned in the previous slide

oAlso tools for integrative analysis

• Note: Chipster contains currently both Seurat v2 and v3

oThe data structure changed: v2 data won’t work with v3 tools and vice versa

oDifferences in naming of variables

• http://satijalab.org/seurat

8.10.201944

Page 43: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Analysis steps for clustering

1. Check the quality of cells

2. Filter out low quality cells

3. Normalize expression values

4. Identify highly variable genes

5. Scale data, regress out unwanted variation

6. Reduce dimensions using principal component analysis (PCA) on the variable genes

7. Determine significant principal components (PCs)

8. Use the PCs to cluster cells with graph based clustering

9. Use the PCs to visualize clusters with non-linear dimensional reduction (tSNE or UMAP)

10. Detect and visualize marker genes for the clusters8.10.201945

Page 44: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Setting up a Seurat object, filtering genes

• Give a name for the project (used in some plots)

• Sample or group name

o if you have two samples that you wish to compare

• Filtering genes

oKeep genes which are expressed (detected) in at least X cells

• Input

oAssign correctly!

8.10.201946

Page 45: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Two input file options

1. 10X Genomics files

othree files needed: barcodes.tsv, genes.tsv and matrix.mtx -NOTE: files need to have these names!

omake a tar package of these files and import it to Chipster

2. DGE matrix from the DropSeq tools

oDGE matrix made in Chipster, or import a ready-made DGE matrix (.tsv file)

• Check that the input file is correctly assigned!

8.10.201947

Page 46: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

What do those 10X files contain?

1. matrix.mtx

o Number of UMIs for a given gene in a given cell

o Make sure that you use the filtered feature barcode matrix (contains only those cell barcodes which are present in your data)

o Sparse matrix (only non-zero entries are stored), in MEX format

o Header: third line tells how many genes and cells you have

o Each row: gene index, cell index, number of UMIs

2. barcodes.tsv

oCell barcodes present in your data

3. genes.tsv (features.tsv)

o Identifier, name and type (gene expression)

8.10.201948

Page 47: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Output files

• R object (Robj) that Seurat-based tools use to store data

oContains specific slots for different types of data, you use this file as input for the next analysis tool

oYou cannot view the contents of Robj in Chipster (you can import it to R)

• Pdf file with quality control plots and number of cells

oNote that the vocabulary changed between Seurat v2 and v3:

oNumber of genes in a cell, nGene nFeature_RNA

oNumber of transcripts in a cell, nUMI nCount_RNA

o Percentage of mitochondrial transcripts, percent.mito percent.mt

8.10.201949

Page 48: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

How to detect empties, multiplets and broken cells?

• Empties = no cell in droplet: low gene count (nFeature_RNA < 200)

• Multiplet = more than one cell in droplet: large gene count (nFeature_RNA > 2500)

• Broken/dead cell in droplet: lot of mitochondrial transcripts (percent.mt > 5%)

8.10.201950

nGene / nFeature_RNA: # genes in a cell

nUMI / nCount_RNA: # transcripts in a cell

percent.mito / percent.mt: % of mitochondrial transcripts

multiplets

empties

Dead/broken cells

Page 49: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Scatter plots for quality control

• nCount / nUMI vs percent.mito: are there cells with low number of transcripts and high mito%

• nCount / UMI vs nFeature / nGene: these should correlate

8.10.201951

nGene / nFeature_RNA: # genes in a cell

nUMI / nCount_RNA: # transcripts in a cell

percent.mito / percent.mt: % of mitochondrial transcripts

Page 50: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Analysis steps for clustering

1. Check the quality of cells

2. Filter out low quality cells

3. Normalize expression values

4. Identify highly variable genes

5. Scale data, regress out unwanted variation

6. Reduce dimensions using principal component analysis (PCA) on the variable genes

7. Determine significant principal components (PCs)

8. Use the PCs to cluster cells with graph based clustering

9. Use the PCs to visualize clusters with non-linear dimensional reduction (tSNE or UMAP)

10. Detect and visualize marker genes for the clusters8.10.201952

Page 51: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Filter, normalize, regress and detect variable genes (v3)

8.10.201953

Page 52: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Normalizing scRNA-seq gene expression values

• Gene expression values contain a lot of noise caused by

oLow mRNA content per cell

oVariable mRNA capture

oVariable sequencing depth

• Variance of gene expression values should reflect biological variation across cells

oWe need to remove non-biological variation

• Normalization methods for bulk RNA-seq data don’t work well for single cell data which

contains a lot of zeros (because of drop-outs)

8.10.201955

Page 53: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Global scaling normalization

• Divide gene’s expression value in a cell by the total number of transcripts in that cell

• Multiply the ratio by a scale factor (10,000 by default)

oThis scales each cell to this total number of transcripts

• Log-transform the result

8.10.201956

Page 54: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Analysis steps for clustering

1. Check the quality of cells

2. Filter out low quality cells

3. Normalize expression values

4. Identify highly variable genes

5. Scale data, regress out unwanted variation

6. Reduce dimensions using principal component analysis (PCA) on the variable genes

7. Determine significant principal components (PCs)

8. Use the PCs to cluster cells with graph based clustering

9. Use the PCs to visualize clusters with non-linear dimensional reduction (tSNE or UMAP)

10. Detect and visualize marker genes for the clusters8.10.201958

Page 55: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Selecting highly variable genes

• In order to perform clustering, we need to find genes whose expression varies across cells

• BUT scRNA-seq data has strong mean-variance relationship

o low expressing genes have higher variance

• We cannot select genes based on their variance variance needs to be stabilized first

8.10.201959

Page 56: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Variance stabilizing transformation (VST)

• Compute the mean and variance for each gene using the unnormalized UMI counts, and

take log10 of both

• Fit a curve to predict the variance of each gene as a function of its mean

• Standardized expression = (expressiongeneXcellY – mean expressiongeneX) / predicted SDgeneX

oclip the standardized values to a max sqrt(total number of cells) to reduce the impact of technical outliers

• For each gene, compute the variance of the standardized values across all cells

We rank the genes based on their standardized variance and use the top 2000 genes for

PCA and clustering

8.10.201960

Page 57: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Detection of highly variable genes: plots

8.10.201961

<- top10 most highly variable genes

Page 58: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Analysis steps for clustering

1. Check the quality of cells

2. Filter out low quality cells

3. Normalize expression values

4. Identify highly variable genes

5. Scale data, regress out unwanted variation

6. Reduce dimensions using principal component analysis (PCA) on the variable genes

7. Determine significant principal components (PCs)

8. Use the PCs to cluster cells with graph based clustering

9. Use the PCs to visualize clusters with non-linear dimensional reduction (tSNE or UMAP)

10. Detect and visualize marker genes for the clusters8.10.201963

Page 59: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Scaling expression values prior to dimensional reduction

• Standardize expression values for each gene across all cells prior to PCA

oThis gives equal weight in downstream analyses, so that highly expressed genes do not dominate

• Z-score normalization in Seurat’s ScaleData function

oShifts the expression of each gene, so that the mean expression across cells is 0

oScales the expression of each gene, so that the variance across cells is 1

• ScaleData has an option to regress out unwanted sources of variation

oE.g. cells might cluster according to their cell cycle state rather than cell type

8.10.201964

Page 60: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Regress out unwanted sources of variation

• Several sources of uninteresting variation

otechnical noise

obatch effects

ocell cycle stage, etc

• Removing this variation improves downstream analysis

• Seurat constructs linear models to predict gene expression based on user-defined variables

onumber of detected molecules per cell, mitochondrial transcript percentage, batch, cell alignment rate,…

oSeurat regresses the given variables individually against each gene, and the resulting residuals are scaled

oscaled z-scored residuals of these models are used for dimensionality reduction and clustering

o In Chipster the following effects are removed:

o number of detected molecules per cell

omitochondrial transcript percentage

o cell cycle stage (optional)

8.10.201965

Page 61: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Mitigating the effects of cell cycle heterogeneity

1. Compute cell cycle phase scores for each cell based on its expression of G2/M and S phase marker genes

1. These markers are well conserved across tissues and species

2. Cells which do not express markers are considered not cycling, G1

2. Model each gene’s relationship between expression and the cell cycle score

3. Two options to regress out the variation caused by different cell cycle stages

1. Remove ALL signals associated with cell cycle stage

2. Remove the DIFFERENCE between the G2M and S phase scores. Thispreserves signals for non-cycling vs cycling cells, only the difference in cell cycle phase amongst the dividing cells are removed. Recommended when studying differentiation processes

8.10.201966

Page 62: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Regressing out the variation caused by different cell cycle stages

PCA on cell cycle genes (dot = cell, colors = phases)

8.10.201967

Page 63: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Sctransform – new approach to normalization etc

1. Check the quality of cells

2. Filter out low quality cells

3. Normalize expression values

4. Identify highly variable genes

5. Scale data, regress out unwanted variation

6. Reduce dimensions using principal component analysis (PCA) on the variable genes

7. Determine significant principal components (PCs)

8. Use the PCs to cluster cells with graph based clustering

9. Use the PCs to visualize clusters with non-linear dimensional reduction (tSNE or UMAP)

10. Detect and visualize marker genes for the clusters8.10.201968

sctransform

Page 64: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Sctransform: modeling framework for normalization and variance stabilization

8.10.201969

• Sequencing depth (number of UMIs per cell) varies significantly between cells

• Normalized expression values of a gene should be independent of sequencing depth

• The default log normalization works ok only for low to medium expressing genes

oThe normalized expression values of high expressing genes correlate with sequencing depth

oCells with low sequencing depth show disproportionally high variance for highly expressed genes

• Sctranform models gene expression as a function of sequencing depth using GLM

oConstrains the model parameters through regularization, by pooling information across genes which are expressed at similar levels

oNormalized expression values = Pearson residuals from regularized negative binomial regression

o Positive residual for a given gene in a given cell indicate that we observed more UMIs than expected given the gene’s average expression in the population and and the cellular sequencing depth

o Pearson residual = response residual devided by the expected standard deviation (effectively VST)

Page 65: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Normalization using Pearson residuals works best

8.10.201970

Hafemeister (2019): Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression

Page 66: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Analysis steps for clustering

1. Check the quality of cells

2. Filter out low quality cells

3. Normalize expression values

4. Identify highly variable genes

5. Scale data, regress out unwanted variation

6. Reduce dimensions using principal component analysis (PCA) on the variable genes

7. Determine significant principal components (PCs)

8. Use the PCs to cluster cells with graph based clustering

9. Use the PCs to visualize clusters with non-linear dimensional reduction (tSNE or UMAP)

10. Detect and visualize marker genes for the clusters8.10.201971

Page 67: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Dimensionality reduction

8.10.201972

• Removes redundancies in the data

oCells are characterized by the expression values of all the genes thousands of dimensions

oThe expression of many genes is correlated, we don’t need so many dimensions to distinguish cell types

• Identifies the most relevant information in order to cluster cells

oOvercomes the extensive technical noise in scRNA-seq data

• Simplifies complexity so that the data becomes easier to work with

oWe have thousands of genes and cells

• Can be linear (e.g. PCA) or non-linear (e.g. tSNE, UMAP)

Page 68: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Principal Component Analysis (PCA)

8.10.201973

• Finds principal components (PCs) of the data

oDirections where the data is most spread out = where there is most variance

oPC1 explains most of the variance in the data, then PC2, PC3, …

• We will select the most important PCs and use them for clustering cells

o Instead of 20 000 genes we have now maybe 10 PCs

oEssentially each PC represents a robust ‘metagene’ that combines information across a correlated gene set

• Prior to PCA we scale the data so that genes have equal weight in downstream

analysis and highly expressed genes don’t dominate

oShift the expression of every gene so that the mean expression across cells is 0 and the variance across cells is 1.

Page 69: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

8.10.201974 Slide by Paulo Czarnewski

Page 70: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Visualizing PCA results: loadings

8.10.201975

• Visualize top genes associated with principal components

o= Which genes are important for PC1?

• Is the correlation positive or negative?

Page 71: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Visualizing PCA results: heatmap

8.10.201976

• Which genes correspond to separating cells?

oCheck if there are cell cycle genes

• Both cells and genes are ordered according to

their PCA scores. Plots the extreme cells on both

ends of the spectrum

Page 72: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Visualizing PCA results: PCA plot

8.10.201977

• Gene expression patterns will be

captured by PCs PCA can separate cell

types

• Note that PCA can also capture other

things, like sequencing depth!

Page 73: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Determine the significant principal components

• It is important to select the significant PCs for clustering analysis

• However, estimating the true dimensionality of a dataset is challenging

• Seurat developers:

oTry repeating downstream analyses with a different number of PCs (10, 15, or even 50!).

o The results often do not differ dramatically.

oRather choose higher number.

o For example, choosing 5 PCs does significantly and adversely affect results

• Chipster provides the following plots to guide you selecting the significant PCs:

oElbow plot

oPC heatmaps

8.10.201978

Page 74: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

How much variance each PC explains?

Gaps?Plateau?

Elbow plot

• The elbow in the plot tends to reflect a transition from informative PCs to those that

explain comparatively little variance.

8.10.201979

Page 75: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Principal component heatmaps

• Check if there is still a difference

between the extremes

• Exclude also PCs that are driven

primarily by uninteresting genes (cell

cycle, ribosomal or mitochondrial)

8.10.201980

Page 76: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Analysis steps for clustering

1. Check the quality of cells

2. Filter out low quality cells

3. Normalize expression values

4. Identify highly variable genes

5. Scale data, regress out unwanted variation

6. Reduce dimensions using principal component analysis (PCA) on the variable genes

7. Determine significant principal components (PCs)

8. Use the PCs to cluster cells with graph based clustering

9. Use the PCs to visualize clusters with non-linear dimensional reduction (tSNE or UMAP)

10. Detect and visualize marker genes for the clusters8.10.201981

Page 77: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Clustering

• Divides cells into distinct groups based on gene expression

• Our data is big and complex (lot of cells, genes and noise), so we use principal

components instead of genes. We also need a clustering method that can cope

with this.

Graph-based clustering

Shared nearest neighbor approach

Graph cuts by Louvain method

8.10.201982

Page 78: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

1. Identify k nearest neighbours of each cell

oEuclidean distance in PC space

2. Rank the neighbours based on distance

3. Build the graph: add an edge between cells if

they have a shared nearest neigbour (SNN)

oGive edge weights based on ranking

4. Cut the graph to subgraphs (clusters) by

optimizing modularity

oLouvain algorithm by default

8.10.201983

Graph based clustering in Seurat

3. Graph (SNN)

1. KNN

k=3(30 in reality)

Page 79: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Clustering parameters

• Number of principal components to use

• Experiment with different values

• If you are not sure, use a higher number

• Resolution for granularity

• Increasing the value leads to more clusters

• Values 0.4 - 1.2 typically return good results for single cell datasets of around 3000 cells

• Higher resolution is often optimal for larger datasets

8.10.201985

Page 80: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

tSNE plot for cluster visualization

8.10.201986

• t-distributed Stochastic Neighbor Embedding

• Non-linear dimensional reduction

oDifferent transformations to different regions

• Specialized in local embedding

oDistance between clusters is not meaningful

ohttps://distill.pub/2016/misread-tsne/

• Perplexity = number of neighbors to consider

oDefault 30, lower for small datasets

• Input data: same PCs as for clustering

• tSNE plot is gray by default, we color it by clustering results from the previous step

oCheck how well the groupings found by tSNE match with cluster colors

Page 81: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

UMAP plot for cluster visualization

• UMAP = Uniform Manifold Approximation and

Projection

• Non-linear graph-based dimension reduction

method like tSNE

oPreserves more of the global structure than tSNE

• Input data: same PCs as for clustering

• Plot is gray by default, we color it by clustering

oCheck how well the groupings found by UMAP match with cluster colors

• More info: video 6 at bit.ly/scRNA-seq

oDimensionality reduction explained by Paulo Czarnewski

8.10.201987

Page 82: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Analysis steps for clustering

1. Check the quality of cells

2. Filter out low quality cells

3. Normalize expression values

4. Identify highly variable genes

5. Scale data, regress out unwanted variation

6. Reduce dimensions using principal component analysis (PCA) on the variable genes

7. Determine significant principal components (PCs)

8. Use the PCs to cluster cells with graph based clustering

9. Use the PCs to visualize clusters with non-linear dimensional reduction (tSNE or UMAP)

10. Detect and visualize marker genes for the clusters8.10.201988

Page 83: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Marker gene for a cluster

• Differentially expressed between the cluster and all other cells

8.10.201989

Page 84: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Differential expression analysis of scRNA-seq data

• Challenging because the data is noisy

o low amount of mRNA low counts, high dropout rate, amplification biases

ouneven sequencing depth

• Non-parametric tests, e.g. Wilcoxon rank sum test (Mann-Whitney U test)

oCan fail in the presence of many tied values, such as the case for dropouts (zeros) in scRNA-seq

• Methods specific for scRNA-seq, e.g. MAST

oTake advantage of the large number of samples (cells) for each group

oMAST accounts for stochastic dropouts and bimodal expression distribution

• Methods for bulk RNA-seq, e.g. DESeq2

oBased on negative binomial distribution, works ok for UMI data.

oNote: you should not filter genes, because DESeq2 models dispersion by borrowing information from other genes with similar expression level

8.10.201990

Page 85: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

8.10.201991Slide by Bishwa Ghimire

Page 86: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Filtering out genes prior to statistical testing – why?

• We test thousands of genes, so it is possible that we get good p-values just by chance

(false positives)

Multiple testing correction of p-values is needed

oThe amount of correction depends on the number of tests (= genes)

oBonferroni correction: adjusted p-value = raw p-value * number of genes tested

o If we test less genes, the correction is less harsh better p-values

• Filtering also speeds up testing

8.10.201992

Page 87: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Gene filtering parameters

• Min fraction: test only genes which are expressed in at least this percentage of cells in

either of the two groups (default 25%)

• Differential expression threshold: test only genes whose log2 fold change of average

expression between the two groups is at least this much (default 25%)

8.10.201993

Page 88: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Marker gene result table

• p_val = p-value

• p_val_adj = p-value adjusted using the Bonferroni method

• avg_logFC = log2 fold change between the groups

• cluster = cluster number

• pct1 = percentage of cells where the gene is detected in the first group

8.10.201994

Page 89: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

How to retrieve marker genes for a particular cluster?

• The result table contains marker genes for all the clusters

• You can filter the result table based on the cluster column using the tool

Utilities / Filter table by column value using the following parameters

8.10.201995

Page 90: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Visualize cluster marker genes

• Color dimension reduction plot with marker

gene expression

• Violin plot

8.10.201997

Page 91: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Integrated analysis of two samples

8.10.201998

Page 92: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Goals of integrated analysis

• When comparing two samples, e.g. control and treatment, we want to

o Identify cell types that are present in both samples

oObtain cell type markers that are conserved in both control and treated cells

oFind cell-type specific responses to treatment

8.10.201999

Page 93: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

When comparing two samples we need to correct for batch effects

• We need to find corresponding cells in the two samples

oTechnical and biological variability can cause batch effects which make this difficult

• Several batch effect correction methods for single cell RNA-seq data available, e.g.

oSeurat v2: Canonical correlation analysis (CCA) + dynamic time warping

oSeurat v3: CCA + anchors

oMutual nearest neigbors (MNN)

8.10.2019100

Page 94: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Analysis steps for integrated analysis

1. Check the quality of cells, filter out low quality cells

2. Normalize expression values

3. Identify highly variable genes

4. Integrate samples and perform CCA, align samples

5. Scale data, perform PCA

6. Cluster cells, visualize clusters with tSNE or UMAP

7. Find conserved biomarkers for clusters

8. Find differentially expressed genes between samples, within clusters

9. Visualize interesting genes

8.10.2019101

Page 95: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Integrated analysis: Setup, QC, filtering

• Perform the Seurat object setup, QC and filtering steps separately for the two samples

oSame as before, just remember to name the samples, e.g. CTRL and STIM

8.10.2019102

Page 96: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Analysis steps for integrated analysis

1. Check the quality of cells, filter out low quality cells

2. Normalize expression values

3. Identify highly variable genes

4. Integrate samples and perform CCA, align samples

5. Scale data, perform PCA

6. Cluster cells, visualize clusters with tSNE or UMAP

7. Find conserved biomarkers for clusters

8. Find differentially expressed genes between samples, within clusters

9. Visualize interesting genes

8.10.2019104

Page 97: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Canonical correlation analysis (CCA)

• Dimension reduction, like PCA

• Captures common sources of variation

between two datasets

• Produces canonical correlation vectors, CCs

oEffectively capture correlated gene modules that are present in both datasets

oRepresent genes that define a share biological space

• Why not PCA?

o It identifies the sources of variation, even if present only in 1 sample (e.g. technical variation)

oWe want to integrate, so we want to find the similarities

8.10.2019105

Page 98: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Aligning two samples (Seurat v3)

1. Canonical correlation

analysis + L2-

normalisation of CCVs

shared space

2. Identify pairs of mutual

nearest neighbors

(MNN) “anchors”

3. Score anchors (based on

neighborhood, in PC

space)

4. Anchors + scores

correction vectors

8.10.2019106

Anchors = cells in a shared biological

state

Page 99: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Combine two samples –tools (v3)

1. Identify “anchors” for data integration

o Parameter: how many CCs to use in the neighbor search [20]

2. Integrate datasets together

o Parameter: how many PCs to use in the anchor weighting procedure [20]

8.10.2019108

Page 100: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Dimensionality –how many CCs / PCs to choose for downstream analysis?

• In the article* by Seurat developers, they “neglect to finely tune this parameter for

each dataset, but still observe robust performance over diverse use cases”.

oFor all neuronal, bipolar, and pancreatic analyses: dimensionality of 30.

oFor scATAC-seq analyses: 20.

oFor analyses of human bone marrow: 50

oThe integration of mouse cell atlases: 100

• Higher numbers: for significantly larger dataset and increased heterogeneity

8.10.2019109* https://www.biorxiv.org/content/biorxiv/early/2018/11/02/460147.full.pdf

Page 101: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Integrated analysis of two samples –tools (v3)

1. Cluster cells

o As before

2. Visualize clustering

o tSNE or UMAP, as a parameter

8.10.2019110

Page 102: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Analysis steps for integrated analysis

1. Check the quality of cells, filter out low quality cells

2. Normalize expression values

3. Identify highly variable genes

4. Integrate samples and perform CCA, align samples

5. Scale data, perform PCA

6. Cluster cells, visualize clusters with tSNE or UMAP

7. Find conserved biomarkers for clusters

8. Find differentially expressed genes between samples, within clusters

9. Visualize interesting genes

8.10.2019112

Page 103: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Find conserved cluster marker genes in two samples

• Conserved marker gene = marker for a given cluster in both samples

oGive cluster as a parameter

oCompares gene expression in cluster X vs all other cells

• Uses Wilcoxon rank sum test

• Result table contains max_pval (= bigger one of the raw p-values for the two samples)

oWe are interested in adjusted p-values (p_val_adj). Use the tool Utilities / Filter table by column valueto filter based on these

8.10.2019113

Page 104: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Find cell-type specific differentially expressed genes between samples

• We are now looking for differential expression between two samples in one cluster

• Uses Wilcoxon rank sum test

• You can filter the result table with the tool Utilities / Filter table by column value to

find significantly differentially expressed genes (adjusted p_val_adj < 0.05)

8.10.2019114

Page 105: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Analysis steps for integrated analysis

1. Check the quality of cells, filter out low quality cells

2. Normalize expression values

3. Identify highly variable genes

4. Integrate samples and perform CCA, align samples

5. Scale data, perform PCA

6. Cluster cells, visualize clusters with tSNE or UMAP

7. Find conserved biomarkers for clusters

8. Find differentially expressed genes between samples, within clusters

9. Visualize interesting genes

8.10.2019115

Page 106: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Visualize interesting genes in split dot plot

• Size = the percentage of cells in a cluster expressing a given gene

• Brightness = the average expression level in the expressing cells in a cluster

8.10.2019116

Page 107: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Visualize interesting genes in tSNE/UMAP plots

1. No change between the samples: conserved cell type markers

2. Change in all clusters: cell type independent marker for the treatment

3. Change in one/some clusters: cell type dependent behavior to the treatment

8.10.2019117

1.

2.

3.

CTRL TREATED

Different marker genes

Page 108: Single-cell RNA-seq data analysis using Chipster - CSC · CSC –Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus Single-cell RNA-seq data analysis

Visualize interesting genes in violin plots

8.10.2019118

1. No change between the samples:

conserved cell type markers

2. Change in all clusters: cell type

independent marker for the

treatment

3. Change in one/some clusters: cell

type dependent behavior to the

treatment