sliding of a charge density wave probed by coherent x-ray diffraction

14
Sliding of a charge density wave probed by coherent X-Ray Diffraction E. Pinsolle Laboratoire de physique des solides, Orsay

Upload: sheba

Post on 23-Feb-2016

36 views

Category:

Documents


0 download

DESCRIPTION

Sliding of a charge density wave probed by coherent X-Ray Diffraction. E. Pinsolle Laboratoire de physique des solides, Orsay. Synchrotron Sources. Experiment done at the ESRF on the beamline ID10A. Experiment caried out by: E. Pinsolle V. Jacques D. Le bolloc’h A. Sinchenko - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Sliding of a charge density wave probed by coherent X-Ray Diffraction

Sliding of a charge density wave probed by coherent X-Ray Diffraction

E. PinsolleLaboratoire de physique des solides, Orsay

Page 2: Sliding of a charge density wave probed by coherent X-Ray Diffraction

Synchrotron Sources

Experiment caried out by:

E. PinsolleV. JacquesD. Le bolloc’hA. SinchenkoP. Monceau

Experiment done at the ESRF on the beamline ID10A

Page 3: Sliding of a charge density wave probed by coherent X-Ray Diffraction

NbSe3 sample

Sample dimensions:2mm x 10μm x 10μm

3 types of chains:-first one with Peierls transition at 145K-second one with Peierls transition at 59K-last one with no transition.

Threshold current 0.9 mA

Page 4: Sliding of a charge density wave probed by coherent X-Ray Diffraction

70

60

50

40

30

20

10

0

706050403020100

Signature of CDW in X-ray diffraction

Gap opening at the fermi level.Electron density modulation

-2kF +2kF

Spawning of satellites around initial Bragg peak.

Satellite reflection (0 1.25 0)

Page 5: Sliding of a charge density wave probed by coherent X-Ray Diffraction

Experimental setup

Incident X ray beam

Chain axis

Diffracted Beam CCD camera

Gold contacts

Two interest of this experiment:-Coherent beam sensitive to phase defects.-Micrometer scale beam.

Page 6: Sliding of a charge density wave probed by coherent X-Ray Diffraction

Above the threshold

Bellow the threshold 2D diffraction

patternsIncreasing current values

I=0 mA

I=0.8 mA

I=1.4 mA

I=1.8 mA

I=0.2 mA

I=0.4 mA

I=0.6 mA

I=1.6 mA

Page 7: Sliding of a charge density wave probed by coherent X-Ray Diffraction

70

60

50

40

30

20

10

0

706050403020100

First Result:Satellite in transverse direction.

1200

1000

800

600

400

200

Inte

nsity

706050403020100Pixel

1400

1200

1000

800

600

400

200

0

Inte

nsity

706050403020100

Pixel

600

500

400

300

200

100

Inte

nsity

706050403020100Pixel

1400

1200

1000

800

600

400

200

0

Inte

nsity

706050403020100

Pixel

1400

1200

1000

800

600

400

200

0

Inte

nsity

706050403020100

Pixel

800

700

600

500

400

300

200

Inte

nsity

706050403020100Pixel

1400

1200

1000

800

600

400

200

Inte

nsity

706050403020100Pixel

I=0 mA

I=1.4 mA

I=0.8 mA

I=0.6 mA

I=0.4 mA

I=0.2 mA

I=1.6 mA

I=1.8 mA800

700

600

500

400

300

200

Inte

nsity

706050403020100Pixel

Satellite in the transverse direction for different current value, bellow (colon 1) and above (colon 2) the threshold. (IS=0.9 mA)

70

60

50

40

30

20

10

0

706050403020100

Satellite with I=1.8 mA

Satellite with I=0.2 mA

Page 8: Sliding of a charge density wave probed by coherent X-Ray Diffraction

800

600

400

200

0

Inte

nsity

35302520151050Pixel

2500

2000

1500

1000

500

Inte

nsity

35302520151050Pixel

2500

2000

1500

1000

500

0

Inte

nsity

35302520151050Pixel

2000

1500

1000

500

0

Inte

nsity

35302520151050Pixel

2500

2000

1500

1000

500

0

Inte

nsity

35302520151050Pixel

3000

2500

2000

1500

1000

500

0

Inte

nsity

35302520151050Pixel

2500

2000

1500

1000

500

0

Inte

nsity

35302520151050Pixel

3000

2500

2000

1500

1000

500

0

Inte

nsity

35302520151050Pixel

800

600

400

200

0

Inte

nsity

35302520151050Pixel

I=0 mA

I=1.8 mA

I=1.6 mA

I=0.8 mA

I=0.6 mA

I=1.4 mAI=0.4 mA

I=0.2 mA I=0 mA

The shift of the satellite change sign when we exceed the threshold.

-No speckle and no shape change.

The shift δq= +/- 0.26 10-4 Å-1 which correspond in the real space to a change of the wave length δλ=+/-8.10-4 Å

Second Result:Satellite in

longitudinal direction.

Satellite in direction of chain axis for different current value, under (colon 1) and above (colon 2) the threshold. (IS=0.9 mA)

Page 9: Sliding of a charge density wave probed by coherent X-Ray Diffraction

Speckle signature of creepBellow thresholdPhase equation:

2

2

2

2

2

2

2 zyxv

tEe F

-We suppose to be in a stationary case. - Correlations in longitudinal direction are much higher than in transverse direction.

This lead to the following phase equation:

2

2

2 yvEe F

1200

1000

800

600

400

200

Inte

nsity

706050403020100Pixel

1400

1200

1000

800

600

400

200

0

Inte

nsity

706050403020100

Pixel

600

500

400

300

200

100

Inte

nsity

706050403020100Pixel

1400

1200

1000

800

600

400

200

0

Inte

nsity

706050403020100

Pixel

1400

1200

1000

800

600

400

200

0

Inte

nsity

706050403020100

Pixel

800

700

600

500

400

300

200

Inte

nsity

706050403020100Pixel

1400

1200

1000

800

600

400

200

Inte

nsity

706050403020100Pixel

I=0 mA

I=1.4 mA

I=0.8 mA

I=0.6 mA

I=0.4 mA

I=0.2 mA

I=1.6 mA

I=1.8 mA800

700

600

500

400

300

200

Inte

nsity

706050403020100Pixel

70

60

50

40

30

20

10

0

706050403020100

Page 10: Sliding of a charge density wave probed by coherent X-Ray Diffraction

Influence of stepsabove threshold

1200

1000

800

600

400

200

Inte

nsity

706050403020100Pixel

1400

1200

1000

800

600

400

200

0

Inte

nsity

706050403020100

Pixel

600

500

400

300

200

100

Inte

nsity

706050403020100Pixel

1400

1200

1000

800

600

400

200

0

Inte

nsity

706050403020100

Pixel

1400

1200

1000

800

600

400

200

0

Inte

nsity

706050403020100

Pixel

800

700

600

500

400

300

200

Inte

nsity

706050403020100Pixel

1400

1200

1000

800

600

400

200

Inte

nsity

706050403020100Pixel

I=0 mA

I=1.4 mA

I=0.8 mA

I=0.6 mA

I=0.4 mA

I=0.2 mA

I=1.6 mA

I=1.8 mA800

700

600

500

400

300

200

Inte

nsity

706050403020100Pixel

1200

1000

800

600

400

200

Inte

nsity

706050403020100Pixel

1400

1200

1000

800

600

400

200

0

Inte

nsity

706050403020100

Pixel

600

500

400

300

200

100

Inte

nsity

706050403020100Pixel

1400

1200

1000

800

600

400

200

0

Inte

nsity

706050403020100

Pixel

1400

1200

1000

800

600

400

200

0

Inte

nsity

706050403020100

Pixel

800

700

600

500

400

300

200

Inte

nsity

706050403020100Pixel

1400

1200

1000

800

600

400

200

Inte

nsity

706050403020100Pixel

I=0 mA

I=1.4 mA

I=0.8 mA

I=0.6 mA

I=0.4 mA

I=0.2 mA

I=1.6 mA

I=1.8 mA800

700

600

500

400

300

200

Inte

nsity

706050403020100Pixel

Chain axis

The CDW must vanish at the interface of the step.

Nb Se3 is known to have step at the surface

Page 11: Sliding of a charge density wave probed by coherent X-Ray Diffraction

If some strong pinning defects are present on chain dn, this fixe the phase on these chain (φ(dn)=0) and leads to the solution:

))((21 nn

Fn dydy

veE

20 10 10 20

1

2

3

4

1200

1000

800

600

400

200

Inte

nsity

706050403020100Pixel

1400

1200

1000

800

600

400

200

0

Inte

nsity

706050403020100

Pixel

600

500

400

300

200

100

Inte

nsity

706050403020100Pixel

1400

1200

1000

800

600

400

200

0

Inte

nsity

706050403020100

Pixel

1400

1200

1000

800

600

400

200

0

Inte

nsity

706050403020100

Pixel

800

700

600

500

400

300

200

Inte

nsity

706050403020100Pixel

1400

1200

1000

800

600

400

200

Inte

nsity

706050403020100Pixel

I=0 mA

I=1.4 mA

I=0.8 mA

I=0.6 mA

I=0.4 mA

I=0.2 mA

I=1.6 mA

I=1.8 mA800

700

600

500

400

300

200

Inte

nsity

706050403020100Pixel

simulation from the previous theory compared to

experiment.

dn dn-2dn-1

φn Φn-1

0

φ

Speckle signature of creepBellow threshold

Page 12: Sliding of a charge density wave probed by coherent X-Ray Diffraction

2kF contractionBellow the threshold.Theoretical explanation:

cntotal nnn ein nnn where

The total number of carriers is conserved. But when some current is applied we create a disequilibrium of the normal carrier densities.

xnn cn

1

800

600

400

200

0

Inte

nsity

35302520151050Pixel

2500

2000

1500

1000

500

Inte

nsity

35302520151050Pixel

2500

2000

1500

1000

500

0

Inte

nsity

35302520151050Pixel

2000

1500

1000

500

0

Inte

nsity

35302520151050Pixel

2500

2000

1500

1000

500

0

Inte

nsity

35302520151050Pixel

3000

2500

2000

1500

1000

500

0

Inte

nsity

35302520151050Pixel

2500

2000

1500

1000

500

0

Inte

nsity

35302520151050Pixel

3000

2500

2000

1500

1000

500

0

Inte

nsity

35302520151050Pixel

800

600

400

200

0

Inte

nsity

35302520151050Pixel

I=0 mA

I=1.8 mA

I=1.6 mA

I=0.8 mA

I=0.6 mA

I=1.4 mAI=0.4 mA

I=0.2 mA I=0 mA

Approximate view of the band structure

δq

Page 13: Sliding of a charge density wave probed by coherent X-Ray Diffraction

Current conversionabove the threshold.

Stress experienced by the CDW

iF

iiF N

nxN

U

1

800

600

400

200

0

Inte

nsity

35302520151050Pixel

2500

2000

1500

1000

500

Inte

nsity

35302520151050Pixel

2500

2000

1500

1000

500

0

Inte

nsity

35302520151050Pixel

2000

1500

1000

500

0

Inte

nsity

35302520151050Pixel

2500

2000

1500

1000

500

0

Inte

nsity

35302520151050Pixel

3000

2500

2000

1500

1000

500

0

Inte

nsity

35302520151050Pixel

2500

2000

1500

1000

500

0

Inte

nsity

35302520151050Pixel

3000

2500

2000

1500

1000

500

0

Inte

nsity

35302520151050Pixel

800

600

400

200

0

Inte

nsity

35302520151050Pixel

I=0 mA

I=1.8 mA

I=1.6 mA

I=0.8 mA

I=0.6 mA

I=1.4 mAI=0.4 mA

I=0.2 mA I=0 mA

Un

Chain axisGold contacts Gold contacts

δλ δq

δλ=0

P. Monceau et al. Plastic sliding of charge density waves. Physical review B

Page 14: Sliding of a charge density wave probed by coherent X-Ray Diffraction

Conclusion

Thank you for your attention!

Different behaviors of the CDW under current probed by coherent X ray diffraction:

Bellow the threshold:

Along the transverse direction. We observe phase defects which is the signature of creep phenomenon.

Along longitudinal direction. Condensation of normal electrons in the CDW.

Above the threshold: Along transverse direction. Influence of

steps on the CDW.

Along longitudinal direction. Current conversion far from contacts.