sluneční soustavaplanety (merkur, venuše, země, mars, jupiter, saturn, uran, neptun) obíhají...

27
1 2009 Helena Šimoníková D07462 9.6.2009 Sluneční soustava Studijní text k výukové pomůcce

Upload: others

Post on 12-Jan-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

1

2009

Helena Šimoníková

D07462

9.6.2009

Sluneční soustava Studijní text k výukové pomůcce

Page 2: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

2

Obsah Kolem čeho se to všechno točí? .............................................................................................................. 4

Sluneční soustava .................................................................................................................................... 5

Slunce ...................................................................................................................................................... 6

Jádro .................................................................................................................................................... 7

Vrstva v zářivé rovnováze .................................................................................................................... 7

Konvektivní zóna ................................................................................................................................. 7

Fotosféra ............................................................................................................................................. 7

Chromosféra ........................................................................................................................................ 7

Koróna ................................................................................................................................................. 7

Protuberance ....................................................................................................................................... 7

Erupce .................................................................................................................................................. 7

Sluneční skvrny .................................................................................................................................... 8

Sluneční vítr ......................................................................................................................................... 8

Merkur ..................................................................................................................................................... 8

Venuše ..................................................................................................................................................... 8

Země ........................................................................................................................................................ 9

Měsíc ................................................................................................................................................. 11

Mars ....................................................................................................................................................... 11

Život na Marsu ................................................................................................................................... 11

Sondy ................................................................................................................................................. 11

Povrch ................................................................................................................................................ 12

Atmosféra .......................................................................................................................................... 12

Měsíce ............................................................................................................................................... 12

Jupiter .................................................................................................................................................... 12

Struktura ............................................................................................................................................ 13

Tepelná bilance ................................................................................................................................. 13

Měsíce ............................................................................................................................................... 13

Velká rudá skvrna .............................................................................................................................. 13

Prstence ............................................................................................................................................. 13

Sondy ................................................................................................................................................. 13

Saturn .................................................................................................................................................... 14

Prstence ............................................................................................................................................. 14

Měsíce ............................................................................................................................................... 15

Page 3: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

3

Sondy ................................................................................................................................................. 15

Uran ....................................................................................................................................................... 15

Prstence a měsíce .............................................................................................................................. 15

Neptun ................................................................................................................................................... 16

Atmosféra .......................................................................................................................................... 16

Prstence a měsíce .............................................................................................................................. 16

Pluto ...................................................................................................................................................... 17

Co to vůbec je? .................................................................................................................................. 17

Dráha ................................................................................................................................................. 17

Charakteristika .................................................................................................................................. 17

Charon ............................................................................................................................................... 17

Shrnutí ................................................................................................................................................... 19

Slunce ................................................................................................................................................ 19

Merkur ............................................................................................................................................... 19

Venuše ............................................................................................................................................... 19

Země .................................................................................................................................................. 20

Mars ................................................................................................................................................... 20

Jupiter ................................................................................................................................................ 20

Saturn ................................................................................................................................................ 21

Uran ................................................................................................................................................... 22

Neptun ............................................................................................................................................... 22

Pluto .................................................................................................................................................. 22

Test ........................................................................................................................................................ 23

Zdroje .................................................................................................................................................... 27

Page 4: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

4

Sluneční soustava

Kolem čeho se to všechno točí? První, kdo se pokusil odpovědět na otázku, jak vypadá stavba sluneční soustavy, byla antická věda. S

využitím pythagorijské školy (rozvíjela geometrii) mohla více či méně přesně popsat pozorovaný stav.

Doprostřed vesmíru byla lidmi dosazována různá tělesa.

Ve 4. století př. n. l. Aristoteles jednoznačně přijal geocentrický systém, že Země je uprostřed

vesmíru, a dokázal jeho platnost.

Ve 3. století př. n. l. Aristarchos na základě pozorování zatmění Slunce a Měsíce a s geometrickými

úvahami vytvořil heliocentrický model vesmíru – Slunce se nacházelo uprostřed – nicméně tento

systém nebyl přijat.

Kolem roku 200 př. n. l. Apolónius z Pergy a Hipparchos (2. století př. n. l.) vytvořili nové prvky

pohybu planet. Později na ně navázal Ptolemaios, který je zahrnul do svého kosmogenického

systému – geocentrického modelu vesmíru. Tento model se spolu s Aristotelovou fyzikou stal

základem pro další generace.

Až Mikuláš Koperník (19. 2. 1473 - 24. 5. 1543) ve svém díle De revolutionibus

orbium caelestium – Oběhy nebeských sfér zveřejnil svou heliocentrickou soustavu

(přiřadil všechny pozorované pohyby těles ve vesmíru Zemi, předpokládal dokonce i

rotaci Země kolem své osy). Tímto svým dílem se zasloužil o formování správného

heliocentrického systému.

Koperník v knize o soustavě uvádí:

Žádný nebeský kruh neboli sféra nemá jediný střed.

Střed Země není středem světa, nýbrž toliko středem tíže a dráhy Měsíce.

Všechny dráhy obklopují Slunce, jako by stálo v jejich středu, a proto střed světa leží poblíž

Slunce.

Poměr vzdálenosti Země-Slunce k výšce nebe stálic je mnohem menší než poměr zemského

poloměru ke vzdálenosti Slunce, takže tato vzdálenost je proti výšce nebe stálic nepatrná.

Všechen pohyb viditelný na nebi stálic není reálný, tak jak jej vidíme ze Země. Země se tedy

otáčí s přidruženými elementy při denním pohybu jednou kolem svých pólů. Přitom zůstává

nebe stálic nepohnuté jakožto nejzazší nebe.

Všechen pozorovaný pohyb Slunce nepřísluší jemu samému, nýbrž je důsledkem rotace Země

a jejího pohybu po kruhové dráze kolem Slunce, který je vlastní všem planetám. A tak se

Země pohybuje několikerým způsobem.

Co se u planet jeví jako pohyb zpětný a pohyb vpřed, není takové samo sebou, nýbrž se tak

jeví ze Země. Její pohyb sám o sobě tedy stačí k vysvětlení četných rozmanitých jevů na nebi.

Page 5: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

5

Jelikož se však planety nepohybují po ideálních kružnicích (bylo nutno provádět

značné korekce jejich pohybů), nebyla tato teorie hned a bez výhrad přijata.

Tycho Brahe (1546 - 1601) si raději vytvořil novou soustavu, aby nemusel

přistoupit na Koperníkův systém.

Díky jeho přesným měřením však Johannes Kepler (27. 12. 1571 - 15. 11. 1630)

potvrdil platnost heliocentrického systému a zjistil, že se planety pohybují po

eliptických drahách kolem Slunce.

Sluneční soustava Vznikla asi před 5 miliardami let (různé zdroje uvádějí rozmezí

4,55 – 5 miliard let).

Sluneční soustava je planetární systém hvězdy Slunce a je součástí

galaxie Mléčná dráha.

Sluneční soustava je tvořena tělesy různých druhů a velikostí.

Centrálním tělesem je Slunce, ve kterém je soustředěna téměř celá její hmotnost (99.866 %). Dále ji

tvoří osm planet, trpasličí planety, více než 150 měsíců planet, planetky, komety, meteroidy a další

tělesa.

Její hranice nejsou přesně vymezeny. Obvykle jimi rozumíme okolí Slunce, ve kterém se pohybují

nejvzdálenější členové Sluneční soustavy (přibližně do vzdálenosti 2 světelných let).

Planety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách

kolem Slunce, které je, jak již bylo napsáno, ve společném ohnisku oběžných elips. Měsíce obíhají

kolem planet také po eliptických drahách.

Po svém objevení byly mezi planety na čas zařazeny i Ceres a Pluto. Ty však již svými vlastnostmi

nespadají do označení „planeta“, a tak jsou dnes označovány jako trpasličí planety. K nim se přidal v

roce 2005 objekt dnes nazývaný Eris, který je podle měření Hubblova vesmírného dalekohledu

dokonce větší než Pluto samotné.

Důležitými složkami sluneční soustavy jsou také planetky tzv. hlavního pásu na drahách mezi Marsem

a Jupiterem a překvapivě mnoho poměrně velkých těles je dnes nacházeno v oblasti tzv. Kuiperova

pásu za drahou Neptunu (Sedna, Quaoar, Orcus ad.) – úplný okraj naší soustavy pak tvoří obrovská

zásobárna kometárních jader tzv. Oortův oblak.

Model (Brahe), kde všechny planety obíhají okolo Slunce, kromě Země, okolo které obíhá Slunce.

Page 6: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

6

Planety Merkur, Venuši, Mars, Jupiter a Saturn lidstvo znalo již ve starověku, neboť jsou viditelné

okem, a bylo je tedy možné i v dobách dávno před vynálezem dalekohledu nejen pozorovat, ale i

precizně zaznamenávat jejich pohyb. Až vynález dalekohledu umožnil objevovat mnohem menší

anebo vzdálenější tělesa.

Planety Sluneční soustavy dělíme na:

kamenné planety, tzv. vnitřní planety, řadíme zde Merkur, Venuši, Zemi, Mars a

hlavní pás asteroidů.

plynné planety, tzv. vnější planety jsou Jupiter, Saturn, Uran a Neptun.

Povíme si něco málo o Slunci, Merkuru, Venuši, Zemi, Marsu, Jupiteru, Saturnu, Uranu, Neptunu,

Plutu a meziplanetární hmotě.

Slunce Slunce vzniklo asi před 4,6 miliardami let a bude svítit ještě přibližně 7 miliard let. Stejně jako všechny

hvězdy hlavní posloupnosti i Slunce září díky termonukleárním reakcím v jádře. Povrch se neustále

mění, vznikají a zanikají sluneční skvrny, protuberance, erupce i jiné sluneční útvary. Slunce ovlivňuje

ostatní tělesa Sluneční soustavy nejen gravitačně, ale i zářením v širokém spektru vlnových délek,

magnetickým polem i proudem nabitých částic.

Slunce je centrální těleso naší sluneční soustavy a obsahuje 99.866 % její hmotnosti.

Page 7: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

7

Jádro Jádro je energetickým zdrojem nejen Slunce, ale i celé Sluneční soustavy. Má hustotu stokrát větší

než voda a teplotu 15 milionů Kelvinů. V tomto dokonalém reaktoru probíhají desítky reakcí, jejichž

důsledkem je přeměna vodíku na hélium za současného uvolňování energie v podobě fotonů.

Vrstva v zářivé rovnováze Jádro obklopuje Vrstva v zářivé rovnováze, široká 500 tisíc km. Touto oblastí putují fotony z jádra k

povrchu přibližně 100 tisíc let. Zdánlivě pomalý pohyb fotonů je způsoben jejich pohlcováním hmotou

a znovu vyzářením v náhodném směru.

Konvektivní zóna Proudy horké sluneční hmoty v Konvektivní zóně proudí vzhůru a po vyzáření části energie klesá

chladnější hmota zpět do hlubin Slunce. Šířka tohoto pásma je asi 200 tisíc km.

Fotosféra Povrch Slunce, zvaný fotosféra, má teplotu asi 5 800 K. Je pro něj charakteristická tzv. granulace –

vrcholky vzestupných a sestupných proudů z konvektivní zóny. Typickými útvary ve fotosféře jsou

sluneční skvrny. Z fotosféry jsou vyvrhovány protuberance - oblaka plazmatu ovládaná magnetickými

poli.

Chromosféra Chromosféra je relativně tenká a řídká vrstva těsně přiléhající k fotosféře. Teplota chromosféry roste

směrem od Slunce. Je to pravděpodobně způsobeno rozpadem různých typů nestabilit plazmatu,

které chromosféru ohřívají. Typickými útvary jsou například chromosférické erupce - náhlá zjasnění v

chromosféře.

Koróna Oblast nad chromosférou nazýváme koróna. Je to jakási řídká horní atmosféra Slunce, která nemá

ostré hranice a zasahuje hluboko do Sluneční soustavy. Teplota koróny v blízkosti Slunce (cca 1,5×106

K) je paradoxně vyšší než teplota fotosféry (5 700 K). Rekonekce magnetických silokřivek a

turbulentní brzdění spolu s tlumením magnetoakusztických vln právě v koróně je pravděpodobnou

příčinou této vysoké teploty koróny.

Protuberance Protuberance jsou výtrysky sluneční hmoty desetitisíce kilometrů nad povrch, ovládané magnetickým

polem Slunce.

Erupce Náhlá zjasnění ve fotosféře a chromosféře doprovázená výrazným uvolněním hmoty a energie. Může

dojít až k odtržení oblaku plazmatu se zamrzlým magnetickým polem, který putuje Sluneční

soustavou. Zachytí-li tento oblak magnetosféra naší Země, dojde k výrazným polárním zářím a

magnetickým bouřím.

Page 8: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

8

Sluneční skvrny Sluneční skvrny jsou tmavší oblasti na povrchu Slunce. Tyto útvary, někdy velké i 50 tisíc km, vznikají

interakcemi magnetického pole Slunce a vzhledem k nižší teplotě se jeví jako tmavé oblasti.

Sluneční vítr Sluneční vítr je označení pro proudy nabitých částic, vyvržených ze Slunce tlakem záření. Sluneční vítr

v podstatě vytváří vnější atmosféru Slunce - korónu, která prostupuje celou Sluneční soustavou.

Sluneční vítr interaguje s magnetosférami planet a komet. Vytváří rázové vlny a tvaruje magnetické

pole planet. Při průniku částic do magnetosféry Země dochází k polárním zářím a magnetickým

bouřím.

Merkur Merkur je planeta nejbližší Slunci. Jde v pořadí velikosti o nejmenší (dříve druhou, první bylo Pluto)

skalnatou planetu, posetou velkým množstvím kráterů. Jeho oběžná dráha je blíže Slunci než dráha

Země, proto se na nebi nikdy příliš nevzdaluje od Slunce. Teplota na jeho povrchu po západu Slunce

velmi rychle klesá až na -180°C a přes den vystupuje na 430°C. Merkur se otočí kolem vlastní osy

jednou za 59 našich dní. Jeho doba oběhu kolem Slunce trvá 88 dní. Tento poměr způsobuje, že od

jednoho svítání na Merkuru ke druhému uplynou dva Merkurovy roky (176 našich dní). Jde o příklad

vázané rotace (spinorbitální interakce) způsobené slapovými silami. Dráha Merkura kolem Slunce je

protáhlá elipsa, jejíž stáčení (43″ za století) v minulém století vysvětlovali astronomové existencí jiné

planety. V roce 1916 vysvětlila stáčení dráhy Merkuru Einsteinova teorie relativity. Merkur má velmi

řídkou atmosféru, tvořenou hlavně sodíkem, se stopami vodíku a helia.

Základní data Hmotnost 3,3x1023 kg Průměr 4 870 km Hustota 5 430 kg/m3 Povrchová teplota -180 °C až 430 °C Doba otočení kolem osy 58,65 dne Doba oběhu kolem Slunce 88 pozemských dní Průměrná vzdálenost od Slunce 58 mil. km Počet měsíců 0

Venuše Venuše je druhou planetou od Slunce a její dráha leží nejblíže Země. Krouží kolem Slunce takřka po

kruhové dráze ve vzdálenosti 108 milionů km s periodou 225 dní. Otočení kolem vlastní osy (ve

směru hodinových ručiček, proti oběhu, tzv. retrográdní rotace) trvá 243 pozemských dnů. To

znamená, že na Venuši Slunce vychází a zapadá jen dvakrát za jeden oblet Slunce.

Povrch této "sestry Země", zahalený v husté atmosféře, která svým vysokým obsahem kyseliny sírové

brání přímému pozorování povrchu, nám umožnily sledovat teprve kosmické sondy, které sestoupily

až k jejímu povrchu. Kosmická sonda Magellan, vypuštěná na oběžnou dráhu Venuše, zmapovala

radarem detaily povrchu a objevila obrovské krátery, způsobené dopadem obřích meteoritů. Na

Venuši je mnoho sopek, některé až 3 km vysoké a 500 km široké. Krátery, sopky a ztuhlé potoky lávy

Page 9: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

9

se za miliony let téměř nezměnily - nejsou tam bouřky, změny teplot, led ani jiné činitele, způsobující

zvětrávání.

Podmínky na Venuši jsou z pohledu člověka dosti nepříznivé: 95x vyšší tlak než na Zemi, deště

kyseliny sírové a teplota 480°C. Tuto vysokou teplotu způsobuje skleníkový efekt. Sluneční záření

proniká atmosférou a ohřívá Venuši. Tepelné záření jejího povrchu však atmosféra s velkým podílem

CO2 nepropustí zpět do Vesmíru. Ve vyšších vrstvách atmosféry by mohly přežívat nízké formy

organismů (bakterie).

Oblaka Venuše dobře odrážejí sluneční svit a proto je tato planeta po Slunci a Měsíci nejjasnějším

tělesem na obloze. Na jaře můžeme Venuši spatřit na západní obloze chvíli po západu Slunce – proto

jí lidé říkají Večernice. Přes tři měsíce potom vychází na východní obloze stejná planeta s

tříhodinovým předstihem před Sluncem jako Jitřenka.

Základní data Hmotnost 4,87x1024 kg Průměr 12 100 km Hustota 5 250 kg/m3 Povrchová teplota max. 480 °C Doba otočení kolem osy 243 dní Doba oběhu kolem Slunce 224,7 pozemských dní Průměrná vzdálenost od Slunce 108x106 km Počet měsíců Atmosféra

0 CO2 (96 %), N2 (3 %), SO2, H2O, CO, He, Ne, HCl, HF

Země Země je třetí planetou v pořadí od Slunce. Je největší z planet zemského typu

(průměr 12 700 km). Je jedinou planetou v celém Vesmíru, o které víme, že

na ní existuje život. Má dostatečně hustou atmosféru, dostatek kapalné vody

v povrchových oceánech.

Kolem Země obíhá jediný měsíc s vázanou rotací. Země spolu s Měsícem

tvoří v podstatě dvojplanetu obíhající kolem společného těžiště.

Při pozorování Země z kosmu vidíme hlavně modrou barvu oceánů. 70% povrchu Země je pokryto

oceány, 30% tvoří kontinenty. Země sestává z těchto vrstev: jádro, plášť, kůra, troposféra,

stratosféra, mezosféra, termosféra. Kůra se posouvá a "plave" na polotekutém plášti.

Země sestává z těchto vrstev: jádro, plášť, kůra, troposféra, stratosféra, mezosféra, termosféra. Kůra

se posouvá a "plave" na polotekutém plášti.

Teplota v centru Země je 5 100°C, tlak 0,4 TPa. Magnetické pole Země má přibližně dipólový

charakter, je deformováno Slunečním větrem do charakteristického tvaru. Průměrná teplota

dosahuje 13 °C. Země se kolem své osy otočí za 1 den, kolem Slunce za 365,26 dne s rychlostí 30

km/s. Sluneční vítr a erupce na jejím povrchu způsobují polární záře.

Page 10: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

10

Polární záře (aurora) vzniká ve výškách 70 km až 1 000 km částicemi slunečního větru. Jde o svítící

stěny a vlákna měnící se v řádu sekund až minut. V polárních zářích převládá zelená barva. V období

zvýšené sluneční aktivity (při koronálním výronu hmoty Slunce letí plazmoid směrem k Zemi, kde

vniká do atmosféry) vytvářejí polární záře celý prstenec v okolí severního i jižního magnetického pólu.

Tento prstenec nazýváme aurorální ovál.

Základní data o Zemi Hmotnost 5,9x1024 kg Průměr 12 700 km Hustota 5 520 kg/m3 Průměrná povrchová teplota 13 °C Doba otočení kolem osy 1 den Doba oběhu kolem Slunce 365,26 dne Průměrná vzdálenost od Slunce 149x106 km Počet měsíců Oběžná rychlost kolem Slunce

1 30 km/s

DEN A NOC – Evropa a Afrika - fotografie

Evropy a Afriky pořízená z raketoplánu

Columbia při posledním letu. Dobře

patrný je přechod mezi dnem a nocí.

Uprostřed Atlantického oceánu jsou

patrné ostrovy Azory, jihovýchodně od

nich ostrovy Madeira dále na jih

Kanárské ostrovy. V levé horní části

snímku je zcela zamrzlé Grónsko.

Page 11: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

11

Měsíc Měsíc obíhá kolem Země a rotuje tzv. vázanou rotací (doba oběhu a rotace je

shodná). Díky tomu stále vidíme přibližně jen přivrácenou polokouli Měsíce.

Měsíc je prvním cizím těl esem, na kterém stanul člověk (Neil Armstrong, 1969,

Apollo 11). Voda na Měsíci byla objevena v stinných částech kráterů a pod

povrchem. Povrch Měsíce je pokryt regolitem (drobná drť s vysokým obsahem

skla). Malé pevné jádro obklopené plastickou vrstvou (v hloubce 1000 km pod

povrchem). Velké množství kráterů má rozměry od milimetrů po stovky

kilometrů. Několik z nich je pojmenováno i po českých osobnostech (například kráter Anděl).

Ale o Měsíci i Zemi se budeme podrobněji bavit příště.

Základní data o Měsíci Hmotnost 1/81 mZemě Průměr 3 476 km Hustota 3 340 kg/m3 Povrchová teplota 100 – 400 K Doba otočení kolem osy 27,3 dní (vázaná rotace) Doba oběhu kolem Země 27,3 dní Průměrná vzdálenost od Země 384 000 km Počet měsíců 0

Mars Mars - planeta více než 100 let spojovaná s mimozemským životem - si až do

dnes uchovala své tajemství. Ani s dnešními poznatky ze sond nemůžeme tuto

otázku s určitostí potvrdit ani vyvrátit. Mars byl přínosem pro lidské poznání i

v dobách Johannese Keplera, kterého pozorování Marsu přivedlo ke třem

zákonům pohybu planet.

Život na Marsu Mars, známý jako Rudá planeta, je v pořadí čtvrtým tělesem Sluneční soustavy. Jeho význačnost

spočívá v tom, že v minulosti, ale i dnes lidé spojují tuto planetu s mimozemskou formou života.

Nedávné (1996) výzkumy meteoritu z povrchu Marsu, nalezeného v Antarktidě, připouštěli existenci

života na Marsu před 3,8 miliardami let. Další podrobné průzkumy tohoto meteoritu tuto domněnku

nepotvrdily. Rozpětí teplot, které dnes na Marsu panují (zima ne větší než v Antarktidě), by bylo

snesitelné pro některé primitivní formy života, žijící na Zemi.

Sondy Myšlenka mimozemského života a snaha o poznání pravdy přivedla americké vědce již v roce 1975 k

vyslání dvou kosmických sond (Viking 1 a Viking 2) na Mars. Kamery sond nenalezly stopy rostlin ani

živočichů, z povrchových vzorků byla přímo na místě provedena chemická analýza, která existenci

života nepotvrdila ani nevyvrátila. V roce 1996 na Marsu přistála sonda Mars Pathfinder, která

podrobně prozkoumala bezprostřední okolí přistání (vozítko Sujourner) Marsu. V roce 1997 k Marsu

Page 12: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

12

přilétla sonda Mars Global Surveyor (MGS), která provádí podrobný průzkum celé planety. Starty

dalších sond se připravují.

Povrch Povrch planety je pokryt načervenalým pískem a prachem. Barva je způsobena vysokým obsahem

železa. Načervenalá barva celé planety jí dala jméno (Mars - podle boha válek). Obrovské sopky, z

nichž ta největší - Olympus Mons (24 km vysoká, 550 km široká, kráter o průměru 72 km) je největší

sopkou Sluneční soustavy, jsou zkamenělými svědky vývoje planety. Charakteristické pro Mars jsou

systémy kaňonů, vzniklé pohybem kůry. Snímky z Vikingů, Pathfinderu a MGS ukazují místa, kudy

dříve tekla voda. Z toho co o Marsu víme, se zdá, že dříve byl Mars vlhčí a teplejší, než je dnes.

Atmosféra Složení atmosféry: 95,3 % CO2; 2,7 % N2; 1,6 % Ar; 0,14 % O2; 0,07 % CO; 0,03 % H2O. Rychlost větru

naměřena až 450 km/hod.

Měsíce Mars má dva malé měsíce - Phobos (Strach) a Deimos (Hrůza). Byly to pravděpodobně dříve planetky,

které Mars zachytil svou gravitací. Je těžké zpozorovat je i velkým dalekohledem, protože mají

průměr jen 23 a 16 km a jde o nepravidelná skaliska posetá krátery.

Základní data Hmotnost 6,4x1023 kg Průměr 6 794x6 751 km Hustota 3 930 kg/m3 Povrchová teplota -130 °C až 17 °C Doba otočení kolem osy 24 h 39 min Doba oběhu kolem Slunce 687 dní Vzdálenost od Slunce Průměrný oběžná rychlost

(207 až 249)x106 km 24 km/s

Počet měsíců Rozměry Phobose Rozměry Deimose

2 22x19 km 15x12x11 km

Jupiter Jupiter je první z tzv. obřích planet a zároveň je největší a nejhmotnější

planetou Sluneční soustavy. Je složen převážně z plynů, jejichž chemické

složení je podobné Slunci. Od hvězd se liší pouze malou hmotností, která

nestačí k vytvoření podmínek pro reakce, probíhajících ve hvězdách. Rychlá

rotace Jupiteru (s periodou 10 hodin) způsobuje vydouvání rovníkových

vrstev a vznik pestře zbarvených pásů. Charakteristickým útvarem

Jupiterovy atmosféry je Velká červená skvrna, větší než naše planeta, která

je pozorována po několik století.

Page 13: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

13

Struktura Vnitřní část planety tvoří oceán kapalného vodíku. Jeho hlubší část má díky velkému tlaku odtrhány

elektrony z atomárních obalů a vykazuje kovové vlastnosti (tzv. kovový vodík). Vnější část oceánu je

tvořena stlačeným molekulárním vodíkem a tvoří vlastní povrch planety. Atmosféra obsahuje kromě

vodíku a helia také metan, amoniak a vodní páry. Teplota pod oblaky směrem ke středu roste. Na

vrcholcích mraků je −160°, o 60 km hlouběji je přibližně stejná teplota jako na Zemi, ještě kousek

hlouběji je teplota na bodu varu vody. Proudy tekoucí v nitru (v kovovém vodíku) vytvářejí kolem

Jupiteru silné magnetické pole. Toto pole je odpovědné za pozorované polární záře způsobené

Birkelandovými proudy tekoucími podél magnetických silokřivek.

Tepelná bilance Jupiter vydává asi o 60 % více tepelné energie, než přijímá ze slunečního záření. Předpokládá se, že

tato energie pochází ze tří zdrojů: teplo z doby vzniku Jupiteru; energie, uvolňovaná pomalým

smršťováním planety a energie velmi slabě probíhajících termonukleárních reakcí.

Měsíce Kolem Jupiteru krouží 63 měsíců, z nichž čtyři největší objevil již Galileo Galilei. Ganymede je

největším Jupiterovým měsícem. Jeho jádro z tvrdých hornin pokrývá tlustá vrstva ledu. O něco

menší Callisto je silně pokrytý krátery. Nejsvětlejším Jupiterovým satelitem je Europa, jejíž 100 km

tlustý ledový obal dobře odráží sluneční svit.

Velmi nápadné černočervenožluté zbarvení má měsíc Io. Toto zbarvení způsobuje síra, vyvrhovaná z

nitra sopek 200 km nad povrch měsíce. Vyvrhovaná ionizovaná síra vytváří kolem Jupiteru tzv.

plazmový torus. V něm se uzavírá část Birkelandových proudů tekoucích podél silokřivek planety a

zpětně ohřívá měsíc Io. Vulkanická činnost na měsíci Io je tak způsobena kombinovaným ohřevem

gravitačními slapovými silami mateřské planety a elektromagnetickým ohřevem Birkelandovýni

proudy.

V letech 1999-2003 bylo objeveno několik desítek nových měsíců 3,6 metrovým dalekohledem na

Havajských ostrovech (CCD 12000×12000 pixlů, David Jewitt ad.). Jde jen o kilometrová skaliska.

Velká rudá skvrna Velká rudá skvrna je anticyklóna v Jupiterově atmosféře, nejméně 300 let stará. Větry vanou proti

směru hodinových ručiček kolem Velké rudé skvrny rychlostí okolo 400 km/h. Anticyklóna přesahuje

svým severojižním rozměrem průměr Země (13 000 km) a měří více jak dva poloměry Země v

západovýchodním směru.

Prstence Jupiter má tři slabé prstence, objevené sondou Voyager 1. Soustavy prstenců pozorujeme u všech

obřích planet. Jsou složeny z velmi malých, prachových částic.

Sondy K Jupiteru bylo vysláno celkem 5 sond. První byla dvojice sond Pioneer. Nejslavnější se stala mise

dvou sond Voyager, která získala podrobné informace o planetě. V letech 1995 až 2003 byla u

Page 14: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

14

planety sonda Galileo, která zkoumala zejména Jupiterovy měsíce. Na svou šestiletou cestu byla

sonda vypuštěna v roce 1989.

Základní data Hmotnost 1,9x1027 kg Průměr 143 760 km Hustota 1,31 g/m3 Povrchová teplota -160 °C (svrchní oblačná vrstva) Doba otočení kolem osy 9 h 55 min Doba oběhu kolem Slunce 11,86 roku Průměrná vzdálenost od Slunce 778x106 km Počet měsíců Oběžná rychlost kolem Slunce

63 13 km/s

Saturn Saturn je v pořadí 6. planetou od Slunce a druhou největší ve Sluneční

soustavě. Saturn je od Slunce desetkrát dále než Země a proto je jeho

teplota velmi nízká (–150 °C). Průměrná hustota planety je nejnižší z celé

sluneční soustavy, dokonce nižší než hustota vody. Je charakteristický

svým dobře viditelným prstencem.

Oběhne Slunce za 30 pozemských let, ale kolem vlastní osy se otočí za pouhých 10 hodin. Tato rychlá

diferenciální rotace způsobuje obdobně jako na Jupiteru vznik pásů. V atmosféře jsou někdy

pozorovány velké žluté či bílé skvrny (Velká bílá skvrna – 1990). Atmosféra je tvořena převážně

vodíkem a heliem, s oblaky čpavku. V nitru je malé jádro z křemičitanů železa obklopené kovovým

vodíkem. Vítr v atmosféře dosahuje rychlosti až 1 800 km/h.

Magnetické pole je slabší než u Jupiteru (asi 20 % velikosti), má dipólový charakter s osou téměř

rovnoběžnou s rotační osou. Struktura magnetického pole je relativně jednoduchá a připomíná

zvětšeninu magnetosféry naší Země.

Prstence Saturn má soustavu prstenců (11), z nichž 3 hlavní jsou viditelné velkými dalekohledy. Přestože

prstence jsou široké několik desítek tisíc km, jejich tloušťka je jen pár stovek metrů, maximálně

kilometr. Prstence tvoří drobné částice, patrně ledem obalené kousky hornin o velikosti od několika

cm po desítky metrů. V prstenci B byly nalezeny radiální struktury (loukotě). Ukázalo se, že jde o

levitující nabitý prach. Prstenec F je složen z několika propletených prstenců gravitačně

ovlivňovaných tzv. „pastýřskými" měsíci. Předpokládáme, že planetární prstence vznikly roztrháním

některých měsíců dopadem komet a meteoroidů nebo slapovými silami mateřské planety. Čím blíže

je měsíc k planetě, tím větší je rozdíl gravitačního působení na přivrácenou a odvrácenou stranu

měsíce. Po překročení určité vzdálenosti rozdíl sil běžnou horninu roztrhá.

Page 15: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

15

Měsíce Saturn má velmi bohatou soustavu měsíců (56). Osm nejmenších má zcela nepravidelný tvar. Měsíc

Phoebe obíhá planetu v opačném směru (retrográdně) a je pravděpodobně zachyceným asteroidem.

Měsíc

Titan je největší Saturnův měsíc a s průměrem 5 150 km je větší než planeta Merkur. Má hustou

atmosféru, v níž převažuje dusík s trochou metanu. Tlak atmosféry na povrchu je 1,5 atm (má tedy

atmosféru hustší než Země), teplota −180 °C. Tyto hodnoty nevylučují možnost primitivních forem

života. Na Titanu přistálo v roce 2005 pouzdro Huygens.

Na měsíci Enceladus buď probíhá, nebo probíhala v nedávné minulosti tektonická činnost. O jeho

geologické aktivitě svědčí světlé zabarvení povrchu s různými kaňony a průrvami. Na měsíci Mimas je

obrovský kráter způsobený impaktem, který málem měsíc roztrhl. Měsíc Hyperion se na své dráze

namísto rotace chaoticky převaluje díky gravitační vazbě s Titanem. 13 měsíců bylo objeveno ze

Země systémem adaptivní optiky dalekohledy umístěnými na hoře Mauna Kea.

Sondy Poprvé obletěla Saturn sonda Pioneer 11 v roce 1979. Podrobné snímky prstenců a některých měsíců

pořídily sondy Voyager 1 v roce 1980 a Voyager 2 v roce 1981. Od roku 2004 je u Saturnu sonda

Cassini (NASA) s pouzdrem Huygens (ESA), které přistálo na Titanu počátkem roku 2005.

Základní data Hmotnost 5,68x1026 kg Průměr 120 420 km Hustota 0,71 g/cm3 Povrchová teplota -150 °C (svrchní oblačná vrstva) Doba otočení kolem osy 10 h 32 min Doba oběhu kolem Slunce 29,46 roku Průměrná vzdálenost od Slunce 1427x106 km Počet měsíců Oběžná rychlost kolem Slunce

56 9,65 km/s

Uran Sedmá planeta sluneční soustavy je další z plynných obrů s velmi nízkou

(−220 °C = 53 K) teplotou. Kromě vodíku a helia obsahuje atmosféra také

metan, způsobující namodralé zbarvení. Ve středu Uranu je malé jádro z

hornin a železa. Rotační osa Uranu je vzhledem k rovině oběhu stočená na

bok (98°), patrně díky střetu s jinou velkou planetou při vzniku sluneční

soustavy. Sama rotace je diferenciální s periodou 16−17 hodin. Rychlost

větrů v atmosféře dosahuje až 600 km/h.

Prstence a měsíce Planeta má 11 málo patrných mladých prstenců, objevených při zákrytu jedné hvězdy Uranem. Uran

má 5 větších a 22 drobných měsíců (do 150 km). Deset menších měsíců bylo objeveno sondou

Page 16: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

16

Voyager 2 v roce 1986, měsíce Kaliban a Sycorax až v roce 1998, další měsíce v roce 1999, 2001 a

2003.

Jeden z větších měsíců, Miranda, vypadá, jako by byl složen ze tří nebo čtyř obrovských kusů. Je

možné, že v dobách dávno minulých byl měsíc rozlomen impaktem jiného tělesa a později se opět

spojil v jediné těleso. Rýhy a kaňony na povrchu dosahují hloubky až 20 km, charakteristické jsou

terasovité vrstvy a střídání geologicky mladších a starších oblastí.

Měsíc Titania byl geologicky aktivní (rozsáhlé kaňony), Ariel je nejjasnější z Uranových měsíců a má

pravděpodobně nejmladší povrch. Umbriel a Oberon jsou naopak tmavé a v minulosti byly málo

geologicky aktivní. Měsíce ve vnějších oblastech obíhají planetu retrográdně, možná jde o zachycené

planetky.

Základní data Hmotnost 8,7x1025 kg Průměr 51 300 km Hustota 1270 kg/m3 Povrchová teplota -220 °C Doba otočení kolem osy 17 h 14 min Doba oběhu kolem Slunce 84 let Průměrná vzdálenost od Slunce 2,86x109 km Počet měsíců 27

Neptun Neptun je poslední z obřích planet, osmá planeta v pořadí od Slunce.

Podobně jako ostatní obří planety má prstence, pravděpodobně rozsáhlou

soustavu měsíců a pásovitou strukturu atmosféry s obřími víry – skvrnami.

Neptun je téměř stejně velký jako Uran, ale přesto, že je mnohem dále od

Slunce, jeho teplota je o něco vyšší (–213 °C). Neptun má v nitru vlastní

zdroj energie, podobně jako Jupiter a Saturn. Průměrná hvězdná velikost je

7,8 m a proto nemůže být pozorován okem.

Atmosféra Atmosféra má pásovitou strukturu, rotace je diferenciální s průměrnou periodou 19 hodin. Vlastní

rotační perioda planety je 16 hodin, atmosféra tedy vzhledem k povrchu rotuje retrográdně. V

atmosféře se nachází obří anticyklóny, například Malá a Velká temná skvrna. Atmosféra má

zelenomodrou barvu, v horních vrstvách převládá vodík a helium. Modrozelené zabarvení je

způsobeno, podobně jako u Uranu, stopami metanu. Rychlosti větru naměřené sondou Voyager 2

přesahují 2 000 km/h.

Prstence a měsíce Neptun má čtyři tenké prstence a 13 měsíců, Triton a Nereida byly známé před příletem Voyageru.

Triton je největším měsícem, je přibližně tak veliký jako náš Měsíc a má velmi řídkou dusíkovou

atmosféru. Krouží kolem Neptunu v opačném směru, než rotuje planeta. Pravděpodobně byl

Neptunem zachycen dodatečně. Třetinu měsíce tvoří led (hustota jen 2 g/cm3). Sonda Voyager

Page 17: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

17

naměřila na Tritonu teplotu pouze 38 K a zjistila nedávnou tektonickou činnost a nalezla polární

čepičku. Na měsíci jsou gejzíry kapalného dusíku a prachu. Měsíc Nereida má mimořádně

excentrickou dráhu (1,4–9,7×106 km) a jedná se asi o zachycené těleso. Ostatní měsíce jsou malá

tělesa soustředěná v rovině rovníku.

Základní data Hmotnost 1,0x1026 kg Průměr 49 500 km Hustota 1 770 kg/m3 Povrchová teplota -213 °C Doba otočení kolem osy 16 h 7 min Doba oběhu kolem Slunce 165 let Průměrná vzdálenost od Slunce 4,5 miliard km Počet měsíců 13

Pluto

Co to vůbec je? Pluto bylo považováno plných sedmdesát šest let (od svého objevení) za

planetu. Tomu 24. srpna 2006 učinila přítrž konference Mezinárodní

astronomická unie, kde přesně vymezili pojem „planeta“ (nebeské těleso,

které obíhá okolo Slunce, dosáhne přibližně kulatého tvaru, vyčistilo okolí své

dráhy), do kterého již Pluto nespadá. Přesto si ve svém označení slovem

„planeta“ udrželo – nyní spadá do kategorie transneptunických objektů, tzv.

trpasličích planet (nebeské těleso, které obíhá okolo Slunce, dosáhne přibližně

kulatého tvaru, nevyčistilo okolí své dráhy, není satelitem – měsícem).

Dráha Dráha Pluta je mimořádně excentrická, v některých obdobích je blíže ke Slunci než Neptun (1979–

1999). Sklon dráhy k rovině ekliptiky je 17°. Sklon rotační osy je 82°! Pluto se podobně jako Uran spíše

odvaluje v rovině dráhy, než rotuje. Pluto oběhne Slunce jednou za 248 let. Kolem vlastní osy se otáčí

v opačném smyslu, než obíhá.

Charakteristika Pluto má skvrnitý povrch se světlými a tmavými oblastmi a s náznaky polárních čepiček. Povrch,

tvořen dusíkovým ledem se stopami metanu, dobře odráží světlo.

Pravděpodobně je na Plutu i voda, CO2 a CO. Pluto je tak malé, že nemohlo způsobit poruchy drah

Uranu a Neptunu, na základě kterých bylo objeveno.

Charon Charon má synchronní oběžnou dráhu a rotaci, perioda je 6,4 dne. Hmotnost měsíce je 8×1021 kg,

průměr 1 212 km (asi polovina Pluta). Charon je tak v poměru k Plutu největším měsícem vůbec.

Page 18: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

18

Pluto a Charon lze považovat spíše za rovnocennou dvojici těles, dvojplanetu, než za trpasličí planetu

a měsíc. V jejich blízkosti se nachází dva menší měsíce Nix a Hydra.

Základní data Hmotnost 1,3x1022 kg Průměr 2 324 km Hustota 2 000 kg/m3 Povrchová teplota -230 °C Doba otočení kolem osy 6,4 dne Doba oběhu kolem Slunce 248,54 let Průměrná vzdálenost od Slunce 2,86x109 km Počet měsíců 3

Page 19: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

19

Shrnutí

Slunce Slunce vzniklo asi před 4,6 miliardami let a bude

svítit ještě přibližně 7 miliard let. Tato hvězda září

díky termonukleárním reakcím v jádře. Povrch se

neustále mění, vznikají a zanikají sluneční skvrny,

protuberance, erupce i jiné sluneční útvary. Svou

gravitací, zářením, magnetickým polem a proudem

nabitých částic ovlivňuje ostatní tělesa Sluneční

soustavy. V jádru (hustota stokrát větší než voda,

teplota 15 milionů K) probíhají termonukleární

reakce (přeměna vodíku na hélium), při čemž se

uvolňuje energie (fotony). Přes vrstvu v zářivé

rovnováze (šířka 500 tisíc km) putují fotony z jádra

na povrch přibližně 100 tisíc let. V 200 tisíc km

široké konvektivní zóně vstoupá horká sluneční

hmota k povrchu, kde se ochladí a klesá zpět do hlubin. Na fotosféře (povrchu Slunce o teplotě asi

5 800 K) se prolínají vzestupné a sestupné proudy z konvektivní zóny. Najdeme zde sluneční skvrny a

protuberance. Chromosféra je relativně tenká a řídká vrstva těsně přiléhající k fotosféře. Teplota

chromosféry roste směrem od Slunce, typická je pro chromosféru erupce. Nad touto vrstvou se

nachází koróna – jakási řídká horní atmosféra Slunce, která nemá ostré hranice a zasahuje hluboko

do Sluneční soustavy. Protuberance jsou výtrysky sluneční hmoty desetitisíce kilometrů nad povrch.

Erupcí rozumíme zjasnění ve fotosféře a chromosféře doprovázená výrazným uvolněním hmoty a

energie. Může dojít až k odtržení oblaku plazmatu se zamrzlým magnetickým polem, který putuje

Sluneční soustavou. Zachytí-li tento oblak magnetosféra naší Země, dojde k výrazným polárním zářím

a magnetickým bouřím. Sluneční skvrny jsou tmavší oblasti (způsobené nižší teplotou) na povrchu

Slunce. Někdy dosahují velikosti i 50 tisíc km. Sluneční vítr v podstatě vytváří vnější atmosféru Slunce

– korónu, která prostupuje celou Sluneční soustavou. Sluneční vítr interaguje s magnetosférami

planet a komet. Vytváří rázové vlny a tvaruje magnetické pole planet. Při průniku částic do

magnetosféry Země dochází k polárním zářím a magnetickým bouřím.

Merkur Merkur – planeta nejbližší Slunci. Je to skalnatá planeta, posetá krátery podobně jako náš Měsíc. Jde

o nejmenší planetu vůbec (dříve druhá, první bylo Pluto). Je téměř bez atmosféry (řídká, tvořena

hlavně sodíkem, se stopami vodíku a helia). Teplota povrchu tohoto tělesa kolísá mezi −180 °C a 430

°C. Merkur se otočí kolem vlastní osy jednou za 59 našich dní. Jeho doba oběhu kolem Slunce trvá 88

dní. Jde o příklad vázané rotace (spinorbitální interakce) v poměru 2:3 způsobené slapovými silami.

Dráha Merkuru kolem Slunce je protáhlá elipsa, která se stáčí vlivem přítomnosti ostatních planet.

Venuše Venuše je nejbližší planetou vzhledem k Zemi. Hustá atmosféra (kyselina sýrová) zabraňuje přímému

pozorování povrchu. Díky skleníkovému efektu (atmosféra s velkým podílem CO2 nepropustí sluneční

záření zpět do Vesmíru) dosahuje teplota povrchu Venuše až 480 °C. Venuše obíhá kolem Slunce

Page 20: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

20

takřka po kruhové dráze ve vzdálenosti 108 km s periodou 225 dní. Otočení kolem vlastní osy (proti

oběhu, tzv. retrográdní rotace) trvá 243 pozemských dnů. To znamená, že na Venuši Slunce vychází a

zapadá jen dvakrát za jeden oblet Slunce. Oblaka Venuše dobře odrážejí sluneční svit a proto je tato

planeta po Slunci a Měsíci nejjasnějším tělesem na obloze. Na večerní obloze jí můžeme spatřit jako

Večernici a na ranní obloze jako Jitřenku. Díky neměnnosti počasí se povrch planety téměř nezměnil

ani za milióny let.

Země Země (třetí planeta od Slunce) – je největší z planet zemského typu (průměr 12 700 km). Je jedinou

planetou v celém vesmíru, o které víme, že na ní existuje život. Má dostatečně hustou atmosféru,

dostatek kapalné vody v povrchových oceánech. Kolem Země obíhá jediný měsíc s vázanou rotací

(doba oběhu a rotace je shodná). Země spolu s Měsícem (první cizí těleso, na kterém stanul člověk –

Neil Armstrong, 1969, Apollo 11) tvoří v podstatě dvojplanetu obíhající kolem společného těžiště. Při

pozorování Země z kosmu vidíme hlavně modrou barvu oceánů. 70 % povrchu Země je pokryto

oceány, 30 % tvoří kontinenty. Země sestává z těchto vrstev: jádro, plášť, kůra, troposféra,

stratosféra, mezosféra, termosféra. Kůra se posouvá a „plave“ na polotekutém plášti. Teplota v

centru Země je 5 100 °C, tlak 0,4 TPa. Magnetické pole Země má přibližně dipólový charakter, je

deformováno slunečním větrem do typického tvaru. Průměrná teplota dosahuje 13 °C. Země se

kolem své osy otočí za 1 den, kolem Slunce za 365,26 dne s rychlostí 30 km/s. Sluneční vítr a erupce

na jeho povrchu způsobují polární záře.

Mars Mars – rudá planeta, je v pořadí čtvrtým tělesem Sluneční soustavy se dvěma malými měsíci,

Phobosem a Deimosem. Povrch planety je pokryt načervenalým pískem a prachem. Barva je

způsobena vysokým obsahem železa. Načervenalá barva celé planety jí dala jméno (Mars je bůh

válek). Obrovské sopky, z nichž ta největší, Olympus Mons, je 24 km vysoká a její základna je 550 km

široká. Na vrcholu je kráter o průměru 72 km. Pro Mars jsou charakteristické systémy kaňonů vzniklé

pohybem kůry. Snímky ze sond ukazují místa, kudy dříve tekla voda. Zdá se, že Mars byl dříve vlhčí a

teplejší, než je dnes. Rozpětí teplot, které na Marsu panují (zima ne větší než v Antarktidě) by bylo

snesitelné pro některé primitivní formy života žijící na Zemi. Jejich existence se však dosud

nepotvrdila.

Jupiter Jupiter – největší a nejhmotnější (1,9×1027 kg) planeta sluneční soustavy má plynokapalný charakter

a chemické složení podobné Slunci. Od hvězd se liší pouze malou hmotností, která nestačí k vytvoření

podmínek pro reakce, probíhajících ve hvězdách. Se svými mnoha měsíci se Jupiter podobá jakési

„sluneční soustavě“ v malém. Jupiter má, stejně jako všechny obří planety, soustavu prstenců.

Rychlá rotace Jupiteru (s periodou 10 hodin) způsobuje vydouvání rovníkových vrstev a vznik pestře

zbarvených pásů.

Atmosféra obsahuje kromě vodíku a helia také metan, amoniak a vodní páry. Teplota pod oblaky

směrem ke středu roste. Na vrcholcích mraků je −160 °C, o 60 km hlouběji je přibližně stejná teplota

jako na Zemi. Proudy tekoucí v nitru (v kovovém vodíku) vytvářejí kolem Jupiteru silné dipólové

magnetické pole. Vnitřní část planety tvoří oceán kapalného vodíku. Jeho hlubší část má díky

Page 21: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

21

velkému tlaku kovové vlastnosti (tzv. kovový vodík). Vnější část oceánu je tvořena stlačeným

molekulárním vodíkem a tvoří vlastní povrch planety. Proudy tekoucí v nitru (v kovovém vodíku)

vytvářejí kolem Jupiteru silné magnetické pole, které je odpovědné za pozorované polární záře.

Jupiter vydává asi o 60 % více tepelné energie, než přijímá ze slunečního záření. Předpokládá se, že

tato energie pochází ze tří zdrojů: teplo z doby vzniku Jupiteru; energie, uvolňovaná pomalým

smršťováním planety a energie velmi slabě probíhajících termonukleárních reakcí.

Kolem Jupiteru krouží 63 měsíců, z nichž čtyři největší objevil již Galileo Galilei. Ganymede je

největším Jupiterovým měsícem. O něco menší Callisto je silně pokrytý krátery. Nejsvětlejším

Jupiterovým satelitem je Europa, jejíž 100 km tlustý ledový obal dobře odráží sluneční svit. Velmi

nápadné černočervenožluté zbarvení má měsíc Io. Toto zbarvení způsobuje síra, vyvrhovaná z nitra

sopek 200 km nad povrch měsíce.

Charakteristickým útvarem Jupiterovy atmosféry je Velká rudá skvrna (větší než Země). Jde o

anticyklónu starou nejméně 300 let. Větry kolem ní vanou proti směru hodinových ručiček rychlostí

400 km/h.

Jupiter má tři slabé prstence, objevené sondou Voyager 1. Soustavy prstenců pozorujeme u všech

obřích planet. Jsou složeny z velmi malých, prachových částic.

Saturn Saturn, v pořadí 6. planeta od Slunce, druhá největší planeta sluneční soustavy. Je charakteristická

dobře viditelným prstencem. Saturn je od Slunce desetkrát dále než Země a proto je jeho teplota

velmi nízká (−150 °C). Průměrná hustota planety je nejnižší z celé sluneční soustavy, dokonce nižší

než hustota vody. Saturn patří k obřím planetám. Oběhne Slunce za 30 let, kolem vlastní osy se otočí

za pouhých 10 hodin. Rychlá rotace způsobuje vznik pásů. V atmosféře jsou pozorovány velké žluté či

bílé skvrny. Atmosféra je tvořena převážně vodíkem a heliem, s oblaky čpavku. V nitru je malé jádro z

křemičitanů obklopené kovovým vodíkem. Vítr v atmosféře dosahuje rychlosti až 1 800 km/h.

Magnetické pole má dipólový charakter s osou téměř rovnoběžnou s rotační osou.

Magnetické pole je slabší než u Jupiteru (asi 20 % velikosti), má dipólový charakter s osou téměř

rovnoběžnou s rotační osou. Struktura magnetického pole je relativně jednoduchá a připomíná

zvětšeninu magnetosféry naší Země.

Saturn má soustavu prstenců (11), z nichž 3 hlavní jsou viditelné velkými dalekohledy. Přestože

prstence jsou široké několik desítek tisíc km, jejich tloušťka je jen pár stovek metrů, maximálně

kilometr. Prstence tvoří drobné částice, patrně ledem obalené kousky hornin o velikosti od několika

cm po desítky metrů. Předpokládáme, že planetární prstence vznikly roztrháním některých měsíců

dopadem komet a meteoroidů nebo slapovými silami mateřské planety. Čím blíže je měsíc k planetě,

tím větší je rozdíl gravitačního působení na přivrácenou a odvrácenou stranu měsíce. Po překročení

určité vzdálenosti rozdíl sil běžnou horninu roztrhá.

Saturn má velmi bohatou soustavu měsíců (56). Osm nejmenších má zcela nepravidelný tvar. Měsíc

Titan je největší Saturnův měsíc a s průměrem 5 150 km je větší než planeta Merkur. Má hustou

atmosféru, v níž převažuje dusík s trochou metanu. Tyto hodnoty nevylučují možnost primitivních

forem života.

Page 22: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

22

Uran Sedmá planeta sluneční soustavy je další z plynných obrů s velmi nízkou (−220 °C = 53 K) teplotou.

Kromě vodíku a helia obsahuje atmosféra také metan, způsobující namodralé zbarvení. Rychlost

větru dosahuje až 600 km/h. Ve středu Uranu je malé jádro z hornin a železa.

Planeta má soustavu (11 malých) prstenců a kolem krouží rozsáhlý systém měsíců (150) podobně

jako u ostatních obřích planet. Jeden z větších měsíců, Miranda, vypadá, jako by byl složen ze tří nebo

čtyř obrovských kusů. Je možné, že v dobách dávno minulých byl měsíc rozlomen impaktem jiného

tělesa a později se opět spojil v jediné těleso.

Neptun Neptun je poslední z obřích planet, osmá planeta v pořadí od Slunce. Podobně jako ostatní obří

planety má prstence, rozsáhlou soustavu měsíců a pásovitou strukturu atmosféry s obřími víry

(anticyklóny) – skvrnami (Malá a Velká temná skvrna). Zelenomodré zbarvení atmosféry je

způsobeno, podobně jako u Uranu, stopami metanu. Dále zde najdeme vodík a helium. Teplota

povrchu je o něco vyšší než Uran tedy -213 °C, rychlosti větru přesahuje 2 000 km/h. Neptun má v

nitru vlastní zdroj energie, podobně jako Jupiter a Saturn. Neptun má čtyři tenké prstence a 13

měsíců, Triton a Nereida byly známé před příletem Voyageru. Triton je největším měsícem, je

přibližně tak veliký jako náš Měsíc a má velmi řídkou dusíkovou atmosféru. Krouží kolem Neptunu v

opačném směru, než rotuje planeta. Pravděpodobně byl Neptunem zachycen dodatečně stejně jako

měsíc Nereida.

Pluto Pluto bylo plných sedmdesát šest let považováno (od svého objeven)í za planetu. Tomu 24. srpna

2006 učinila přítrž konference Mezinárodní astronomická unie, kde přesně vymezili pojem „planeta“

(nebeské těleso, které obíhá okolo Slunce, dosáhne přibližně kulatého tvaru, vyčistilo okolí své

dráhy), do kterého již Pluto nespadá. Přesto si ve svém označení slovem „planeta“ udrželo – nyní

spadá do kategorie transneptunických objektů, tzv. trpasličích planet (nebeské těleso, které obíhá

okolo Slunce, dosáhne přibližně kulatého tvaru, nevyčistilo okolí své dráhy, není satelitem).

Pluto oběhne Slunce jednou za 248 let. Kolem vlastní osy se otáčí v opačném smyslu, než obíhá.

Povrch je pokryt světlými a tmavými oblastmi a s náznaky polárních čepiček. Tvoří jej dusíkový led se

stopami metanu, jež dobře odráží světlo. Pravděpodobně je na Plutu i voda, CO2 a CO.

Charon je tak v poměru k Plutu největším měsícem vůbec. Proto je lze považovat spíše za

rovnocennou dvojici těles – dvojplanetu. Kolem Pluta a Charonu obíhají dva menší měsíce Nix a

Hydra.

Page 23: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

23

Test 1. Sluneční skvrnu najdeme:

a. v konvektivní zóně

b. v koróně

c. ve fotosféře

d. v troposféře

2. K čemu dochází důsledkem termonukleárních reakcí?

a. k přeměně vodíku na hélium

b. k přeměně hélia na dusík

c. k přeměně dusíku na vodík

d. k přeměně sodíku na vodík

3. Merkur je:

a. třetí planetou Sluneční soustavy

b. poslední planetou Sluneční soustavy

c. první planetou Sluneční soustavy

d. pátou planetou Sluneční soustavy

4. Který z prvků se hlavně nachází v atmosféře Merkuru?

a. hélium

b. vodík

c. sodík

d. metan

5. Před východem Slunce můžeme vidět Venuši jako:

a. Jinovatku

b. Jitřenku

c. Jiřičku

d. Jitřinku

6. Skleníkový efekt Venuše je způsoben:

a. C2O

b. CO

c. CO2

d. C2O3

7. Kolik procent zemského povrchu tvoří kontinenty?

a. 10

b. 20

c. 30

d. 5

8. Z kolika vrstev se Země sestává?

a. 13

b. 10

c. 9

d. 7

Page 24: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

24

9. Načervenalý písek a prach na Marsu je způsoben vtokovým obsahem:

a. niklu

b. astatu

c. hliníku

d. železa

10. Mars má:

a. 1 měsíc

b. 2 měsíce

c. 3 měsíce

d. 4 měsíce

11. Atmosféra neobsahuje:

a. sodík

b. vodík

c. amoniak

d. vodní páry

12. Velkou rudou skvrnu najdeme:

a. v nitru

b. na povrchu

c. v atmosféře

d. v prstencích

13. Kolik prstenců má Saturn kolem sebe?

a. 10

b. 11

c. 12

d. 13

14. Na kterém měsíci je možný primitivní život?

a. Mimas

b. Titania

c. Tethys

d. Titan

15. Namodralé zbarvení planety způsobuje:

a. vodík

b. metan

c. helium

d. sodík

16. 53 K (Kelvin) je:

a. -125 °C

b. 5 °C

c. -220 °C

d. 45 °C

17. Neptun je:

a. první z obřích planet

b. druhou z obřích planet

c. prostřední z obřích planet

Page 25: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

25

d. poslední z obřích planet

18. Můžeme na Neptunu nalézt Velkou temnou skvrnu?

a. ano

b. ne

19. Pluto je:

a. planeta

b. trpasličí planeta

c. měsíc

d. meteorit

20. Za dvojplanetu lze považovat Pluta společně s:

a. Charonem

b. Nixem

c. Hydrou

d. Plutem II.

Page 26: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

26

Správné odpovědi

1. c

2. a

3. c

4. c

5. b

6. c

7. c

8. d

9. d

10. b

11. a

12. c

13. b

14. d

15. b

16. c

17. d

18. a

19. b

20. a

Page 27: Sluneční soustavaPlanety (Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun) obíhají po eliptických drahách kolem Slunce, které je, jak již bylo napsáno, ve společném

27

Zdroje http://www.aldebaran.cz/

http://planety.astro.cz/