sokendai satoshi iso okazawa sen zhang sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf ·...

27
NonEquilibrium Fluctuations of Horizons Theory Center , KEK & Sokendai Satoshi Iso based on a collaboration (grqc/1008.1184) with Susumu Okazawa & Sen Zhang (KEK, Sokendai) 岡澤晋 張森 1 Satoshi Iso ( 23 July, 2010 @ Riken, Wako ) (26 July, 2010 @ Journal club, KEK) Planck units

Upload: others

Post on 30-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Non‐Equilibrium Fluctuations of Horizons

Theory Center , KEK   &  Sokendai

Satoshi Iso

based on a collaboration (gr‐qc/1008.1184) with Susumu Okazawa &  Sen Zhang  (KEK, Sokendai)

岡澤晋 張森

1Satoshi Iso

( 23  July, 2010 @ Riken, Wako )(26   July, 2010 @ Journal club, KEK)

Planck units

Page 2: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 2

Plan of the talk

Chap. 1        Physics of horizonsThermodynamic Laws  (Classical vs. Quantum) of Black holes

Chap. 2         Non‐equilibrium thermodynamicsCrooks fluctuation theorem & Jarzynski equality

Chap. 3         Fluctuation theorem for Black Hole horizons・Transition amplitude for changing area of horizon・Proof of the Generalized second law 

and   its microscopic violation

Chap. 4         Conclusions and Discussions・speculations  

Page 3: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 3

Chapter 1Physics of Horizons

Page 4: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Horizon:  Null Hypersurface (light‐like surface) Any information can come from the other side of the horizon (classically)

Black hole horizon  (including  acoustic BH)

Even light cannot come out of the BH horizon.

Escape velocity froma star M at radius R → c (speed of light)

Critical radius (Schwarzshild radius)

de Sitter horizon= cosmological horizon(accelerating universe)

Rindler horizon  =accelerating horizon

observerdependent

4Satoshi Iso

RL

F

P

Page 5: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

5Satoshi Iso

RL

F

P

horizon

Classically causality plays an important role to characterize the horizon.

L RLeft modes (ingoing modes) aredecoupled from the outer world.

Quantum mechanically,  gravitational and gauge anomaly appears.Flux of the Hawking radiation saves it. 

Horizon thermodynamics

Black hole:

Acceleratingobserver Unruh effect

a =acceleration

κ =surface gravityat horizon

Page 6: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 6

Bardeen Carter Hawking (73) + Hawking(76) + Beckenstein (74) + . . . 

Stationary black holes satisfy Equilibrium Thermodynamics Laws

0th law :     Surface gravity is constant over the horizon(temperature is constant in an equilibrium state)

1st law :      Energy conservation between the horizon and r=∞

Local version of 1st law

Killing vector generating horizon

It is easily proved by using Raychaudhuri eq. and Einstein eq.

: Energy flow across horizon

Note that the proof makes no reference to spatial infinity, and applicable to local horizon.(Normalization of killing vector is cancelled in dE and T. )

Page 7: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 7

2nd law :  (generalized 2nd law)

no matter what happens (including negative energy flow into BH)

Various proofs :   (a proof  by Wald)

BH

Outer region is described by Hartle‐Hawking state (= thermal).

Energy: Entropy:

small perturbation

Clausius relation (entropy is maximized for the thermalized state)

And integrate over the horizon (using 1st law)

Page 8: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 8

Chapter 2  Non‐equilibrium Thermodynamics

Page 9: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 9

Equilibrium thermodynamics

1st law (energy conservation)

2nd law (entropy increase) 

Hydrodynamics Based on “local equilibrium”and “equation of states”

Fluctuations around the equilibrium

transport coefficients

Einstein (Brownian motion)

In order to prove the reality of atoms,Einstein proposed many ways to estimateAvogadro Number using fluctuations. 

Fluctuation – Dissipation Theorem

Linear response theorem

(Non‐equilibrium) fluctuation theorem(Jarzynski, Crooks, … )

Page 10: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 10

Non‐equilibrium Fluctuation theorem and Jarzynski equality

Classifications of out‐of‐equilibrium states

(1)  NETS (non‐equilibrium transient state)  equilibrium state  → switch on an external perturbation 

→ system returns to a new equilibrium 

(2) NESS (non‐equilibrium steady‐state)    :steady current in constant electric fielddriven by external force (like a constant electric field)

→ energy is dissipated (heat)  like Joule heat of electric current→  stationary entropy production

(3) NEAS (non‐equilibrium aging state) slow relation = very small heat dissipation     glassy system etc. 

Fluctuation theorems can be applied to these cases.

Page 11: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 11

Jarzynski Equality (97) 

Equilibriumat t=0

change of parameter

W: mechanical work exerted on the system  by  perturbation  

Surprise   (1) : lhs =  an average of work  by a non‐equilibrium process over various initial statesrhs = difference of free energy at equilibrium. 

out of equilibrium

Surprise (2)Dissipated work (entropy production)

or2nd law of thermodynamics (entropy increase law)        

Page 12: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 12

Surprise   (3) : 

An averaged dissipated work is positive.But, if we look at each microscopic process,  negative dissipated work is necessary ! 

( violation of 2nd law at the microscopic level )

Crooks  Fluctuation Theorem   (2000)

change of parameter

Forward

Reversed 

Jarzynski equality

Integrate over 

Surprise   (4)  Linear response th., FDT, or Onsager reciprocal relation etc. are derived!

Surprise   (5)  There are several (mesoscopic) experiments to show theses equalities!

Page 13: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 13

Proof of Crooks fluctuation theorem Very easy,  almost trivial 

A system described by configuration 

Sequence of configurations

:Probability that the system is in config.      at  time 

Markovian process: 

transition prob

Note:   Ratio of transition prob.  is related to the entropy difference;

Local detailed balance

Probability for a sequence of config

See e.g.Ritort’s review(07)

Page 14: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 14

reversed change of parameterreversed sequence of config. 

Ratio:

Assume that the initial state is in an equilibrium state

Define the total dissipation rate as  

Initial condition 

Page 15: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 15

Probability to produce a total dissipation        along the forward protocol is

Note:

q.e.d

Page 16: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 16

Chapter 3Fluctuation Theorem for BH

Page 17: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 17

Fluctuation theorems for black hole horizons

BHArea = A

outer system(detector or matter)

entangledADM mass  Mis fixed.

How can we describe such a state?

= Einstein Hilbert action

Gravity is a constrained system.  →  Does Hamiltonian always vanish?  → NO

Wheeler DeWitt eq.

Page 18: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 18

Regge Teitelboim (74)Teitelboim (95) 

Variations of the action do not vanish  if there are boundaries.

(1) Spatial infinity 

It vanishes if we fix the ADM mass.But if we want to fix the time‐interval at spatial infinity,we need to Legendre transform  

Boundary variables must be considered as independent variables.

Page 19: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 19

(2) Horizon is another boundary

If area of the horizon is fixed, it vanishes.

For Euclidean case, Gibbons HawkingBlack hole entropy

Page 20: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 20

BHArea = A

outer system(detector or matter)

entangledADM mass  Mis fixed.

What is the transition probability from one configuration to another?

We should always impose the ingoing boundary condition at horizon.( = initial state is in the Unruh vacuum for the outgoing modes)

Regularity at the horizon

Page 21: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 21

Kruskal coordinate

On the other hand, the reversed amplitude is given by

Massar ,Parentani (99)Kraus Wilczek (95)

Note: if we useordinary result of Hawking radiation rate

: heat transfer to outer region

Transition amplitude from configuration C with BH area A to C’ with A’ is evaluated by a first order perturbation of the interaction Hamiltonian, 

mediate the interaction via Hawking radiation

Page 22: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 22

Ratio of transition probabilities for  sequences of configurations of black holes 

with  an initial condition for the outer region

Fluctuation theorem for Black holes

Jarzynski equality for Black holes

Generalized 2nd law for Black holes

Entropy decreasing process is microscopically necessary.(Microscopic violation of 2nd law)

Page 23: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 23

Chapter 4Conclusions and . . . A Fantasy

Page 24: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 24

Conclusions

We have applied the fluctuation theorem and Jarzynski relation to Black hole systems (also applicable to any local horizon)

→ (1)  ratio of the transition amplitude is given by   

Detailed balance → entropy of BHHawking radiation(backreaction is included)

(2) Applying the method in proving  Crooks fluctuation theorem, we have obtained

total entropy

(3) We have proved the generalized 2nd law of black holes

It is important, however, that the GSL should be violated for eachmicroscopic process to satisfy the Jarzynski relation.

Page 25: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 25

Discussions                (or   a  fantasy? )

(1) What is an analog of Avogadro number in gravity?

・ Avogadro number cannot be determined within (local) equilibrium thermodynamics.

Various methods      (i)  Maxwell distribution (Loschmidt)   D‐brane dynamics ??(ii)  Planck’ s radiation law                          Hawking radiation(iii) Brownian motion (Einstein)                 Brownian motion 

near horizonsFluctuation Fluctuations of space‐time ?

number of particles per mol    number of microstates per unit area

Avogadro numberPlanck number (or Beckenstein)

Is the space‐time made of atoms ???Is the gravity entropic force  ????

Page 26: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 26

(2)    Origin of irreversibility  (or Origin of dissipation) 

H‐theorem, Loschmidt, Zermelo,Maxwell daemon

Can we  manipulate the ‘heat bath’(source of dissipation) at our will?

Non‐equilibrium fluctuation theorem2nd law and its microscopic violation

Hawking, Beckenstein, …

“Information paradox “ 

Dissipation = loss of entanglementHow can we take the effect of backreaction?

Entropy = entanglement?(Even Rindler horizon can have entropy)

(3)  Einstein equation is a kind of equilibrium thermodynamic equation.

T. Jacobson Derivation of Einstein eq

But,  Clausius inequality  Deviation from Einstein eq ??

Black hole is the maximum entropy state. (Bousso bound)

Page 27: Sokendai Satoshi Iso Okazawa Sen Zhang Sokendai)lt.riken.jp/symposium/symmetry/download/iso.pdf · Theory Center , KEK & Sokendai. Satoshi Iso. based on a collaboration (gr‐qc/1008.1184)

Satoshi Iso 27