sos, fopz, sopz

30
SOS – General Form β€’ General second order system Standard form SRSaunders - WSU - ChE 441 141 2 2 () 2 + 1 () + () = () 2 2 () 2 + 2 () + () = () = 2 , 2 = 1 ,= 2 2 + 2 + = () = 2 2 + 2 + 1 ()

Upload: splint6969

Post on 05-Dec-2015

214 views

Category:

Documents


1 download

DESCRIPTION

Process Dynamics and Control Notes

TRANSCRIPT

Page 1: Sos, Fopz, Sopz

SOS – General Form

β€’ General second order system

Standard form

SRSaunders - WSU - ChE 441 141

π‘Ž2

𝑑2𝑦(𝑑)

𝑑𝑑2+ π‘Ž1

𝑑𝑦(𝑑)

𝑑𝑑+ π‘Žπ‘œπ‘¦(𝑑) = 𝑏𝑒(𝑑)

𝜏2𝑑2𝑦(𝑑)

𝑑𝑑2+ 2𝜏𝜁

𝑑𝑦(𝑑)

𝑑𝑑+ 𝑦(𝑑) = 𝐾𝑒(𝑑)

𝜏 =π‘Ž2

π‘Žπ‘œ, 2𝜏𝜁 =

π‘Ž1

π‘Žπ‘œ, 𝐾 =

𝑏

π‘Žπ‘œ

𝜏2𝑠2π‘Œ 𝑠 + 2πœπœπ‘ π‘Œ 𝑠 + π‘Œ 𝑠 = πΎπ‘ˆ(𝑠)

π‘Œ 𝑠 =𝐾

𝜏2𝑠2 + 2πœπœπ‘  + 1π‘ˆ(𝑠)

Page 2: Sos, Fopz, Sopz

SOS Parameters

β€’ Three key parameters

Gain K

Natural period Ο„

Damping coefficient ΞΆ (Zeta)

β€’ Existence and nature of oscillation are

characterized by ΞΆ and Ο„

β€’ Poles?

SRSaunders - WSU - ChE 441 142

𝑝1,2 =βˆ’2𝜏𝜁 Β± 4𝜏2𝜁2 βˆ’ 4𝜏2

2𝜏2=

βˆ’πœ Β± 𝜁2 βˆ’ 1

𝜏

Page 3: Sos, Fopz, Sopz

Lets look at 3 test cases and their

response to a unit step…

K 10 10 10

Ο„2 40 42.25 13

2τ΢ 25 13 3

SRSaunders - WSU - ChE 441 143

0 10 20 30 40 50 60 70 80 90 1000

5

10

15

time

y(t)

K=10,t2=40, 2tz=25

K=10,t2=42.25, 2tz=13

K=10,t2=40, 2tz=3

Which is :

Underdamped?

Overdamped?

Critically Damped?

Page 4: Sos, Fopz, Sopz

SOS Dynamics

Damping Coefficient ΞΆ

β€’ Damping coefficient characterizes qualitative

process response

β€’ Case 1: 0 < ΞΆ < 1

Poles are real or imaginary?

Displays oscillation

Has OVERSHOOT

β€’ progression past the final value,

β€’ followed by a return to the

β€’ steady state

Underdamped

SRSaunders - WSU - ChE 441 144

0 20 40 60 80 1000

5

10

15

time

y(t)

K=10,t2=40, 2tz=3

Page 5: Sos, Fopz, Sopz

SOS Dynamics

Damping Coefficient ΞΆ

β€’ Case 2: ΞΆ = 1

Poles are real or

imaginary?

Fastest approach to

final value w/o

overshoot

Critically damped

β€’ Case 3: ΞΆ > 1

Poles are real or

imaginary?

Slower response than

case 2

Overdamped system

SRSaunders - WSU - ChE 441 145

0 20 40 60 80 1000

2

4

6

8

10

time

y(t)

Overdamped

Critically Damped

Page 6: Sos, Fopz, Sopz

SOS Dynamics

Damping Coefficient ΞΆ

β€’ Case 4: ΞΆ = 0

β€’ Pole are real or imaginary?

β€’ Oscillatory response

β€’ with no damping

β€’ Frequency of oscillation :

β€’ 1/Ο„ => period = Ο„

β€’ Case 5: ΞΆ < 0

β€’ UNSTABLE

SRSaunders - WSU - ChE 441 146

0 10 20 30 40 50 60 70 80 90 1000

5

10

15

20

25

30

time

y(t)

Oscillatory No Damping

Unstable

Page 7: Sos, Fopz, Sopz

FOS vs. SOS

β€’ Step response comparison

SOS (w/ no zeros) always more

sluggish than FOS

SOS has an β€œS” shape response

TOS is even more sluggish

System FOS SOS

Final Value AK AK

Initial Value 0 0

Initial

SLOPE

Finite, non-

zero0

SRSaunders - WSU - ChE 441 147

Page 8: Sos, Fopz, Sopz

Underdamped SOS

β€’ Rise time

Time to the first crossing of the final steady state

value

SRSaunders - WSU - ChE 441 148

tr=12

π‘‘π‘Ÿ =𝜏

π›½πœ‹ βˆ’ πœ™

𝛽 = 1 βˆ’ 𝜁2

πœ™ = tanβˆ’1𝛽

𝜁A=1, K=10, Ο„2=40, 2τ΢=3

Page 9: Sos, Fopz, Sopz

Underdamped SOS

β€’ Period

Time between successive oscillation peaks

SRSaunders - WSU - ChE 441 149

𝑇 =2πœ‹πœ

π›½π‘π‘’π‘Ÿπ‘–π‘œπ‘‘ π‘œπ‘“ π‘œπ‘ π‘π‘–π‘™π‘™π‘Žπ‘‘π‘–π‘œπ‘›

πœ” =𝛽

πœπ‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦ π‘œπ‘“ π‘œπ‘ π‘π‘–π‘™π‘™π‘Žπ‘‘π‘–π‘œπ‘›

A=1, K=10, Ο„2=40, 2τ΢=3

Page 10: Sos, Fopz, Sopz

Underdamped SOS

β€’ Decay Ratio

A measure of the rate of oscillation decay

β€’ Overshoot

SRSaunders - WSU - ChE 441 150

a1=4.64

a2=1.0𝐷𝑅 =π‘Ž2

π‘Ž1= 𝑒

βˆ’2πœ‹πœπ›½

A=1, K=10, Ο„2=40, 2τ΢=3𝑂𝑆 = 𝐴𝑒

βˆ’πœ‹πœ

1βˆ’πœ2

Page 11: Sos, Fopz, Sopz

Underdamped SOS

β€’ Settling Time – time at which the output

enters (and remains within) a percentage of

the final value

Often 90%, 95% or 99% settling time

SRSaunders - WSU - ChE 441 151

t90%=49

t95%=69

t99%=123

A=1, K=10, Ο„2=40, 2τ΢=3

Page 12: Sos, Fopz, Sopz

FOS - Lead-lag Systems

β€’ System with a β€œproper” transfer function

Gain K

Zero -1/πœπ‘Ž

Pole -1/Ο„

Lead-to-lag ratio ρ = πœπ‘Žπœ

β€’ Lead arises from the zero, lag from the pole.

SRSaunders - WSU - ChE 441 152

𝐺 𝑠 =𝐾(πœπ‘Žπ‘  + 1)

πœπ‘  + 1

Page 13: Sos, Fopz, Sopz

FOS – Lead-Lag Systems

β€’ Partial Fraction Expansion

β€’ General Form

SRSaunders - WSU - ChE 441 153

(πœπ‘Žπ‘  + 1)

πœπ‘  + 1= 𝐴 +

𝐡

πœπ‘  + 1

πœπ‘Žπ‘  + 1 = 𝐴 πœπ‘  + 1 + 𝐡

𝑠1: πœπ‘Žπ‘  = π΄πœπ‘ 

𝐴 =πœπ‘Ž

𝜏= 𝜌

𝑠0: 1 = 𝐴 + 𝐡𝐡 = 1 βˆ’ 𝐴 = 1 βˆ’ 𝜌

𝐺 𝑠 =𝐾(πœπ‘Žπ‘  + 1)

πœπ‘  + 1= 𝐾𝜌 +

𝐾 1 βˆ’ 𝜌

πœπ‘  + 1

Page 14: Sos, Fopz, Sopz

Lead-Lag Step Response

β€’ Observations

For very small t (t->0, i.e., use initial value

theorem) y(0)=KρA

β€’ Discontinuous jump in the output signal

β€’ Effect of the zero

For very large t (t->∞, i.e., use final value

theorem) y(∞)=KA

β€’ Effect of lag term

Behavior of y(t) is a big function of ρ

SRSaunders - WSU - ChE 441 154

π‘Œ 𝑠 =𝐾 πœπ‘Žπ‘  + 1

πœπ‘  + 1π‘ˆ 𝑠 =

𝐾𝜌𝐴

𝑠+

𝐾 1 βˆ’ 𝜌 𝐴

𝑠(πœπ‘  + 1)

Page 15: Sos, Fopz, Sopz

Lead-Lag Systems – Effect of ρ

β€’ Case 1: 0 < πœπ‘Ž < Ο„ (0 < ρ < 1)

Discontinuous Jump @ moment of

step

πœπ‘Ž-> 0, becomes more of a β€œpure”

FOS and lag dominates

SRSaunders - WSU - ChE 441 155

A=1, K=5, πœπ‘Ž=0.5, Ο„=1y(t

)

0

Page 16: Sos, Fopz, Sopz

Lead-Lag Systems – Effect of ρ

β€’ Case 2: πœπ‘Ž = Ο„ (ρ = 1)

Pole-zero cancellation

Pure gain system G(s)=K

Discontinuous jump @

moment of step

SRSaunders - WSU - ChE 441 156

A=1, K=5, πœπ‘Ž=0.5, Ο„=0.5

y(t

)

0

Page 17: Sos, Fopz, Sopz

Lead-Lag Systems – Effect of ρ

β€’ Case 3: πœπ‘Ž > Ο„ (ρ > 1)

Overshoot

Lead dominates

Discontinuous jump @

moment of step

SRSaunders - WSU - ChE 441 157

A=1, K=5, πœπ‘Ž=1, Ο„=0.5

y(t

)

0

Page 18: Sos, Fopz, Sopz

Lead-Lag Systems – Effect of ρ

β€’ Case 4: πœπ‘Ž < 0 < Ο„ (ρ < 0)

Inverse response

Initial move away from the SS Value

SRSaunders - WSU - ChE 441 158

A=1, K=5, πœπ‘Ž=-1, Ο„=0.5

y(t

)

t0

0

Page 19: Sos, Fopz, Sopz

FOS In Parallel

𝐺1 𝑠 =𝐾1

𝜏1𝑠 + 1

𝐺2 𝑠 =𝐾2

𝜏2𝑠 + 1

π‘Œ 𝑠 = π‘Œ1 𝑠 + π‘Œ2 𝑠

= 𝐺1 𝑠 π‘ˆ 𝑠 + 𝐺2 𝑠 π‘ˆ 𝑠

= π‘ˆ 𝑠 𝐺1 𝑠 + 𝐺2 𝑠

= π‘ˆ 𝑠 𝐺(𝑠)

𝐺 𝑠 = 𝐺1 𝑠 + 𝐺2 𝑠 =𝐾1

𝜏1𝑠 + 1+

𝐾2

𝜏2𝑠 + 1

SOS with

Zeroes!

SRSaunders - WSU - ChE 441 159

=𝐾1(𝜏2𝑠 + 1) + 𝐾2(𝜏1𝑠 + 1)

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1)

=(𝐾1 + 𝐾2)

(𝐾1𝜏2 + 𝐾2𝜏1)𝐾1 + 𝐾2

𝑠 + 1

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1)

=(𝐾1𝜏2 + 𝐾2𝜏1)𝑠 +(𝐾1 +𝐾2)

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1)=

𝐾1𝜏2𝑠 + 𝐾1 + 𝐾2𝜏1𝑠 + 𝐾2

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1)

G2

G1

U(s) Y(s)+

+

Page 20: Sos, Fopz, Sopz

SOS with Zeroes

β€’ 2-pole, 1 zero system:

β€’ Output step response:

SRSaunders - WSU - ChE 441 160

𝐺 𝑠 =𝐾 πœπ‘Žπ‘  + 1

𝜏1𝑠 + 1 𝜏2𝑠 + 1

π‘Œ 𝑠 =𝐾 πœπ‘Žπ‘  + 1

𝜏1𝑠 + 1 𝜏2𝑠 + 1

𝐴

𝑆= 𝐾𝐴

𝐡

𝑠+

𝐢

𝜏1𝑠 + 1+

𝐷

𝜏2𝑠 + 1

𝐡 = 1

𝐢 = βˆ’πœ1 𝜏1 βˆ’ πœπ‘Ž

𝜏1 βˆ’ 𝜏2

𝐷 =𝜏2 𝜏2 βˆ’ πœπ‘Ž

𝜏1 βˆ’ 𝜏2

𝑦 𝑑 = 𝐴𝐾 1 βˆ’πœ1 βˆ’ πœπ‘Ž

𝜏1 βˆ’ 𝜏2𝑒

βˆ’π‘‘πœ1 +

𝜏1 βˆ’ πœπ‘Ž

𝜏1 βˆ’ 𝜏2𝑒

βˆ’π‘‘πœ2

Page 21: Sos, Fopz, Sopz

SOS with Zeroes – Step Response

A=1, K=10, 𝜏1=5, 𝜏2=10

SRSaunders - WSU - ChE 441 161

>

Page 22: Sos, Fopz, Sopz

SOS – Case Evaluations

β€’ Let Ο„1

< Ο„2, Ο„

a> 0

Unless otherwise noted

β€’ Case 1: Ο„a

> Ο„2

Overshoot

β€’ Case 2: Ο„a

= Ο„1

or Ο„a

= Ο„2

Pole-zero cancellation

Yields a FOS

SRSaunders - WSU - ChE 441 162

𝐺 𝑠 =𝐾 πœπ‘Žπ‘  + 1

𝜏1𝑠 + 1 𝜏2𝑠 + 1=

𝐾

πœπ‘–π‘  + 1

>

Page 23: Sos, Fopz, Sopz

SOS – Case Evaluations

β€’ Case 3: 0 < Ο„a

< Ο„2

Resembles a FOS until Ο„a

<< Ο„1

β€’ Case 4: Ο„a

< 0

Always displays inverse response

SRSaunders - WSU - ChE 441 163

Page 24: Sos, Fopz, Sopz

Case Summary – FOS Ο„a

Values Key Observations

0 < Ο„a < Ο„Jump at t=0 toward

y(∞)

Ο„a = Ο„

Pure gain system

(pole-zero

cancellation)

Ο„a > Ο„ Overshoot

Ο„a < 0 < Ο„ Inverse response

SRSaunders - WSU - ChE 441 164

β€’ Discontinuous jump @ t=0 for all cases

Page 25: Sos, Fopz, Sopz

β€’ Let Ο„1

< Ο„2, Ο„

a> 0

β€’ Unless otherwise noted

β€’ No discontinuous jump @ t=0

Case Summary – SOS Ο„a

Values Key Observations

0 < Ο„a < Ο„2 Similar to FOS

Ο„a = Ο„1 or Ο„2

FOS

(pole-zero cancellation)

Ο„a > Ο„2 Overshoot

Ο„a < 0 Inverse response

SRSaunders - WSU - ChE 441 165

Page 26: Sos, Fopz, Sopz

Case Summary – SOS ΞΆ

Values Key Observations

ΞΆ < 0 Unstable

ΞΆ = 0Underdamped

oscillates forever

0 < ΞΆ < 1Overshoot and

underdamped

ΞΆ = 1 Critically damped

ΞΆ > 1Overdamped –

sluggish

SRSaunders - WSU - ChE 441 166

Page 27: Sos, Fopz, Sopz

Inverse Respone

β€’ When a process output initially moves in a

direction opposite to its steady state value

followed by a return to steady state

Effect of (at least) two opposing processes are

different timescales

Occurs when Ο„a

< 0 in single-zero systems

y(t) crosses the zero axis (in deviation variables)

in response to a step input

β€’ Where does this show up?

SRSaunders - WSU - ChE 441 167

Page 28: Sos, Fopz, Sopz

A Two Timescale Exercise

β€’ Given the following block diagram and

transfer functions, calculate G(s)

SRSaunders - WSU - ChE 441 168

𝐺1 𝑠 =5

10𝑠 + 1𝐺2 𝑠 =

βˆ’1

1𝑠 + 1

𝐺 𝑠 = 𝐺1 𝑠 + 𝐺2 𝑠

=5

10𝑠 + 1βˆ’

1

𝑠 + 1

=5 𝑠 + 1 βˆ’ (10𝑠 + 1)

(10𝑠 + 1)(𝑠 + 1)

=4 βˆ’

54

𝑠 + 1

10𝑠2 + 11𝑠 + 1

G2

G1

U(s) Y(s)+

+

Page 29: Sos, Fopz, Sopz

FOS in Parallel

β€’ Two FOS in Parallel

β€’ Let:

|K1|> |K

2|

K1

and K2

be opposite signs

Ο„1

> Ο„2

(G2

is faster than G1)

β€’ Consequences

Fast process => Initial response

Slow Process => final response (due to higher

gain)

SRSaunders - WSU - ChE 441 169

𝐺(𝑠) =(𝐾1 + 𝐾2)

(𝐾1𝜏2 + 𝐾2𝜏1)𝑠𝐾1 + 𝐾2

𝑠 + 1

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1)

Page 30: Sos, Fopz, Sopz

Real Inverse Response

β€’ Drum Boiler

Used for steam generation

SRSaunders - WSU - ChE 441 170

Heat

Source

Steam

Cold Water