spl srs poster 3-6-15

1
Children with CP have Smaller Vowel Spaces than their TD Peers This finding replicates previous findings (Higgins & Hodge, 2001; Hustad et al., 2010) May be due to the movement deficits observed in the CP group, causing decreased intelligibility OAI Predicts Acous<c Vowel Space Larger mouth openings are associated with greater vowel contrast Increased vowel contrast improves intelligibility (Lee et al., 2013) Rela<onship Between OAI and Vowel Space Differs Between Children with CP and their TD Peers Changes in mouth shape have a more pronounced effect on vowel contrast in children with CP than their TD peers Vowel contrast is dependent on arLculatory movements, parLcularly the tongue Speakers with CP have reduced tongue control (Rong et al., 2012) and increased jaw movements (Nip, 2012; Rong et al., 2012; Ward et al., 2013), suggesLng that increased jaw movements may be a compensatory strategy Children with CP who have high OAIs can compensate for reduced tongue control by making greater use of their lips and jaw In contrast, children with CP who have low OAIs cannot compensate for the reduced tongue control, leading to reduced vowel contrast Future Direc<ons Examine OAI and vowel space in connected speech (e.g., sentences, conversaLon) Direct comparison of OAI to intelligibility Larger number of parLcipants Examine tongue movement data INTRODUCTION AcousLc Changes Due to Impaired Speech Movements in Children with Cerebral Palsy TaLana Zozulya, Lindsay Kempf, Alyssa Yee, & IgnaLus S. B. Nip School of Speech, Language, and Hearing Sciences San Diego State University Data Analysis Vowel formant frequencies (F1, F2) were obtained using TF32 (Milenkovic, 2010) and ploaed (F2 by F1) to obtain acousLc vowel space (Hz 2 ) • The distance between the upper and lower lip markers (height) and the distance between the leb and right corners of the mouth (width) were measured at the midpoint of each vowel. Each vowel was ploaed (height by width) to obtain the oral area index (OAI; mm 2 ) • Repeatedmeasures mixed model was conducted to evaluate the effect of Group (CP, TD) and oral area index on acousLc vowel space while controlling for age. Par<cipants • 8 children with CP (2F, 7M) and 8 ageand sexmatched typically developing peers (TD; 2F, 7M), aged 4 to 15 years • All parLcipants passed a hearing screening (ASHA, 1997) at .5, 1, 2, and 4 kHz in at least one ear Speaking Tasks • ParLcipants produced 10 repeLLons of the vowels /i, a, u/ Data Collec<on • KinemaLc recordings from 8camera opLcal moLon capture system (MoLon Analysis, Ltd.) with simultaneous audio recording (16bit, 44.1 KHz) • Fibeen markers were placed on the face to track lip and jaw movement DISCUSSION American SpeechLanguageHearing AssociaLon. (1997). Guidelines for Audiologic Screening. In ASHA PracLce Policy. Retrieved February 17, 2012, from hap://www.asha.org/docs/html/GL199700199.html . Higgins, C.M., & Hodge, M.M. (2001). F2/F1 vowel quadrilateral area in young children with and without dysarthria. Journal of the Canadian Acous6cal Associa6on, 29 (3), 6667. Hodge, M. & Daniels, J. (2007). TOCS+ Intelligibility Measures. Edmonton, AB: University of Alberta Hustad, K.C., Gorton, K., Lee, J. (2010). ClassificaLon of speech and language profiles in 4yearold children with cerebral palsy: a prospecLve preliminary study. Journal of Speech, Language, and Hearing Research, 53, 14961513. Hustad, K.C., Schueler, B., Schultz, L., DuHadway, C. (2012) Intelligibility of 4YearOld Children With and Without Cerebral Palsy. Journal of Speech, Language, and Hearing Research, 55, 11771189. Lee, J., & Hustad, K.C. (2013). A preliminary invesLgaLon of longitudinal changes in speech producLon over 18 months in young children with cerebral palsy. US Na6onal Library of Medicine Na6onal Ins6tutes of Health, 65 (1). Lee, J., Hustad, K.C., & Weismer, G. (2014). PredicLng speech intelligibility with a mulLple speech subsystems approach in children with cerebral palsy. Journal of Speech, Language and Hearing Research, 57, 16661678. Milenkovic, P. ( 2002). TF32 [Computer soLware]. Retrieved fromhap ://userpages.chorus.net/cspeech/ Nip, I.S.B. (2012). KinemaLc characterisLcs of speaking rate in individuals with Cerebral Palsy: A preliminary study. Journal of Medical SpeechLanguage Pathology, 20, 8894. Nip, I.S.B. in press. InterarLculator coordinaLon in children with and without cerebral palsy. Developmental Neurorehabilita6on. Parkes, J., Hill, N., Plaa, J., & Donnelly, C. (2010). Oromotor dysfuncLon and communicaLon impairments in children with cerebral palsy: a register study. Developmental Medicine & Child Neurology, 52 (12), 11131119. Plaa, L.J., Andrews, G., Young, M., & Qurinn, P.T. (1980). Dysarthria of Adult Cerebral Palsy: Intelligibility and ArLculatory Impairment. Journal of Speech, Language, and Hearing Research, 23, 2840. Rong, P., Loucks, T., Kim, H., HasegawaJohnson, M. (2012). RelaLonship between kinemaLcs, F2 slope, and speech intelligibility in dysarthria due to cerebral palsy. Clinical Linguis6cs & Phone6cs, 26 (9) 806822. Semel, E., Wiig, E. H., & Secord, W. A. (2003). Clinical Evalua6on of Language Fundamentals (4 th ed.). San Antonio, TX: PsychCorp. Stevens, K. N. (1989). On the quantal nature of speech. Journal of Phone6cs, 17, 3–45. Ward, R., Strauss, G., & Leitao, S. (2013). KinemaLc changes in jaw and lip control of children with cerebral palsy following parLcipaLon in a motorspeech (PROMPT) intervenLon. Interna6onal Journal of SpeechLanguage Pathology, 15(2), 136155 Yorkston, K. M., Beukelman, D. R., Hakel, M., & Dorsey, M. (2007). Speech Intelligibility Test [Computer sobware]. Lincoln, NE: InsLtute for RehabilitaLon Science and Engineering at Madonna RehabilitaLon Hospital. METHOD Acknowledgments: This study was funded by NIHNIDCD (R03DC012135), the American SpeechLanguageHearing Founda6on, and the SDSU University Grants Program. Thank you to par6cipants and their families as well as Sara Benjamin, Amy Boyer, Katherine Bristow, Anne Coleman, Lauren Coyne, Julie Cunningham, Erica J. Greenberg, Brennan Hefner, Adeena Homampour, Lucia Kearney, David Kremp, Anne Merkel, Stefanie Opdycke, Frances Ramos, Casey Rockmore, Grace Si_on, Danielle Torrez, Carina Valdivieso, and Kris6n Wilfon for their assistance with data collec6on and data analysis. Thank you to Irina Potapova for her helpful comments on this poster. Children with Cerebral Palsy have Oral Movement Deficits • Cerebral Palsy (CP) is a group of disorders caused by perinatal damage to the central nervous system resulLng in movement, sensory, communicaLon, and cogniLve impairments (Rosenbaum et al., 2007) • Speech difficulLes in children with CP include: Oral motor deficits are present in half of this populaLon (Parkes et al., 2010) Intelligibility is reduced for all groups of children with CP relaLve to typicallydeveloping (TD) children (Hustad et al., 2012) Acous<c Measure Differences Affect Intelligibility • AcousLc measures (F1, F2, vowel duraLon) affect speech intelligibility (Lee et al., 2014) • PosiLve correlaLon between intelligibility and vowel space noted for children with CP (Lee et al., 2013) • Children with dysarthria have smaller vowel space than those of their agematched TD peers (Higgins & Hodge, 2001) • Individuals with CP produce corner vowels (/i, a, u/) less accurately due to impaired movements (Plaa et al., 1980) Impaired Movements Impact the Resultant Acous<cs and Intelligibility • Children with CP who have dysarthria have markedly reduced speech intelligibility (Hustad et al., 2012) • ReducLons of F2 slope and intelligibility in speakers with CP are related to reduced tongueLp displacements (Rong et al., 2012) • Speakers with CP have increased jaw range of movement (Nip, 2012; Rong et al., 2012) resulLng in a larger verLcal mouth opening (Ward et al., 2013) • CoordinaLon of arLculators is posiLvely associated with intelligibility in children with CP (Nip, in press) Theore<cal and Clinical Implica<ons • Models of speech producLon posit that oral movements shape the resultant acousLc signal (Stevens, 1989); therefore the impaired movements observed in this populaLon may negaLvely impact acousLc variables, such as vowel space • Understanding the relaLon between movement and acousLc variables may provide insight for assessments and intervenLons targeLng intelligibility in this populaLon Research Ques<ons • How do movement characterisLcs (oral area index) relate to acousLc outcomes (vowel space) in children with CP and their ageand sex matched typicallydeveloping (TD) peers? • Does this relaLonship differ between children with CP and their TD peers? Fig 1: Marker set up and 3D model of a parCcipant RESULTS Table 1: Participant demographic information Speaker Age Sex CP Type GMFCS Dysarthria Word Intelligibility Sentence Intelligibility CELF4 Std Score Age of TD Peer 1 4;8 F SpasLc Quadriplegia V SpasLc 23% 16% 106 4;7 2 6;6 M SpasLc Diplegia III SpasLc 72% 83% 106 6;2 3 7;5 F SpasLc Hemiplegia III Mild 68% 65% 102 7;4 4 8;2 M SpasLc Diplegia II Mild 80% 72% 98 8;4 5 9;9 M SpasLc Hemiplegia III Mild 81% 66% 67 9;4 6 10;7 M SpasLc Quadriplegia IV /r/ error 85% 96% 127 10;11 7 12;4 M SpasLc Diplegia II None 91% 95% 112 13;2 8 15;0 F SpasLc Diplegia II None 82% 93% 129 15;7 Age [F(1, 90) = 81.78, p < .001] Group [F(1, 90) = 23.27, p < .001], CP < TD Oral Area Index [F(1, 90) = 29.78, p < .0001] Group x Oral Area Index = [F(1, 92) = 8.71, p < .01] CP TD Oral Area Index (mm 2 ) 24.27 (15.71) 16.47 (7.33) Vowel Space (Hz 2 ) 706483.60 (137072.23) 137072.23 (91412.38) REFERENCES Fig 3: Oral Area Index of a parCcipant Fig 2: Vowel Space triangle of a parCcipant

Upload: alyssa-yee

Post on 14-Apr-2017

105 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: SPL SRS Poster 3-6-15

Children  with  CP  have  Smaller  Vowel  Spaces  than  their  TD  Peers  •  This  finding  replicates  previous  findings  (Higgins  &  Hodge,  2001;  Hustad  et  al.,  2010)  •  May  be  due  to  the  movement  deficits  observed  in  the  CP  group,  causing  decreased  intelligibility  OAI  Predicts  Acous<c  Vowel  Space  •  Larger  mouth  openings  are  associated  with  greater  vowel  contrast    •  Increased  vowel  contrast  improves  intelligibility  (Lee  et  al.,  2013)  Rela<onship  Between  OAI  and  Vowel  Space  Differs  Between  Children  with  CP  and  their  TD  Peers  •  Changes  in  mouth  shape  have  a  more  pronounced  effect  on  vowel  contrast  in  children  with  CP  than  their  TD  peers  •  Vowel  contrast  is  dependent  on  arLculatory  movements,  parLcularly  the  tongue  •  Speakers  with  CP  have  reduced  tongue  control  (Rong  et  al.,  2012)  and  increased  jaw  movements  (Nip,  2012;  Rong  et  al.,  2012;  Ward  et  al.,  2013),  suggesLng  that  increased  

jaw  movements  may  be  a  compensatory  strategy  •  Children  with  CP  who  have  high  OAIs  can  compensate  for  reduced  tongue  control  by  making  greater  use  of  their  lips  and  jaw    •  In  contrast,  children  with  CP  who  have  low  OAIs  cannot  compensate  for  the  reduced  tongue  control,  leading  to  reduced  vowel  contrast  Future  Direc<ons  •  Examine  OAI  and  vowel  space  in  connected  speech  (e.g.,  sentences,  conversaLon)  •  Direct  comparison  of  OAI  to  intelligibility  •  Larger  number  of  parLcipants  •  Examine  tongue  movement  data  

INTRODUCTION  

AcousLc  Changes  Due  to  Impaired  Speech  Movements  in  Children  with  Cerebral  Palsy    TaLana  Zozulya,  Lindsay  Kempf,  Alyssa  Yee,  &  IgnaLus  S.  B.  Nip  

School  of  Speech,  Language,  and  Hearing  Sciences  -­‐  San  Diego  State  University  

Data  Analysis  •  Vowel  formant  frequencies  (F1,  F2)  were  obtained  using  TF32  

(Milenkovic,  2010)  and  ploaed  (F2  by  F1)  to  obtain  acousLc  vowel  space  (Hz2)  

•  The  distance  between  the  upper  and  lower  lip  markers  (height)  and  the  distance  between  the  leb  and  right  corners  of  the  mouth  (width)  were  measured  at  the  midpoint  of  each  vowel.  Each  vowel  was  ploaed  (height  by  width)  to  obtain  the  oral  area  index  (OAI;  mm2)  

•  Repeated-­‐measures  mixed  model  was  conducted  to  evaluate  the  effect  of  Group  (CP,  TD)  and  oral  area  index  on  acousLc  vowel  space  while  controlling  for  age.    

Par<cipants  •  8  children  with  CP  (2F,  7M)  and  8  age-­‐and  sex-­‐matched  typically  

developing  peers  (TD;  2F,  7M),  aged  4  to  15  years  •  All  parLcipants  passed  a  hearing  screening  (ASHA,  1997)  at  .5,  1,  2,  

and  4  kHz  in  at  least  one  ear  Speaking  Tasks  •  ParLcipants  produced  10  repeLLons  of  the  vowels  /i,  a,  u/  Data  Collec<on    •  KinemaLc  recordings  from  8-­‐camera  opLcal  moLon  capture  

system  (MoLon  Analysis,  Ltd.)  with  simultaneous  audio  recording  (16-­‐bit,  44.1  KHz)  

•  Fibeen  markers  were  placed  on  the  face  to  track  lip  and  jaw  movement  

DISCUSSION  

American  Speech-­‐Language-­‐Hearing  AssociaLon.  (1997).  Guidelines  for  Audiologic  Screening.  In  ASHA  PracLce  Policy.  Retrieved  February  17,  2012,  from  hap://www.asha.org/docs/html/GL1997-­‐00199.html.  Higgins,  C.M.,  &  Hodge,  M.M.  (2001).  F2/F1  vowel  quadrilateral  area  in  young  children  with  and  without  dysarthria.  Journal  of  the  Canadian  Acous6cal  Associa6on,  29  (3),  66-­‐67.  Hodge,  M.  &  Daniels,  J.  (2007).  TOCS+  Intelligibility  Measures.  Edmonton,  AB:  University  of  Alberta  Hustad,  K.C.,  Gorton,  K.,  Lee,  J.  (2010).  ClassificaLon  of  speech  and  language  profiles  in  4-­‐year-­‐old  children  with  cerebral  palsy:  a  prospecLve  preliminary  study.  Journal  of  Speech,  Language,  and  Hearing  Research,  53,  1496-­‐1513.  Hustad,  K.C.,  Schueler,  B.,  Schultz,  L.,  DuHadway,  C.  (2012)    Intelligibility  of  4-­‐Year-­‐Old  Children  With  and  Without  Cerebral  Palsy.  Journal  of  Speech,  Language,  and  Hearing  Research,  55,  1177-­‐1189.    Lee,  J.,  &  Hustad,  K.C.  (2013).  A  preliminary  invesLgaLon  of  longitudinal  changes  in  speech  producLon  over  18  months  in  young  children  with  cerebral  palsy.  US  Na6onal  Library  of  Medicine  Na6onal  Ins6tutes  of  Health,  65  (1).  Lee,  J.,  Hustad,  K.C.,  &  Weismer,  G.  (2014).  PredicLng  speech  intelligibility  with  a  mulLple  speech  subsystems  approach  in  children  with  cerebral  palsy.  Journal  of  Speech,  Language  and  Hearing  Research,  57,  1666-­‐1678.  Milenkovic,  P.  (  2002).  TF32  [Computer  soLware].  Retrieved  fromhap://userpages.chorus.net/cspeech/  Nip,  I.S.B.  (2012).  KinemaLc  characterisLcs  of  speaking  rate  in  individuals  with  Cerebral  Palsy:  A  preliminary  study.  Journal  of  Medical  Speech-­‐Language  Pathology,  20,  88-­‐94.  Nip,  I.S.B.  in  press.  InterarLculator  coordinaLon  in  children  with  and  without  cerebral  palsy.  Developmental  Neurorehabilita6on.  Parkes,  J.,  Hill,  N.,  Plaa,  J.,  &  Donnelly,  C.  (2010).  Oromotor  dysfuncLon  and  communicaLon  impairments  in  children  with  cerebral  palsy:  a  register  study.  Developmental  Medicine  &  Child  Neurology,  52  (12),  1113-­‐1119.  Plaa,  L.J.,  Andrews,  G.,  Young,  M.,  &  Qurinn,  P.T.  (1980).  Dysarthria  of  Adult  Cerebral  Palsy:  Intelligibility  and  ArLculatory  Impairment.  Journal  of  Speech,  Language,  and  Hearing  Research,  23,  28-­‐40.  Rong,  P.,  Loucks,  T.,  Kim,  H.,  Hasegawa-­‐Johnson,  M.  (2012).  RelaLonship  between  kinemaLcs,  F2  slope,  and  speech  intelligibility  in  dysarthria  due  to  cerebral  palsy.  Clinical  Linguis6cs  &  Phone6cs,  26  (9)  806-­‐822.  Semel,  E.,  Wiig,  E.  H.,  &  Secord,  W.  A.  (2003).  Clinical  Evalua6on  of  Language  Fundamentals  (4th  ed.).  San  Antonio,  TX:  PsychCorp.  Stevens,  K.  N.  (1989).  On  the  quantal  nature  of  speech.  Journal  of  Phone6cs,  17,  3–45.  Ward,  R.,  Strauss,  G.,  &  Leitao,  S.  (2013).  KinemaLc  changes  in  jaw  and  lip  control  of  children  with  cerebral  palsy  following  parLcipaLon  in  a  motor-­‐speech  (PROMPT)  intervenLon.  Interna6onal  Journal  of  Speech-­‐Language  Pathology,  15(2),  136-­‐155  Yorkston,  K.  M.,  Beukelman,  D.  R.,  Hakel,  M.,  &  Dorsey,  M.  (2007).  Speech  Intelligibility  Test  [Computer  sobware].  Lincoln,  NE:  InsLtute  for  RehabilitaLon  Science  and  Engineering  at  Madonna  RehabilitaLon  Hospital.      

METHOD  

Acknowledgments:  This  study  was  funded  by  NIH-­‐NIDCD  (R03-­‐DC012135),  the  American  Speech-­‐Language-­‐Hearing  Founda6on,  and  the  SDSU  University  Grants  Program.    Thank  you  to  par6cipants  and  their  families  as  well  as  Sara  Benjamin,  Amy  Boyer,  Katherine  Bristow,  Anne  Coleman,  Lauren  Coyne,  Julie  Cunningham,  Erica  J.  Greenberg,  Brennan  Hefner,    Adeena  Homampour,  Lucia  Kearney,  David  Kremp,  Anne  Merkel,  Stefanie  Opdycke,  Frances  Ramos,  Casey  Rockmore,  Grace  Si_on,  Danielle  Torrez,  Carina  Valdivieso,  and  Kris6n  Wilfon  for  their  assistance  with  data  collec6on  and  data  analysis.  Thank  you  to  Irina  Potapova  for  her  helpful  comments  on  this  poster.  

Children  with  Cerebral  Palsy  have  Oral  Movement  Deficits  •  Cerebral  Palsy  (CP)  is  a  group  of  disorders  caused  by  perinatal  damage  to  the  central  nervous  system  resulLng  in  movement,  sensory,  

communicaLon,  and  cogniLve  impairments  (Rosenbaum  et  al.,  2007)  

•  Speech  difficulLes  in  children  with  CP  include:  •  Oral  motor  deficits  are  present  in  half  of  this  populaLon  (Parkes  et  al.,  2010)  •  Intelligibility  is  reduced  for  all  groups  of  children  with  CP  relaLve  to  typically-­‐developing  (TD)  children  (Hustad  et  al.,  2012)    

 

Acous<c  Measure  Differences  Affect  Intelligibility  •  AcousLc  measures  (F1,  F2,  vowel  duraLon)  affect  speech  intelligibility  (Lee  et  al.,  2014)    •  PosiLve  correlaLon  between  intelligibility  and  vowel  space  noted  for  children  with  CP  (Lee  et  al.,  2013)  •  Children  with  dysarthria  have  smaller  vowel  space  than  those  of  their  age-­‐matched  TD  peers  (Higgins  &  Hodge,  2001)  •  Individuals  with  CP  produce  corner  vowels  (/i,  a,  u/)  less  accurately  due  to  impaired  movements  (Plaa  et  al.,  1980)    

Impaired  Movements  Impact  the  Resultant  Acous<cs  and  Intelligibility  •  Children  with  CP  who  have  dysarthria  have  markedly  reduced  speech  intelligibility    (Hustad  et  al.,  2012)  •  ReducLons  of  F2  slope  and  intelligibility  in  speakers  with  CP  are  related  to  reduced  tongue-­‐Lp  displacements  (Rong  et  al.,  2012)    •  Speakers  with  CP  have  increased  jaw  range  of  movement  (Nip,  2012;  Rong  et  al.,  2012)  resulLng  in  a  larger  verLcal  mouth  opening  (Ward  et  al.,  2013)  

•  CoordinaLon  of  arLculators  is  posiLvely  associated  with  intelligibility  in  children  with  CP  (Nip,  in  press)      

Theore<cal  and  Clinical  Implica<ons  •  Models  of  speech  producLon  posit  that  oral  movements  shape  the  resultant  acousLc  signal  (Stevens,  1989);  therefore  the  impaired  movements  

observed  in  this  populaLon  may  negaLvely  impact  acousLc  variables,  such  as  vowel  space  •  Understanding  the  relaLon  between  movement  and  acousLc  variables  may  provide  insight  for  assessments  and  intervenLons  targeLng  

intelligibility  in  this  populaLon    

Research  Ques<ons    •  How  do  movement  characterisLcs  (oral  area  index)  relate  to  acousLc  outcomes  (vowel  space)  in  children  with  CP  and  their  age-­‐and  sex-­‐

matched  typically-­‐developing  (TD)  peers?  •  Does  this  relaLonship  differ  between  children  with  CP  and  their  TD  peers?          

Fig  1:  Marker  set  up  and  3-­‐D  model  of  a  parCcipant  

RESULTS  

Table 1: Participant demographic information

Speaker   Age   Sex   CP  Type   GMFCS   Dysarthria  Word  

Intelligibility  Sentence  

Intelligibility  CELF-­‐4    Std  

Score  Age  of  TD  

Peer  

1   4;8   F  SpasLc  

Quadriplegia   V   SpasLc   23%   16%   106   4;7  

2   6;6   M   SpasLc  Diplegia   III   SpasLc   72%   83%   106   6;2  

3   7;5   F   SpasLc  Hemiplegia   III   Mild   68%   65%   102   7;4  

4   8;2   M   SpasLc  Diplegia   II   Mild   80%   72%   98   8;4  

5   9;9   M   SpasLc  Hemiplegia   III   Mild   81%   66%   67   9;4  

6   10;7   M  SpasLc  

Quadriplegia   IV   /r/  error   85%   96%   127   10;11  

7   12;4   M   SpasLc  Diplegia   II   None   91%   95%   112   13;2  

8   15;0   F   SpasLc  Diplegia   II   None   82%   93%   129   15;7  

Age  [F(1,  90)  =  81.78,  p  <  .001]  Group  [F(1,  90)  =  23.27,  p  <  .001],  CP  <  TD  Oral  Area  Index  [F(1,  90)  =  29.78,  p  <  .0001]  Group  x  Oral  Area  Index  =  [F(1,  92)  =  8.71,    p  <  .01]  

CP   TD  

Oral  Area  Index  (mm2)   24.27  (15.71)   16.47  (7.33)  

Vowel  Space    (Hz2)   706483.60  (137072.23)   137072.23  (91412.38)  

REFERENCES  

Fig  3:  Oral  Area  Index  of  a  parCcipant  Fig  2:  Vowel  Space  triangle  of  a  parCcipant