status of the erl project in japan

27
Status of the ERL Project in Japan Norio Nakamura for the ERL Collaboration Team Institute for Solid State Physics(ISSP), University of Tokyo Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

Upload: yuval

Post on 23-Feb-2016

29 views

Category:

Documents


0 download

DESCRIPTION

Status of the ERL Project in Japan. Norio Nakamura for the ERL Collaboration Team. Institute for Solid State Physics(ISSP), University of Tokyo . ERL collaboration team. High Energy Accelerator Research Organization (KEK) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Status of the ERL Project in Japan

Status of the ERL Project in Japan

Norio Nakamurafor the ERL Collaboration Team

Institute for Solid State Physics(ISSP), University of Tokyo

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

Page 2: Status of the ERL Project in Japan

High Energy Accelerator Research Organization (KEK)M. Akemoto, T. Aoto, D. Arakawa, S. Asaoka, A. Enomoto, S. Fukuda, K. Furukawa, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, T. Honma, T. Honma, K. Hosoyama, M. Isawa, E. Kako, T. Kasuga, H. Katagiri, H. Kawata, Y. Kobayashi, Y. Kojima, T. Matsumoto, H. Matsushita, S. Michizono, T. Mitsuhashi, T. Miura, T. Miyajima, H. Miyauchi, S. Nagahashi, H. Nakai, H. Nakajima, E. Nakamura, K. Nakanishi, K. Nakao, T. Nogami, S. Noguchi, S. Nozawa, T. Obina, S. Ohsawa, T. Ozaki, C. Pak, H. Sakai, S. Sakanaka, H. Sasaki, Y. Sato, K. Satoh, M. Satoh, T. Shidara, M. Shimada, T. Shioya, T. Shishido, T. Suwada, T. Takahashi, R. Takai, T. Takenaka, Y. Tanimoto, M. Tobiyama, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, K. Watanabe, M. Yamamoto, Y. Yamamoto, S. Yamamoto, Y. Yano, M. YoshidaJapan Atomic Energy Agency (JAEA)R. Hajima, R. Nagai, N. Nishimori, M. SawamuraInstitute for Solid State Physics (ISSP), University of TokyoN. Nakamura, I Itoh, H. Kudoh, T. Shibuya, K. Shinoe, H. TakakiUVSOR, Institute for Molecular ScienceM. Katoh, M. AdachiHiroshima UniversityM. Kuriki, H. Iijima, S. MatsubaNagoya UniversityY. Takeda, T. Nakanishi, M. Kuwahara, T. Ujihara, M. OkumiNational Institute of Advanced Industrial Science and Technology (AIST)D. Yoshitomi, K. TorizukaJASRI/SPring-8H. Hanaki

ERL collaboration team

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

Page 3: Status of the ERL Project in Japan

Outline

1. Overview of the ERL project2. R&D status

- Gun and SC cavities3. Compact ERL

- Design study and building4. Summary

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

Page 4: Status of the ERL Project in Japan

ERL Project

ParameterBeam energy 5 GeV

Average current 10 - 100 mA

Normalized emittance 0.1 - 1 mm·mrad

Energy spread (rms) (0.5 - 2) 10-4

Bunch length (rms) 1 - 3 ps   (usual mode)~ 100 fs (bunch compression)

RF frequency 1.3 GHz

Parameters of the 5-GeV ERL

ParameterSpectral range 30 eV - 30 keV

Average brilliance from insertion devices

1021 - 1023 ph/s/mm2/mrad2/0.1%bw

Average flux > 1016 phs/s/0.1%bw

Number of ID’s 20 - 30

Parameters of the light sources

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

5GeV ERL

Compact ERL(cERL)

KEK site

Page 5: Status of the ERL Project in Japan

Compatibility of ERL and XFEL-O

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

SC cavities shared by introducing an orbit bump of a half RF wavelength– 5-GeV ERL beam 2 times accelerated with the orbit bump off– 7.5-GeV XFEL-O beam 3 times accelerated with the orbit bump on

XFEL-O

(a) 5-GeV ERL

(b) 7.5-GeV XFEL-O

Bunch train and pulsed bump for hybrid operation

Orbit Bump Section

Possible scheme for compatibility of 2-loop ERL and XFEL-O

2-loop ERL

SC cavities

XFEL-O

2-loop ERL

Page 6: Status of the ERL Project in Japan

500-kV DC Photocathode Gun

500-kV gun with a segmented insulator guard ring against field emission

field emission

ceramicguard ring

HV terminal

support rod

cathode

anode

Segmented insulator with guard rings employed to mitigate field emission.

e-beam

gun chamber

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratorysegmented insulator

Page 7: Status of the ERL Project in Japan

HV Testing of 500-kV DC Gun

500 kV for 8 hours without any dischargeField distribution of the 500-kV gun

Talk by N. Nishimori for more details.

6.8 MV/m on guard rings

1200

1000

800

600

400

200

0

-200

0 200 400 600

HV terminal

gun chamber

8.3 MV/m on support rod

14.3 MV/m on nose of support rod

segmented insulator

radius (mm)

heig

ht (m

m)

(HV testing done without a cathode electrode)

R. Nagai et al., to be published in Rev. Sci. Instr.

current through resistors

radiation level is within the background.no clear evidence for dark current.

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

Page 8: Status of the ERL Project in Japan

Test Injector Beamline

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

Laser system

2nd 500 kV guntest area

1st solenoid2nd solenoid

3rd solenoid 4th solenoid

1st view screen2nd view screen

1st slit(vertical)

1st slit(horizontal) 2nd slit

(vertical)

2nd slit(horizontal)

The same layout as cERL injector

Beam diagnostic line (emittance & bunch length measurements)

Beam dump line

3rd view screen 4th view screen

5th view screen

deflector

• Test injector beamline set up in the PF-AR-south building.• Purposes : To gain operation experience of the low energy beam. To evaluate performance of the guns by measuring the

emittance and bunch length with a diagnostic line. To develop the 2nd 500-kV gun and the injector line used

at cERL. 200 kV gunTest beamline

Talk by T. Miyajima for more details.

Laser room

200kV Gun2nd 500kV Guntest area

Beam Dump

buncher

Bending magnet

Page 9: Status of the ERL Project in Japan

Drive Laser System

Yb fiber oscillator and amplifier developed by AIST and ISSP

Yb fiber laser systemat KEK

1.3 GHz, 515 nm, 20 ps, 1.5 W (10mA operation) Yb fiber laser oscillator (Cornell type) + fiber amplifier Second harmonic generation (SHG): 100mW output achieved Construction of pulse shaping system and transport to the gun Ti:sapphire psec laser for high-charge and short bunch tests

1.3 GHz, 800nm(tunable), 20 ps, 15 W (100mA operation) Yb fiber laser oscillators (EO modulation & linear cavity types) 10W + 200W fiber amplifiers SHG and OPA for tunable wavelength around 800 nm

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

Laser system for gun commissioning at KEK

Development of system components by AIST and ISSP

Ti:sapphire laser system at KEK

oscillator 10W amplifier

Page 10: Status of the ERL Project in Japan

Basic cavity Parameters for Injector

HOM couplersTwo input ports

Injector SC Cavities (1)

・ Three 2-cell cavities for 5 – 10 MeV acceleration of 100 mA beam

・ Accelerating field : 15 MV/m・ Two input couplers for each cavity・ Four or five HOM couplers (loop

and antenna types) for each cavity

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

Prototype 2-cell cavity

  Design of HOM couplersK. Watanabe, S. Noguchi, E. Kako et al., Proc. of SRF09, Berlin, 2009.

Page 11: Status of the ERL Project in Japan

Injector SC Cavities (2)

Vertical test results of 1st prototype cavity • Maximum accelerating field : 30 MV/m

( 44 MV/m without HOM probes)• Heating of HOM probes for high fields• Stable operation for 11 hours at 15-16 MV/m

Heat-up of HOM probe

30MV/m

1st vertical test (2009 Apr.)

11-hour operation @15-16MV/m

Set-up for a vertical test

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

Lack of Liq. He

2nd vertical test (2010 Feb.)

44 MV/m

without pick-up probes of HOM couplers

Page 12: Status of the ERL Project in Japan

SC Cavity• Two Input couplers tested in early 2010• 300-kW klystron successfully developed (S. Fukuda et al., 6th Conf. of Particle Acc. Society of Japan, 2009)

• 2nd prototype cavity with 5 HOM couplers fabricated.

• Three real cavities under fabrication• Design of cryomodule almost completed

Cryomodule

Injector SC Cavities (3)

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

5 K80 K

300 K

Target200 kW

CWWarm

Window

Water Cooling

Zo = 41.5

W

Input coupler

300-kW klystron2nd prototype cavitywith 5 HOM couplers

Two input couplers for High Power Test

Page 13: Status of the ERL Project in Japan

Main SC Cavities (1)Target and feature of main SC cavity1) Acceleraitng field: 15 MV/m (f=1.3GHz)2) Beam current : 100 (acc.) + 100 (dec.) = 200 mA 3) HOM damping design

Large-aperture iris and beam pipe and HOM absorberEccentric-fluted beam pipe (converter from quadrupole to dipole mode)

Eccentric-fluted beam pipe HOM absorber

Frequency 1.3 GHz

Iris diameter 80 mm

Beam pipe diameter 100/120 mm

Rsh/Q 897 Ω

Ep/Eacc 3.0

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

E-singleC-single

Parameters of main SC cavity

Vertical test

9-cell cavity design

Two type of single-cell cavities Eacc > 20 MV/m achieved for both cavities

C-single E-single

HOM absorber

Page 14: Status of the ERL Project in Japan

Main SC Cavities (2)

• Maximum accelerating field : 15-17 MV/m• Accelerating field limited by field emission• A tip found on an iris between 8th and 9th cells Vertical test resumed after polishing the tip

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

8-9 iris(150 °)

X-ray mapping by a rotating mapping system

1cell

2cell

3cell

4cell

5cell

6cell

7cell

8cell

9cell

60.0

15

PI N1

PI N9

PI N18PI N11

PI N27PI N20

PI N36PI N29

PI N45

PI N54PI N47

PI N63PI N56

PI N72PI N65

PI N38

PI N81PI N74

φ 264

345.5

φ 337

φ 235

323

φ 264

346.504

φ 337

φ 235

334

φ 264

346.504

φ 337

φ 235

334

103.9

40

φ 400

φ 268

PI N2

PI N10

PI N19

PI N28

PI N37

PI N46

PI N55

PI N64

PI N73

PI N82

40

φ 400

φ 268

40

φ 400

φ 268

Tip on an iris of the cavity (f : several hudred mm)

2K

4.2K

151050 20 25 30Eacc [MV/m]

1011

1010

109

108

Q0

9-cell cavity

Vertical test

0

360

180

Angle[deg]

Sharp X-ray signal

Broad X-raysignal

Array ofPIN diodes

K. Umemori, T. Furuya et al., SRF09.

Page 15: Status of the ERL Project in Japan

• Ceramic windows and bellows of an input coupler fabricated and tested Ceramic window design slightly modified.

• HOM damper prototype with a comb-type RF shield fabricated and HOM absorbers tested.

• Cryomodule design containing two cavities with three HOM dampers in progress.

Main SC Cavities (3)

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

Cryomodule

HOM damperPrototypeHOM damperwithout absorberLeft: outsideRight: inside

HOM dampers

Cavities Input couplers

Input coupler

RF powerCold window Warm window

Bellows

Cooling air

Cold window

Warm window

M. Sawamura et al., SRF09. H. Sakai et al., SRF09.

Page 16: Status of the ERL Project in Japan

16

Compact ERL

Parameters

Beam energy 35 - 245 MeV

Injection energy 5 - 10 MeV

Average current 10 - 100 mA

Acc. gradient (main linac)

15 MV/m

Normalized emittance

0.1 - 1 mm·mrad

Bunch length(rms)

1 - 3 ps (usual)~ 100 fs (with B.C.)

RF frequency 1.3 GHz

Parameters of the Compact ERL

100 m

Before constructing a large-scale ERL facility, we need to demonstrate the expected ERL performance using key components. Compact ERL

East Counter Hall

Conceptual Design Report published in 2007KEK Report 2007-7/JAEA-Research 2008-032R. Hajima, N. Nakamura, S. Sakanaka, Y. Kobayashi eds.

Page 17: Status of the ERL Project in Japan

Injector design for cERL • Injector components of cERL– Photocathode DC gun– Two solenoids – Bunching cavity (Buncher)– Three SC cavities– Five quadrupole magnets– Merger (using three bending magnets)

• Initial Conditions– Electron distribution on cathode: beer-can shape – Initial charge: 80 pC

• Parameters optimization – Generic algorithm– Tracking code GPT– Space charge effects included– No CSR in merger

• Optimization result– Rectangular type gives smaller emittance

than the sector type. – Normalized emittance 0.4 – 0.5 mm mrad for

2 – 3 ps bunch length.

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

(1) Sector type (bending angles : -19, 22, -19 degree)

(2) Rectangular type (bending angles : -16, 16, -16 degree)

Normalized rms emittance0.4 ~ 0.5 mm mrad

Page 18: Status of the ERL Project in Japan

Error Analysis of cERL Injector

Talk by T. Miyajima for more details.

An example of error analysis results(Arrival time offset vs RF amplitude error)

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

Gun ripple < 0.1 %, RF amplitude error < 0.1 %, RF phase error < 0.1 °

Amplitude error in RF cavity

Phase error in RF cavity

Summary of error analysis results

Page 19: Status of the ERL Project in Japan

Optics Design of 1-loop cERL

Optics functions(in high-current and low-emittance modes)

Beam energy 125 MeV

Beam current 10 – 100 mA

Normalized emittance en = e/(gb)

1 mm·mrad (77 pC/bunch)0.1 mm·mrad (7.7 pC/bunch)

Energy spread (rms) < 3 10-4

Bunch length (rms) 1 – 3 ps (normal recirculation)~ 100 fs (bunch compression)

• High current mode: 100 mA, 1 mm mrad• Low emittance mode: 10 mA, 0.1 mm mrad• Emittance almost preserved• CSR effects included

Basic parameters

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

Compact ERL(1-loop model)

Beam dump

1st TBA arc

Chicane Long straight section

Gun

2nd TBA arc

InjectorMain SC cavities

BeamsExtractor Merger

T. Shiraga, N. Nakamura et al., PAC09

Page 20: Status of the ERL Project in Japan

Bunch Compression in cERL

• Bunch compression and decompression successfully simulated.• Optics also optimized for avoiding serious beam loss after decceleration.

Main SC CavitiesDump

Merger

injector

1st arc(R56>0)

2nd arc(R56<0)

Chicane

Extractor

Long straight section

Beams

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

(2)

st =56 fs

(3) (4)

(5)(6)

only b, x,y opt.sx,y opt.

Gun(1)

Initial condition:st =1 psQ=77 pCen=1 mm mrad

time

x-positiony-

posi

tion

Mom

entu

m

5 cm

5 cm6 m

e c

12 ps

Page 21: Status of the ERL Project in Japan

Error Effects of Main SC Cavities

• Bunch length and arrival time variations due to RF amplitude and phase errors 0.01 % amplitude and 0.01 deg phase control required for bunch compression• Orbit distortion, emittance growth and bunch lengthening due to alignment error of SC cavities Orbit correction using eigenvector method with constraints(EVC) successfully applied

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

Bunch length and arrival time variationsat exit of the 1st arc due to RF amplitude and phase errors in bunch compression

Orbit distortion and emittance growth due to +1-mm horizontal alignment error of 8 main SC cavities in low-emittance mode and their correction

Bunch profile at exit of the 1st arc with ±1-mm vertical alignment error of 8 main SC cavities in bunch compression

DY=0mmst=56 fs

DY=±1mmst=267 fs

DV/V -0.5% +0.5%

DfRF +1.0° -1.0°

1st arc 2nd arc

Page 22: Status of the ERL Project in Japan

Optics Design of 2-loop cERL

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

Merger

Branch chicane

Adjustment chicane

Extractor

Beam dump

Main superconductor cavitiesDC gun

Layout of 2-loop cERL (tentative)

Optics of 2-loop cERL (tentative)Optics design of 2-loop cERL in progress

M. Shimada et al., ERL09.

Page 23: Status of the ERL Project in Japan

cERL Building

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

Reconstruction of the East Counter Hall for the compact ERL

Feb. 2009 Jan. 2010

The hall is being cleaned.

Liq. He refrigerator is being installed.

East Counter Hall

Page 24: Status of the ERL Project in Japan

Plan View of the Compact ERL (1)

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

Liq. He refrigerator systemRF sources

Laser hut

SCC R&D area

Magnetpower supplies

SCC verticaltest area

Compact ERL

Elec

tron

ics

hut

Vacuum hut

Final version of the compact ERL(2-loop, 100mA, 245 MeV)

Page 25: Status of the ERL Project in Japan

Plan View of the Compact ERL (2)

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

Commissioning will start with a minimum version (1-loop, 10mA, 35 MeV) in FY2012.

Liq. He refrigerator systemRF sources

Laser hut

SCC R&D area

Magnetpower supplies

SCC verticaltest area

Compact ERL

Elec

tron

ics

hut

Vacuum hut

Page 26: Status of the ERL Project in Japan

Summary

• Compact ERL (final version : 2 loop, 245 MeV, 100 mA)• Two-loop 5-GeV ERL and 7.5-GeV XFEL-O

ERL Project

R&D in progress• 500-kV DC photocathode gun and injector beamline• Drive laser system for the gun• SC cavities for both injector and main linacs

Compact ERL (cERL)• Design and error analysis of injector and 1-loop cERL studied• Optics of a 2-loop cERL under design• East Counter Hall at KEK renewed as cERL building• Commissioning (35MeV, 10mA, 1 loop) planned in FY2012

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory

Page 27: Status of the ERL Project in Japan

Thank you for your attention!

Norio Nakamura, FLS2010, March 1-5, 2010, SLAC National Accelerator Laboratory