structures of hydrated alkali metal cations, using infrared photodissociation spectroscopy haochen...

15
Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke , Christian van der Linde, James M. Lisy Department of Chemistry, UIUC ISMS-RG 06

Upload: robyn-james

Post on 04-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department

Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy

Haochen Ke, Christian van der Linde,

James M. Lisy

Department of Chemistry, UIUC

ISMS-RG 06

Page 2: Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department

• Alkali metals (Li, Na, K, Rb and Cs) are important chemical and biochemical elements.– Na and K are essential elements– Balance of electrolyte and osmotic pressure[1]

– Electroneurographic signal transmission[1]

– Li and Rb are used in treatment of bipolar disorder and depression [2,3]

Introduction

2

[1] Berg, J. M., Tymoczko, J. L., Stryer, L. Biochemistry, Seventh Edition; W. H. Freeman, 2010.[2] Baldessarini, R. J., Tondo, L., Davis, P., Pompili, M., Goodwin, F. K., Hennen, J. Bipolar Disord. 2006, 8 (2), 625–639.[3] Torta, R., Ala, G.; Borio, R., Cicolin, A., Costamagna, S., Fiori, L., Ravizza, L. Minerva Psichiatr. 1993, 34 (2), 101–110.

Page 3: Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department

• M+(H2O)n, (M = Li, Na, K, Rb and Cs) are the ubiquitous and basic form in biochemical systems.

– Structures of (H2O)n [4]

– Structures of H+(H2O)n [5]

Introduction

3[4] Bryantsev, V. A.; Diallo, M. S.; Van Duin, A. C. T.; Goddard III, W. A. J. Chem. Theory Comput., 2009, 5 (4), 1016–1026.[5] Jiang, J.; Wang, Y.; Chang, H.; Lin, S. H.; Lee, Y. T.; Niedner-Schatteburg, G.; Chang, H. J. Am. Chem. Soc. 2000, 122, 1398-1410[6] Hribar, B.; Southall, N. T.; Vlachy, V.; Dill, K. A. J. Am. Chem. Soc. 2002, 124, 12302-12311

“The name ‘MB’ arises because there are three hydrogen-bonding arms, arranged as in the Mercedes Benz logo” [6]

Page 4: Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department

4

Introduction

• M+(H2O)n, (M = Li, Na, K, Rb and Cs) are the ubiquitous and basic form in biochemical systems.

– What are the structures of M+(H2O)n ?

– Many calculations [7-9]

– Limited experimental data [10,11]

……

[7] Glendening, E. D.; Feller, D. J. Phys. Chem. B. 1995, 99, 3060–3067.[8] Park, J.; Kołaski, M.; Lee, H. M.; Kim, K. S. J. Chem. Phys. 2004, 121, 3108–3116.[9] Kołaski, M.; Lee, H. M.; Choi, Y. C.; Kim, K. S.; Tarakeshwar, P.; Miller, D. J.; Lisy, J. M. J. Chem. Phys. 2007, 126, 74302.[10] Miller, D. J., Lisy, J. M. J. Am. Chem. Soc. 2008, 130 (46), 15393–15404.[11] Miller, D. J., Lisy, J. M. J. Am. Chem. Soc. 2008, 130 (46), 15381–15392.

Page 5: Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department

Research Methods—Experiment

Q2

Detection ChamberDifferentialChamber

10 Hz Nd3+:YAG (1064 nm)~500 mJ/pulse

Tunable LaserVision OPO/A 1.35~10 µm

~ 5mJ/pulse

Triple Quadrupole Mass Spectrometer

Tunable Infrared Laser

Source Chamber

InfraRed PhotoDissociation Spectroscopy (IRPD)

Negligible multiple-photon absorption [12,13]

Q1 Q3

5[12] Ke, H., van der Linde, C., Lisy, J. M. J. Phys. Chem. A. 2014, 118 (8), 1363–1373.[13] Beck, J. P.; Lisy, J. M. J. Chem. Phys. 2011, 135, 44302.

Page 6: Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department

Research Methods—Calculation

• Ab initio calculations– Stable structures and energies

– MP2 level

– O, H, Ar, Li+ and Na+, aug-cc-pVDZ

– K+, Rb+ and Cs+, Los Alamos double-ζ basis sets (LANL2DZ)

– No Basis Set Superposition Error (BSSE) correction

• Rice-Ramsperger-Kassel-Marcus Evaporative-Ensemble (RRKM-EE) calculations– Unimolecular dissociation rate

– Effective cluster temperature (50~150K[12])

– Kinetic shift effect (negligible for M+(H2O)n in this apparatus[13])

6[12] Ke, H., van der Linde, C., Lisy, J. M. J. Phys. Chem. A. 2014, 118 (8), 1363–1373.

Page 7: Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department

53.5 kJ/mol

5.5 kJ/mol

Energy Threshold

(38.3) (39.5) (40.7) (41.9) (43.1) (44.3) (45.5) Equivalent Photon Energy (kJ/mol)

Spectral and Energy Analysis

Na+(H2O)5Ar

Frequency (cm-1)

7

N5f 17.0 kJ/mol

N5c 11.7 kJ/mol

N5b 11.8 kJ/mol

N5a 4.7 kJ/mol

<53.5 kJ/mol suppressed

>53.5 kJ/mol survived

Page 8: Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department

Structures of M+(H2O)3Ar

2+13+0

8

Page 9: Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department

Structures of M+(H2O)4Ar

3+14+0 C4

9

Page 10: Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department

Structures of M+(H2O)5Ar

4+1

3+1+1

5+0 C45+0 C5

10

3+2 ?

Page 11: Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department

Summary

• M+(H2O)3Ar

• M+(H2O)4Ar

3+0 2+1

Li, Na CsK, Rb

3+1 4+0 C4

Li, Na, K, Rb Cs

11

Page 12: Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department

12

• M+(H2O)5Ar

Summary

3+1+1Li, Na

5+0 C4Rb, Cs

4+1Li, Na, K, Rb, Cs

5+0 C5

Cs3+2 ?

Li

Page 13: Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department

Future Work

• Quantitative characterization, charge density vs structure

• Estimate H2O binding energy

– M+(H2O)n → M+(H2O)n-1 + H2O [12]

• Biochemical molecules, i.e. 2-amino-1-phenyl ethanol and ephedrine/pseudoephedrine

• M+(H2O)1Arn rotational structures

– Christian van der Linde’s presentation

– RJ11, Room 274, Medical Sciences Building, 04:25 PM 

13[12] Ke, H.; van der Linde, C.; Lisy, J. M. J. Phys. Chem. A. 2014, 118 (8), 1363–1373.

Page 14: Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department

Acknowledgement

• Colleagues– Prof. James M. Lisy and Dr. Christian van der Linde– Prof. Benjamin McCall’s Group

• National Science Foundation

CHE11-24821

14

Page 15: Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department

• [1] Berg, J. M.; Tymoczko, J. L.; Stryer, L. Biochemistry, Seventh Edition; W. H. Freeman, 2010.• [2] Baldessarini, R. J.; Tondo, L.; Davis, P.; Pompili, M.; Goodwin, F. K.; Hennen, J. Bipolar Disord. 2006,

8 (5p2), 625–639.• [3] Torta, R.; Ala, G.; Borio, R.; Cicolin, A.; Costamagna, S.; Fiori, L.; Ravizza, L. Minerva Psichiatr. 1993,

34 (2), 101–110.• [4] Bryantsev, V. A.; Diallo, M. S.; Van Duin, A. C. T.; Goddard III, W. A. J. Chem. Theory Comput., 2009,

5 (4), 1016–1026.• [5] Jiang, J.; Wang, Y.; Chang, H.; Lin, S. H.; Lee, Y. T.; Niedner-Schatteburg, G.; Chang, H. J. Am.

Chem. Soc. 2000, 122, 1398-1410• [6] Hribar, B.; Southall, N. T.; Vlachy, V.; Dill, K. A. J. Am. Chem. Soc. 2002, 124, 12302-12311• [7] Glendening, E. D.; Feller, D. J. Phys. Chem. B. 1995, 99, 3060–3067.• [8] Park, J.; Kołaski, M.; Lee, H. M.; Kim, K. S. J. Chem. Phys. 2004, 121, 3108–3116.• [9] Kołaski, M.; Lee, H. M.; Choi, Y. C.; Kim, K. S.; Tarakeshwar, P.; Miller, D. J.; Lisy, J. M. J. Chem.

Phys. 2007, 126, 74302.• [10] Miller, D. J.; Lisy, J. M. J. Am. Chem. Soc. 2008, 130 (46), 15393–15404.• [11] Miller, D. J.; Lisy, J. M. J. Am. Chem. Soc. 2008, 130 (46), 15381–15392.• [12] Ke, H.; van der Linde, C.; Lisy, J. M. J. Phys. Chem. A. 2014, 118 (8), 1363–1373.• [13] Beck, J. P.; Lisy, J. M. J. Chem. Phys. 2011, 135, 44302.

Reference

15