(subcritical) system experiments

52
i r f u i r f u (Subcritical) system y a l c a s y a l c a s (Subcritical) system experiments y a l c a s y a l c a s Stefano PANEBIANCO CEA Saclay Irfu/Service de Physique Nucléaire International Training Course (ITC-8) 3-6 February 2009 Politecnico di Torino Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009 1

Upload: others

Post on 02-Aug-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: (Subcritical) system experiments

i r f ui r f u (Subcritical) systemyalcas yalcas

(Subcritical) system experimentsyalcas yalcas p

Stefano PANEBIANCOCEA Saclayy

Irfu/Service de Physique Nucléaire

International Training Course (ITC-8)g ( )3-6 February 2009

Politecnico di Torino

Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009 1

Page 2: (Subcritical) system experiments

i r f ui r f u Spallation targetyalcas yalcas

Spallation target experimentsyalcas yalcas p

Stefano PANEBIANCOCEA Saclayy

Irfu/Service de Physique Nucléaire

International Training Course (ITC-8)g ( )3-6 February 2009

Politecnico di Torino

Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009 2

Page 3: (Subcritical) system experiments

Introduction

Diff b t thi d thi k t t

i r f ui r f u

• Difference between thin and thick target

• A lot of target systems around the world… for many different uses…!

yalcas yalcas

g y y

• Some examples to identify common features and problemsyalcas yalcas

• The example I know the best: MEGAPIENuclear and neutronic assessment– Nuclear and neutronic assessment

– Measurements campaign– Modelingg– Lessons learnt

3Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 4: (Subcritical) system experiments

Interaction in a thin target

i r f ui r f u • ~2 neutrons with E > 20 MeV (intra-nuclear cascade)

10 2

10 3

10 4

10 5

10 6

1 10 102

103

yalcas yalcas

• ~15 neutrons with E < 20 MeV (evaporation)

10 2

10 3

10 4

10 5

10 6

1 10 102

103

yalcas yalcas• Energy carried out by cascade neutrons is 85% (95% for protons)

10 2

10 3

10 4

10 5

10 6

1 10 102

103

10 2

10 3

10 4

10 5

10 6

1 10 102

103

10 2

10 3

10 4

10 5

10 6

1 10 102

103

10 2

10 3

10 4

10 5

10 6

1 10 102

103

4Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 5: (Subcritical) system experiments

L = 100 cm

Interaction in a thick target

i r f ui r f uR = 10 cmp @ 1 GeV

Pb• Protons interact

yalcas yalcas

Protons interact before slowing down

• 3.5 reactions per yalcas yalcas pincident proton in average

• Large number of secondary neutron interactions

5Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 6: (Subcritical) system experiments

Neutron multiplicity: thin vs thick targetThick target

i r f ui r f uThin target

yalcas yalcas yalcas yalcas

Increase of Mn with target thickness due to intra nuclear cascade

A. Letourneau et al., Nucl. Instr. Meth. B170 (2000) 299

6Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

due to intra-nuclear cascade

Page 7: (Subcritical) system experiments

Choice of the target materialA. Letourneau et al., Nucl. Instr. Meth. B170 (2000) 299

i r f ui r f u Neutron production• increases with target

yalcas yalcas

increases with target thickness and saturates above 30 cm

yalcas yalcas• is similar for W to Pb for

the same atom density

choice of material from technological criteria

7Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 8: (Subcritical) system experiments

-1] Y. Kadi, EURISOL week 2006

Choice of the target material: the Hg case

i r f ui r f ure

nt

J[c

m-

2s

6x1014

Target Materials

Hg Calculated neutron

yalcas yalcas nL

ea

ka

ge

Cu

rr

2x1014

4x1014

Hg

W

Ta

W and Ta ith 20

Calculated neutron leakage for different target materials

yalcas yalcas

[ ]

To

tal

Ne

utr

on 2x10

0

Target Depth cm0 20 40 60

with 20 vol% D2O coolant

[ ]Target Depth cm

Calculated decay power for 200 days of operation in a p5 MW beam

8Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 9: (Subcritical) system experiments

Choice of the target material

i r f ui r f uLiquid targets :Hg, Pb, Pb-Bi eutectic• Target = coolant

Solid targets : W, Ta, depleted U• Spallation products confined

yalcas yalcas

ghigh compactness

• Volatile spallation products can be removed during operation

Spallation products confined• No container• Simplicityyalcas yalcas be removed during operation

• No structural damages in target• Damages in window and

t i

• Limited power evacuation• Necessity of a coolant

reduced density of spallation container• Corrosion due to liquid metal • Highly activated circulating fluid

y pmaterial

• Irradiation damage (dpa, gas production.. .) can lead to

• Ancillary heater(s) necessary to keep Pb or LBE liquid

p oduct o ) ca ead toembrittlement of the target

9Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 10: (Subcritical) system experiments

Choice of the incident energyA. Letourneau et al., Nucl. Instr. Meth. B170 (2000) 299

i r f ui r f u • In heavy metal targets (Pb, W T Pb Bi) d 20

yalcas yalcas

W, Ta, Pb-Bi) around 20 neutrons per incident proton and GeV yalcas yalcas

• Maximum efficiency around 1 GeV1 GeV

10Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 11: (Subcritical) system experiments

p + Pb, E = 1.2 GeV, L = 80 cm

Neu

tron

num

ber

per

inci

dent

pro

ton

Neu

tron

num

ber

per

inci

dent

pro

ton

En < 20 MeV En > 20 MeV

Diameter (Cm)

p + Pb, E = 1.2 GeV, L = 40 cm

Neu

tron

num

ber

per

inci

dent

pro

ton

Neu

tron

num

ber

per

inci

dent

pro

ton

En < 20 MeV En > 20 MeV

Diameter (Cm)

p + Pb, E = 1.2 GeV, L = 40 cm

Neu

tron

num

ber

per

inci

dent

pro

ton

Neu

tron

num

ber

per

inci

dent

pro

ton

En < 20 MeV En > 20 MeV

Diameter (Cm)

p + Pb, E = 1.2 GeV, L = 40 cm

Neu

tron

num

ber

per

inci

dent

pro

ton

Neu

tron

num

ber

per

inci

dent

pro

ton

En < 20 MeV En > 20 MeV

Diameter (Cm)

Choice of the incident energy

i r f ui r f uTarget length and diameter

p + Pb, E = 1.2 GeV, L = 80 cm

Neu

tron

num

ber

per

inci

dent

pro

ton

Neu

tron

num

ber

per

inci

dent

pro

ton

En < 20 MeV En > 20 MeV

Diameter (Cm)

p + Pb, E = 1.2 GeV, L = 40 cm

Neu

tron

num

ber

per

inci

dent

pro

ton

Neu

tron

num

ber

per

inci

dent

pro

ton

En < 20 MeV En > 20 MeV

Diameter (Cm)

p + Pb, E = 1.2 GeV, L = 40 cm

Neu

tron

num

ber

per

inci

dent

pro

ton

Neu

tron

num

ber

per

inci

dent

pro

ton

En < 20 MeV En > 20 MeV

Diameter (Cm)

p + Pb, E = 1.2 GeV, L = 40 cm

Neu

tron

num

ber

per

inci

dent

pro

ton

Neu

tron

num

ber

per

inci

dent

pro

ton

En < 20 MeV En > 20 MeV

Diameter (Cm)

yalcas yalcas

Target length and diameter optimizationmaximize lateral low

p + Pb, E = 1.2 GeV, L = 80 cm

Neu

tron

num

ber

per

inci

dent

pro

ton

Neu

tron

num

ber

per

inci

dent

pro

ton

En < 20 MeV En > 20 MeV

Diameter (Cm)

p + Pb, E = 1.2 GeV, L = 40 cm

Neu

tron

num

ber

per

inci

dent

pro

ton

Neu

tron

num

ber

per

inci

dent

pro

ton

En < 20 MeV En > 20 MeV

Diameter (Cm)

p + Pb, E = 1.2 GeV, L = 40 cm

Neu

tron

num

ber

per

inci

dent

pro

ton

Neu

tron

num

ber

per

inci

dent

pro

ton

En < 20 MeV En > 20 MeV

Diameter (Cm)

p + Pb, E = 1.2 GeV, L = 40 cm

Neu

tron

num

ber

per

inci

dent

pro

ton

Neu

tron

num

ber

per

inci

dent

pro

ton

En < 20 MeV En > 20 MeV

Diameter (Cm)

yalcas yalcas energy nminimize high-energy leaks

p + Pb, E = 1.2 GeV, L = 80 cm

Neu

tron

num

ber

per

inci

dent

pro

ton

Neu

tron

num

ber

per

inci

dent

pro

ton

En < 20 MeV En > 20 MeV

Diameter (Cm)

p + Pb, E = 1.2 GeV, L = 40 cm

Neu

tron

num

ber

per

inci

dent

pro

ton

Neu

tron

num

ber

per

inci

dent

pro

ton

En < 20 MeV En > 20 MeV

Diameter (Cm)

p + Pb, E = 1.2 GeV, L = 40 cm

Neu

tron

num

ber

per

inci

dent

pro

ton

Neu

tron

num

ber

per

inci

dent

pro

ton

En < 20 MeV En > 20 MeV

Diameter (Cm)

p + Pb, E = 1.2 GeV, L = 40 cm

Neu

tron

num

ber

per

inci

dent

pro

ton

Neu

tron

num

ber

per

inci

dent

pro

ton

En < 20 MeV En > 20 MeV

Diameter (Cm)

p + Pb, E = 1.2 GeV, L = 80 cm

Neu

tron

num

ber

per

inci

dent

pro

ton

Neu

tron

num

ber

per

inci

dent

pro

ton

En < 20 MeV En > 20 MeV

Diameter (Cm)

p + Pb, E = 1.2 GeV, L = 40 cm

Neu

tron

num

ber

per

inci

dent

pro

ton

Neu

tron

num

ber

per

inci

dent

pro

ton

En < 20 MeV En > 20 MeV

Diameter (Cm)

p + Pb, E = 1.2 GeV, L = 40 cm

Neu

tron

num

ber

per

inci

dent

pro

ton

Neu

tron

num

ber

per

inci

dent

pro

ton

En < 20 MeV En > 20 MeV

Diameter (Cm)

p + Pb, E = 1.2 GeV, L = 40 cm

Neu

tron

num

ber

per

inci

dent

pro

ton

Neu

tron

num

ber

per

inci

dent

pro

ton

En < 20 MeV En > 20 MeV

Diameter (Cm)

1012.5

1517.5

2022.5

2527.5

3032.5

35

500 1000 1500 2000 2500 3000 3500 4000E(MeV)

neut

rons

/pro

ton/

GeV Optimized geometry at each energy

1012.5

1517.5

2022.5

2527.5

3032.5

35

500 1000 1500 2000 2500 3000 3500 4000E(MeV)

neut

rons

/pro

ton/

GeV

Fixed geometry target, D=20cm,

1012.5

1517.5

2022.5

2527.5

3032.5

35

500 1000 1500 2000 2500 3000 3500 4000E(MeV)

neut

rons

/pro

ton/

GeV

L=80cm

11Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

S. Leray et al., J. Phys. IV 9 (1999) 57

1012.5

1517.5

2022.5

2527.5

3032.5

35

500 1000 1500 2000 2500 3000 3500 4000E(MeV)

neut

rons

/pro

ton/

GeV

Page 12: (Subcritical) system experiments

Some examples: MYRRHA

i r f ui r f u

yalcas yalcas yalcas yalcas

T t b d diti• Target boundary conditions– Produce ~1017neutrons/s to feed subcritical core @ keff≈0.95– Accept 600 MeV x 2.5 mA or 350 MeV, 5 mA proton beam – Evacuate deposited heat 1-1.43 MW depending on beam choice– Erosion limit: v<2.5 m/s– Lifetime: > 1y

12Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

y

Page 13: (Subcritical) system experiments

Some examples: J-PARC

i r f ui r f u

yalcas yalcas yalcas yalcas

F S d EXA05

13Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

From Sawada, EXA05

Page 14: (Subcritical) system experiments

Some examples: J-PARC

i r f ui r f uADS Target Test Facility (TEF-T)

yalcas yalcas yalcas yalcas

• Liquid lead-bismuth600 M V 200 kW b• 600 MeV-200 kW proton beam

• 1.5 1014 n/cm2/s

14Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 15: (Subcritical) system experiments

Some examples: ISIS

i r f ui r f u • Proton energy : 800 MeV• Proton current: 60 µAmps

yalcas yalcas

• Average power : 48 kW• Pulse rate : 10 Hz• Proton beam size : 1.5 cm FWHMyalcas yalcas• Target : Tungsten (W) clad in tantalum (Ta)• Target coolant : D20Target coolant : D20• Reflector : Beryllium• Reflector coolant : D20

15Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 16: (Subcritical) system experiments

Some examples: SNS

i r f ui r f u • Nominal Operating Pressure : 0.3 MPa

yalcas yalcas

• Flow Rate : 340 kg/s

• Vmax (In Window) : 3.5 m/syalcas yalcas a ( do ) 3 5 /s

• Total Hg Inventory : 1.4 m3

P P 30 kW• Pump Power : 30 kW

• Power absorbed in Hg : 1.1 MW• Temperature• Temperature– Inlet to target : 60ºC– Exit from target : 90ºC

16Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 17: (Subcritical) system experiments

Hg converter and secondary fission targets

Some examples: EURISOL

i r f ui r f u

Hg converter and secondary fission targets

yalcas yalcas yalcas yalcas

17Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 18: (Subcritical) system experiments

The MEGAPIE project

A key experiment in the ADS roadmap

i r f ui r f u

• A key experiment in the ADS roadmap

• MEGAwatt Pilot Experiment (MEGAPIE)

yalcas yalcas

(1 MW) initiated in 1999 in order to design, build and operate a liquid lead-bismuth spallation target

yalcas yalcas

• Operate it into the Swiss spallation neutron facility SINQ at PSI

• Minimum design service life fixed at 1 year (6000 mAh).

18Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 19: (Subcritical) system experiments

The MEGAPIE challenges

• Design a completely different concept of target in

i r f ui r f u

• Design a completely different concept of target in the same geometry of the current spallation targets used at PSI

yalcas yalcas

• Develop and integrate two main prototypical systems : a specific heat removal system and an electro magnetic pump system for the hot heavyyalcas yalcas electro magnetic pump system for the hot heavy liquid metal in a very limited volume

• Design a 9Cr martensitic steel (T91) beam• Design a 9Cr martensitic steel (T91) beam window able to reach the assigned life duration

• License a LBE in relevant conditions-to operate a LBE target

• Develop the decommissioning strategy and waste management

19Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 20: (Subcritical) system experiments

The MEGAPIE installation at PSI

i r f ui r f u

yalcas yalcas

Proton beam 575 MeV, 1.7 mA

yalcas yalcas

20Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 21: (Subcritical) system experiments

The MEGAPIE target

i r f ui r f u

yalcas yalcasCHARACTERISTICS

yalcas yalcas• Irradiation time: 5 months

• Proton energy: 575 MeV

• Beam intensity: 1,4 mA

• Volume: 80 l of liquid Pb-Biq

21Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 22: (Subcritical) system experiments

The MEGAPIE target

i r f ui r f u

yalcas yalcas yalcas yalcas

22Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 23: (Subcritical) system experiments

The choice of LBE

Lead bismuth eutectic(Pb44 5% Bi55 5%) has been selected due to its

i r f ui r f u

Lead-bismuth eutectic(Pb44.5%-Bi55.5%) has been selected, due to its attractive neutronic and physical properties:- heat transfer coefficient- low melting point (125°C)

yalcas yalcas

- low melting point (125 C)- Nevertheless bismuth induces to the production of activation products

(i.e. polonium,...)yalcas yalcas

23Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 24: (Subcritical) system experiments

The choice of T91 beam window

• Compared to austenitic steel 316L T91 has:

i r f ui r f u

• Compared to austenitic steel 316L, T91 has:– higher strength– much better resistance to heat deposit (due to a lower thermal expansion

coefficient and a higher thermal conductivity).

yalcas yalcas

g y)• As a result, thermal stresses are about twice as high in 316 as in T91

for a given geometry and heat deposit– better corrosion resistance in Pb-Bi due to a low nickel contentyalcas yalcas

• For applications under irradiation up to high doses at temperatures higher than about 400°C, T91 has additional advantages over 316 :

– Much lower swelling– better resistance to the “high temperature helium embrittlement”– better resistance to the high temperature helium embrittlement

phenomenon• The main weakness of martensitic steels is the existence of the Ductile-to-

Brittle Transition temperature (DBTT) which is shifted as a result of irradiation. – This shift is small for 9Cr martensitic steels up to high doses at irradiation

temperatures higher than 400°C. – At lower irradiation temperature, a significant DBBT shift occurs.(T91 :

(0.1C, 0.32Si, 0.43Mn, 8.73Cr, <0.01W, 0.99Mo, 0.19V, 0.031Nb, ( , , , , , , , ,0.029N, 0.24Ni))

24Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 25: (Subcritical) system experiments

MEGAPIE: main characteristics

i r f ui r f u

yalcas yalcas yalcas yalcas

25Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 26: (Subcritical) system experiments

The MEGAPIE neutronics: motivation

• MEGAPIE is the first high power liquid metal target built

i r f ui r f u

• MEGAPIE is the first high power liquid metal target built• It needed a full characterization of the facility from the neutronics point of view (inner

and outer flux)• Gain experience and give recommendations for

yalcas yalcas

– HLM target technology– ADS development

yalcas yalcas• Calculation of important quantities and their influence on the target design:

– neutron fluxes, – power deposition in the target, – shieldingshielding, – dose rates, – activation, – gas production,– radiation damage.radiation damage.

• The main tools were Monte Carlo codes; benchmarking experiments also provided useful data.

General reference: X9 summary report PSI Bericht Nr. 05-12, December 2005, ISSN 1019-0643 and references therein

26Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 27: (Subcritical) system experiments

The MEGAPIE neutronics: tools

i r f ui r f uFrom the design, through the operation and to the post-test analysis we needed:

yalcas yalcas

• Modeling:– Benchmark and validate MC tools (FLUKA, MCNPX), – Integrate a VERY complex geometry (target & facility)

Calculate fundamental neutronic quantities (p n g fluxes activation doseyalcas yalcas – Calculate fundamental neutronic quantities (p, n, g fluxes, activation, dose rates, power deposition, …)

– Provide a “mapping” of the neutron flux – Study the impact of a large spectrum of variables (physics models,

materials geometry beam )materials, geometry, beam, …)

• Measurement:– Overall characterization of the facility (matrix of observables)y ( )– Compare with and validate calculations– Span over a large energy range (from thermal to 575 MeV)– Span over a large fluency range

Need to use different techniques– Need to use different techniques– Take benefit of startup phase vs nominal irradiation conditions

27Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 28: (Subcritical) system experiments

Neutronic benchmark

i r f ui r f u• This initial benchmark exercise was a very important code inter-comparison

yalcas yalcas• The choice led to FLUKA and MCNPX codes for the prosecution of os

ition

(W)

yalcas yalcasthe work for the following reasons:

– Consistently good results in the benchmark H

eat d

epo

– Code expertise– Strong development work

for both codes, with constant upgrades of

Z (cm)L. Zanini et al. NDST2004

models/cross section sets.

Lesson learned:Lesson learned: Code validation is of fundamental importance at the beginning of a large project

28Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

mass number

g p j

Page 29: (Subcritical) system experiments

The MEGAPIE modeling

i r f ui r f u • Geometry• Materials

(including impurities)

yalcas yalcas

(including impurities)• Beam profile• Irradiation history• Physics modelsyalcas yalcas y

29Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 30: (Subcritical) system experiments

Power deposition in the LBE

i r f ui r f u

yalcas yalcas yalcas yalcas

• Determine the power deposition in the Pb-Bip p– dissipated power in the central part of the target – evolution of the axial components of the power deposition

These results have been fitted with an analytical function and used• These results have been fitted with an analytical function and used as input for thermo-hydraulics calculations.

30Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 31: (Subcritical) system experiments

The MEGAPIE operation

i r f ui r f uOperated successfully as the neutron source for SINQ hall during 2006 :

4 th b 960 A

yalcas yalcas

• 4 month beam on, average 960 uA

• 80 % more neutron production than current SINQ solid targetsyalcas yalcas

31Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 32: (Subcritical) system experiments

Validation of simulation codes and re assessment of the target performances at

The target modeling: solid vs MEGAPIE

i r f ui r f u

Validation of simulation codes and re-assessment of the target performances at the measured positions of the fluxes

yalcas yalcas yalcas yalcas

Solid target calculations include the STIPsamples and Pb rods of lower density

32Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

samples and Pb rods of lower density

Page 33: (Subcritical) system experiments

The modeling: outer flux

i r f ui r f uSINQ facility

yalcas yalcas NEUTRA

SINQ facility

yalcas yalcas

ICON

NAA

ICON

EIGERNAA

33Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 34: (Subcritical) system experiments

Inner neutron flux

i r f ui r f u 235U WD Highest chambers

Simulation

yalcas yalcasNp Am

yalcas yalcas

235U WD

1 m

U

Monitors

WD

Lowest chambers

WD235U

+Gadolinium shield

1,3 cm Micro fission chamber

34Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

S. Chabod et al., NIM A 556-2 (2007)

Page 35: (Subcritical) system experiments

Inner neutron flux

i r f ui r f u - Online monitoring of neutron fluxVery tough experimental conditions

yalcas yalcas

- Very tough experimental conditions- Small 235U burn-up (6%)- Extraction of neutron flux from fission

current (given a spectrum from MC)yalcas yalcas (g p )

Monitors

- Discrepancy of a factor ~2 between measures(FC & monitors agree!)

- Deep sensitivity analysis on MC parametersDeep sensitivity analysis on MC parametersand experimental systematics

S. Panebianco et al., proc. AccApp07F. Michel-Sendis et al., proc. ICRS08

- Beam divergency effect under study

35Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Beam divergency effect under study

Page 36: (Subcritical) system experiments

Effect of structures

i r f ui r f u

yalcas yalcas yalcas yalcas

36Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 37: (Subcritical) system experiments

Effect of boron impurities

i r f ui r f u

yalcas yalcas yalcas yalcas

37Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 38: (Subcritical) system experiments

Effect of beam shape

i r f ui r f u

yalcas yalcas yalcas yalcas

38Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 39: (Subcritical) system experiments

Thermal neutrons measurement

i r f ui r f uExperimental technique: activation method (thin Au foils w/wo Cd)

self-shielding correction applied

yalcas yalcas

L. Zanini et al., proc. AccApp07

yalcas yalcas

NEUTRA

NAA

ICON

EIGER

Increase of neutron flux at the thermal beam line MEGAPIE/solid target of about 1.7Good agreement with simulated flux

EIGER

39Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 40: (Subcritical) system experiments

Epithermal neutrons measurement

i r f ui r f uExperimental technique: activation method (thin Au foils w/wo Cd)

self-shielding correction applied

yalcas yalcasΦ(epi) / (Φepi+ Φth)

experimentalΦ(epi) / (Φepi+ Φth)

calculatedyalcas yalcas

NEUTRA

NAA

ICON

T6 0.13 0.13

MEGAPIE 0 19 0 15

ICON

EIGER

MEGAPIE 0.19 0.15

T7 0.10 0.12

NAA

EIGER

MEGAPIE 0.045 0.038

T7 0.034 0.034L. Zanini et al., proc. AccApp07

The epithermal component with MEGAPIE is larger than with the solid targetsThe experimental value are 20-25% higher than the predicted one

40Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 41: (Subcritical) system experiments

Fast neutrons measurement

i r f ui r f uExperimental technique: reaction rates measurements from a set of activation

foils sensitive to threshold reactions (above 1 MeV)

yalcas yalcas yalcas yalcasNEUTRA

NAA In MEGAPIE fast component slightly higher than solid target

ICON

EIGER

g y g g

EIGERNi sample

Calculations performed with SNT code (A. Konobeyev et al., subm. NIM A)Main contribution comes from neutron from 20 to 150 MeV: (n,xnp) reactionsAgreement between calculations and measurement depends on the nuclide

41Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

improvement of evaluated data (JEFF, IEAF,…)

Page 42: (Subcritical) system experiments

Neutronics: recommendations

i r f ui r f u

yalcas yalcas yalcas yalcas

42Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 43: (Subcritical) system experiments

Delayed neutron measurement

i r f ui r f u

yalcas yalcas yalcas yalcas

43Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 44: (Subcritical) system experiments

Fit of the data

Delayed neutron measurement

i r f ui r f u

Fit of the dataPrecursors identified in solid target experiment*

. * D. RIDIKAS et al., Europ. Phys. Journ. A, 32, 1-4 (2007)

yalcas yalcas

( ) ( ) ( )( ) ( )( )

1 1

1 expexp

1 exp

n ni aa

i i i di i i

a x a x a xT

λτλτ

λ= =

− −= = −

− −∑ ∑Precursor Half-life, s ai ( %)

τa ~0.5 s irradiationT ~20 s relaxationτd ~10 s heat exchanger

yalcas yalcas , i ( %)87Br 55.60 4.388Br 16.29 3.317N 4 173 92 4N 4.173 92.4

44Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

DN densities in agreement with solid target experiment

Page 45: (Subcritical) system experiments

Gas measurement: setup

i r f ui r f u

yalcas yalcas yalcas yalcas

45Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 46: (Subcritical) system experiments

Gas measurement: procedure

i r f ui r f u

yalcas yalcas yalcas yalcas

46Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 47: (Subcritical) system experiments

Gas measurement: results

i r f ui r f u

yalcas yalcas yalcas yalcas

47Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 48: (Subcritical) system experiments

Gas measurement: issues

i r f ui r f u

yalcas yalcas yalcas yalcas

48Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 49: (Subcritical) system experiments

Gas measurement: recommendations

i r f ui r f u

yalcas yalcas yalcas yalcas

49Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 50: (Subcritical) system experiments

Target activation

i r f ui r f u

yalcas yalcas yalcas yalcas

50Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 51: (Subcritical) system experiments

Target activation: effect of impurities

i r f ui r f u

yalcas yalcas yalcas yalcas

51Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 52: (Subcritical) system experiments

Conclusions

i r f ui r f u

yalcas yalcas yalcas yalcas

52Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009