suiko 2013 abashiri sadokugo...$ Ä v m ùn8%c3$+ kh7 ¬n  v , 6 :ú&j ^an l5.1 1 j13) Å ¡...

6
DŽĿĤɤƉʩ,Ȣ57Ł,2013ʼn2Ɯ 網走川河口域で発生する塩水遡上 に関する数値的検討 NUMERICAL STUDY ON SALINE INTRUSION IN ABASHIRI RIVER ESTUARY Ǝɩý 1 ĸŪ 2 Tetsuya SHINTANI and Keisuke NAKAYAMA 1 ƾ¦ü æ(Ŀ) ʼʒĚĤƦÚƅ ʒłďȇǻĔ^c˂192-0397 ƦʒÂǸĢłäĚNj1-1˃ 2 ƾ¦ü æ(Ŀ) ßɒĿƱĚĤƅŻ ȕ¦ǻĔĿĤȗ˂090-8507 ßǕʈßɒłÃĆȁ165ȃċ˃ We numerically studied saline intrusion and the related river flows in the Abashiri River Estuary that connects the Ohotsuku Sea and the Lake Abashiri in northeast Hokkaido. A three-dimensional object- oriented hydrodynamic model, Fantom3D, was used to investigate the stratified flow dynamics in this estuary. In the computation, the estuary was decomposed into 15 domain objects having different sizes to properly express the narrow and highly bending river channel. The one-way nesting technique was also used to resolve depth-scale eddies in the channel. The computed results were compared to observed data obtained in Sept 2006. The water level, velocity and salinity measured at four locations along the estuary were in reasonable agreement with the computed results. The secondary flow at a bending section and the variation of mixing type along the river were also discussed using the computed results. We showed that these computed results are qualitatively agreed well with the previous investigations. Key Words: Saline intrusion, mixing type, secondary flow, 3D numerical simulation, nesting 1. はじめに njìĎ˂UciP˃8ĽHǕ<7ʎșĎ2 I˄ĭŎEůÌȄ5JDŽĒ7ǙòĎ2J˅7DŽĎ 28˄ǩLJ7ģĉ6G.1ØĤȆ5qcùƞȆ6 ėÞ&J+C˄DZɯɸɾnjĽǓʑ6ǂ=1ɏʪ5D 7635.1J˅njʈÅ<7ǕDŽ˂ēDŽ˃³À8˄ 7ǩªėÜ6GJʵĈȆ5ʽÜØ6Ù˄ĭŎǓȆ˂» ĈȆ˃5Ûƨ6G.1µʅ"K˄)7Ŗŭ8˄njĽǓʖ˄ ǩªėÜ˄njŌċŖ7ŗʳNŔë1ęƵ6ėÞ&J˅ ɃǯȂŒɱ&7ˀØȆ5ØĤȆqcDȑȜ ūƽN+1JɑĂ2L˄ɹƱĿƱǽêDŽ 7ēÌǙÀþʸ7ɖljEǼŭȭ˂ˁʹEùɺƮǼ˃< 7ŗʳɝ²ȣ7ĨǽȆ5ȟđH˄ǹɪ7ħũȆħʖ Ȇ5ǺɖNdžC1ǒȅ6ȑȜ5"K1J˅ ơȑȜ2ȍȈ$+ȸɰĽnjìĎ8˄ɅȆ5njìĎ3 ǂɶ$1DzšȆ5ʊJ˅)K8˄Ǔʑ˂ŬǩĎ˃ 6ēǖůķ7ȸɰǠ˂ʱțȮ33km 2 ˄ƛĚDŽǗȮ16m˃ NƝ&J32J˅ȸɰĽ6ʹ©$+njĽ3$18˄ ¯9ʮƭȌ7IJĽçǠ3ěňǐNȳ;ʿǫĽ˂njìĎ˃ ŸHKJ 1) ˅KH7njĽ28˄ʿǩƖ68ǩª ǠDŽªNɳ˄ɀNʄȳ&JnjĽʑÌ61ɿǓ Ǽ%˄Ǔ6ªȽ&JǠ@2ǕDŽʆ9KJ˅ ȸɰĽ6JēDŽʌþʸ8˄njʈÅ7þʸ3ɗ GID˄ȸɰǠ<7ēDŽ°ȴ6J˅ɻʼn˄ȸɰǠ28˄ ǠDŽª7«6G.1ēDŽʌ°ȴʖĕÙ$1I˄ ǠÅķ7ēDŽķŵĚ$1ōķ7ɫʔȰÞ3ĮƪʻÞ µʅ"K˄ķDŽ7ǡƓEʄɌ6§.1ȅǼ&JDŽɯ ʧī˂ʮǩ˄PV^ȣ˃ęȅ$1J 2), 3), 4) ˅Ə˄ù ɺ7ÅDŽʱǧƱ˂znab{˄W`Y˄aSVȣ˃ 8˄ēDŽ3ǖDŽ7qc6̱ģ$1I˄ƲȠ 5ēDŽ°ȴɴDþʸ35J˅7ȸɰĽNʁ%+ēDŽ °ȴqc˂ƪʻēşǻ˃8ʰń6ŠĞ2I˄Ǔ Ď7ʟʭʖėÞ˄njʈċŖ7ėÞ˄ǕʱƓȣ2Ě ėÞ&Jîɂũʿ˅)7+C˄ǹĉ8˄]nȣ7 ĿDZNnjʈÅ6ɛȽÓŞ&J36G.1ēÌ°ȴ NȦǺ&JɞAĠ@.1J 5) ˅

Upload: others

Post on 19-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: suiko 2013 abashiri sadokugo...$ Ä V M ùN8%C3$+ KH7 ¬N Â v , 6 :ú&J ^AN L5.1 1 J13) Å ¡ 28 Ä 8 p = Ìì ¼½ ¹ X %N 0 j6 Ä3 6G.1 Ä ( Ä ù j7 ñ úNc\ 7 4 @2 s î B N `&J

, 57 ,2013 2

網走川河口域で発生する塩水遡上 に関する数値的検討

NUMERICAL STUDY ON SALINE INTRUSION

IN ABASHIRI RIVER ESTUARY

1 2 Tetsuya SHINTANI and Keisuke NAKAYAMA

1 ( ) 192-0397 1-1 2 ( ) 090-8507 165

We numerically studied saline intrusion and the related river flows in the Abashiri River Estuary that connects the Ohotsuku Sea and the Lake Abashiri in northeast Hokkaido. A three-dimensional object-oriented hydrodynamic model, Fantom3D, was used to investigate the stratified flow dynamics in this estuary. In the computation, the estuary was decomposed into 15 domain objects having different sizes to properly express the narrow and highly bending river channel. The one-way nesting technique was also used to resolve depth-scale eddies in the channel. The computed results were compared to observed data obtained in Sept 2006. The water level, velocity and salinity measured at four locations along the estuary were in reasonable agreement with the computed results. The secondary flow at a bending section and the variation of mixing type along the river were also discussed using the computed results. We showed that these computed results are qualitatively agreed well with the previous investigations.

Key Words: Saline intrusion, mixing type, secondary flow, 3D numerical simulation, nesting

1. はじめに

33km2 16m

1)

2), 3), 4)

5)

Page 2: suiko 2013 abashiri sadokugo...$ Ä V M ùN8%C3$+ KH7 ¬N Â v , 6 :ú&J ^AN L5.1 1 J13) Å ¡ 28 Ä 8 p = Ìì ¼½ ¹ X %N 0 j6 Ä3 6G.1 Ä ( Ä ù j7 ñ úNc\ 7 4 @2 s î B N `&J

(dispersion coefficient)

6)

7), 8)

9)

10)

7) Wang et al. Snohomish River Estuary 11)

3

12)

(Fantom3D)

13) 3

2. 現地の詳細

115km

図-1(a)

7km

50m 図-1(b)

7m 1m1km

(a) 道東広域図

(b) 網走川河口域拡大図

図−1 研究対象水域

図—2 網走港の潮位と網走湖の水位(2006年)

14) 2006 9 16

9 図-2

20cm 50cm

3. 数値計算手法

(1) オブジェクト指向モデルFantom3D

Fantom3D(ver.2β)

オホーツク海

能取湖

網走湖

涛沸湖

サロマ湖

網走川河口域

北海道道東

網走川

500m網走湖 KP7.1

KP2.5

KP4.0KP5.0

網走港

拡大図

水位,流速,塩分の比較ポイント

混合形態の確認ポイント

二次流の確認断面

KP1.7

KP3.8

Page 3: suiko 2013 abashiri sadokugo...$ Ä V M ùN8%C3$+ KH7 ¬N Â v , 6 :ú&J ^AN L5.1 1 J13) Å ¡ 28 Ä 8 p = Ìì ¼½ ¹ X %N 0 j6 Ä3 6G.1 Ä ( Ä ù j7 ñ úNc\ 7 4 @2 s î B N `&J

15),16) (Object-

Oriented Programming: OOP)

OOP(domain specific )

(2) 数値スキーム

ULTIMATE-QUICKEST

2 Adams-Bashforth

Theta method

MITgcm Adcroft et al.17)

partial-step

partial-step

13) 図-3

13 (Domain )Domain

Domain

(OpenMP)Domain

Domain

図−3 計算領域のDomain分割(河道部)

domain

Domain

domain 10m 10mdz 3 6m

dz=1.0m 3mdz=0.25m

24dt=2.0

CFLdomain

5m 5m5

LES 4/3

Vitousek and Fringer19

(3) 境界条件について

10)

5km20)

KP7.1

Parent domain(dx,dy=10m)

Child domain(dx,dy=5m)

KP1.7KP2.5KP3.8

KP4.0

KP5.0

KP7.1

Page 4: suiko 2013 abashiri sadokugo...$ Ä V M ùN8%C3$+ KH7 ¬N Â v , 6 :ú&J ^AN L5.1 1 J13) Å ¡ 28 Ä 8 p = Ìì ¼½ ¹ X %N 0 j6 Ä3 6G.1 Ä ( Ä ù j7 ñ úNc\ 7 4 @2 s î B N `&J

(Domain)

4. 結果の比較と検証

図-1(b)

2.5km (KP2.5), 4.0km (KP4.0), 5.0km (KP5.0), 7.1km (KP7.1)

図-4

図-4 水位に関する計算結果と観測結果の比較

図-5,6

図-7

図-5 東西方向流速に関する計算結果と観測結果の比較

図-6 南北方向流速に関する計算結果と観測結果の比較

Page 5: suiko 2013 abashiri sadokugo...$ Ä V M ùN8%C3$+ KH7 ¬N Â v , 6 :ú&J ^AN L5.1 1 J13) Å ¡ 28 Ä 8 p = Ìì ¼½ ¹ X %N 0 j6 Ä3 6G.1 Ä ( Ä ù j7 ñ úNc\ 7 4 @2 s î B N `&J

図-7 塩分濃度に関する計算結果と観測結果の比較

5. 数値計算結果による現象把握

10)

14) 10)

180

-1図-1

図-8(a)

cm/s

図-8(b)

(a) 干潮時の二次流分布

(b) 密度成層と二次流の干渉

図-8 二次流に関する計算結果(流速及び密度分布)

図-9 混合型の変化(9/19-9/20)

図-9 図-1 KP1.7 KP3.8

14) -5

unit : PSU

3

unit : PSU

68

10

12

14

30

30

18

18

6

6

Page 6: suiko 2013 abashiri sadokugo...$ Ä V M ùN8%C3$+ KH7 ¬N Â v , 6 :ú&J ^AN L5.1 1 J13) Å ¡ 28 Ä 8 p = Ìì ¼½ ¹ X %N 0 j6 Ä3 6G.1 Ä ( Ä ù j7 ñ úNc\ 7 4 @2 s î B N `&J

(KP1.7) (KP3.8)

KP1.7

KP3.8

6. 結論

1)

Fantom3D

2)

3)

2

4) (1.7km)

(3.8km)

謝辞:

参考文献 1)

vol.20, pp.346-353, 2001.

pp.609-614 1991.

37 pp.305-312, 1993.

4)

40 pp.589-594, 1996.

5) : 10 2008.

6) Fisher, H. B. Mixing and dispersion in estuaries, Annu. Rev. Fluid Mech., vol.8, pp.107-133, 1976.

7) 3

41 , pp.509-514, 1997. 8)

9 , pp.1-12, 1966. 9) 3

37 pp.319-324, 1993. 10)

54 (B), pp.93-98, 1998. 11) Wang, B., Fringer, O.B., Giddings, S.N. and Fong, D.A.: High-

resolution simulation of a macrotidal estuary using SUNTANS, Ocean Modelling, Vol.28, pp.167-192, 2009.

12) : , 53 ,

pp.1267-1272, 2009. 13)

Wetting and Drying B1Vol. 68 No. 4 pp.I_1249-1254 2012.

14)

42 , pp.775-780, 1998. 15) Nakayama K., T. Shintani, K. Kokubo, Y. Maruya, T. Kakinuma,

K. Komai and T. Okada: Residual current over a uniform slope due to breaking of internal waves in a two-layer system, Journal of Geophysical Research, accepted, 2012.

16) Maruya Y., K. Nakayama, T. Shintani and M. Yonemoto: Evaluation of entrainment velocity induced by wind stress in a two-layer system, Hydrological Research Letters, Vol. 4, pp.70-74, 2010, doi:10.3178/hrl.4.70.

17) Adcroft, A., Hill, C. and Marshall, J.: 1997: Representation of topography by shaved cells in a height coordinate ocean model. Mon. Wea. Rev., Vol.125, pp.2293–2315, 1997.

18) 26 pp.495-500, 1982.

19) Vitousek, S. and Fringer, O.B.: Physical vs. numerical dispersion in nonhydrostatic ocean modeling, Ocean Modelling, vol.40, pp.72-86, 2011.

20) 54 pp.151-156, 1997.

(2012.9.30受付)