symmetry and mechanism of multiferroicity in frustrated magnets 黃迪靖 and 牟中瑜 resonant...

73
Symmetry and Symmetry and Mechanism of Mechanism of Multiferroicity in Multiferroicity in Frustrated Magnets Frustrated Magnets 黃黃黃 黃黃黃 and and 黃黃黃 黃黃黃 Resonant soft x-ray scattering Ginzburg-Landau approach

Post on 20-Dec-2015

233 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

Symmetry and Symmetry and Mechanism of Mechanism of

Multiferroicity in Multiferroicity in Frustrated MagnetsFrustrated Magnets

黃迪靖 黃迪靖 and and 牟中牟中瑜瑜

• Resonant soft x-ray scattering• Ginzburg-Landau approach

Page 2: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

2

Collaborators

Soft x-ray scattering: J. Okamoto, H.-J. Lin, and C. T. Chen (NSRRC, Taiwan)

K. S. Chao (National Chiao-Tung University, Taiwan)

TbMn2O5: S. Park, S. W. Cheong (Rutgers University, USA)

Acknowledgement

L. L. Lee, H. W. Fu, and S. C. Chung (NSRRC, Taiwan)

S. Ishihara (Tohoku University, Japan)

Y. Tokura (Univ. of Tokyo, Japan)

C. H. Chen (University of Taiwan)

T. K. Lee (Academia Sinica)

Page 3: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

3

• Introduction

• Resonant soft x-ray scattering

• Ginzburg-Landau approach

Page 4: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

4

Magnetism: ordering of spins

Ferroelectricity: polar arrangement of charges

strain E T EPZT“Fire”(-Pyro)electricity“Pressure”(-piezo) electricity

Page 5: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

5

(Ferro)magnetism vs. (Ferro)electricityPerovskite structure

(La,Sr)MnO3: spins from : 3d3 or 3d4

BaTiO3: polarization from cation/anion paired diploes

O-2

Ti+4

Magnetic moment:

-Ba+2

0.10 Å

0.05 Å0.04 Å

+

+

Ti 3d0 O 2p2

unfilled d bandsimpurities

inversion symmetry broken

Page 6: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

6

• BiMnO3, BiFeO3, Pb(Fe2/3W1/3)O3:

6s2 lone pairs off-center distortion polar behavior

uncorrelated with magnetism ?

Mechanism of ferroelectricity•PbTiO3: Pb-O covalent bond

cubic 800 K

tetragonal300 K

Pb-O plane Ti-O plane

Pb

O

Kuroiwa et al, PRL87 217601 (2001)

Page 7: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

7

Induction of magnetization by an electric field; induction of polarization by a magnetic field.

- first presumed to exist by Pierre Curie in 1894 on the basis of symmetry considerations

However, the effects are typically too small to be useful in applications!

Magnetoelectric effect

Materials exhibiting ME effect:Cr2O3

BiMnO3

BiFeO3

…..

M. Fiebig, J. Phys. D: Appl. Phys 38, R123 (2005)

Page 8: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

Three Scenarios

1. Magnetic and Ferroelectric Transition

occurrs at the same T

3 7 13 2 4

:

boracite (Ni B O I) & Cr BeOExample

Ni I

2 2( - ) ( - ) - - qF a T Tc P b T Tc S EP MH

qorder parameter = (P, S )

0, /( )

F

P E T Tc EP

m both dive a rgnd t Tce a e

Page 9: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

2. Ferroelectric Transition occurs first

2 2( - ) - - qF a T Tc P bS EP MH

m

Only at Tc,

but may have an

omaly at Tm

diverges

.

e

3

:

RMnO , R=Sc, Y, In, Ho-Lu

Example

Lawes et al., PRL 91, 257208, 2003

Hexagonal RMnO3 :TC: 570-900 K, TN=70-130 K

BiFeO3: ferroelectric, ferroelastic, and weakly ferromagnetic; rhombohedrally distorted; TC=1100 K, TN= 650 K

Page 10: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

2 2( - ) - - qF aP b T Tc S EP MH

3. Magnetic Transition occurs first

23 2 8 3 5

Example:

Ni V O , RMnO , and R=Tb, DRM yn O , , Mo

e

Only at Tc,

but may have an

omaly at Tm

diverges

.

m

c

N

N

Page 11: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

11

Recently discovery in the coexistence and gigantic coupling of antiferromagnetism and ferroelectricity in frustrated spin systems such RMnO3 and RMn2O5 (R=Tb, Ho , …) revived interest in

“multiferroic” systems

Page 12: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

Recent Discoveries

• Frustrated magnetic systems.• The magnetic phases are complicated; incommensurate AF orders seem to be common.• Strong coupling between ferroelectricty and magnetism.

R=Tb, Dy, Mo

TbMnO3, Nature 426, 55, (2003); PRL 95, 087206 (2005).

RMn2O5, Nature 429, 392 (2004) (Tb);

PRL 96, 067601 (2006) (Y).

3 2 8Ni V O , Lawes et al., PRL 95 087205 (2005)

Page 13: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

13

*Can the ME be enhanced by the internal fields?

Require

of mag

coexistenc

netism and

e and strongly coupl

ferroelectricity (

ing

r )are

Multiferroicity:coexistence of magnetism and ferroelectricity with cross coupling

How to enhance the coupling?

Page 14: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

14

Geometric ferroelectrics: hexagonal RMnO3

BaNi(Mn,Co,Fe)F4For example:

YMnO3: A-type AF, lacking lone pairs,

bulking of MnO5 pyramids & displacement of Y polarization

Origin of ferroelectricity

van Aken et al., Nature Materials 3, 164, (2004)

Y

MnO5

Page 15: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

15

Site-centered charge order

• Electronic ferroelectrics:Combination of bond-centered and site-centered charge order

Efremov et al., Nature Materials 3, 853, (2004)

Bond-centered charge order

Ferroelectric intermediate state

O

TM

Page 16: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

16

• Magnetic ferroelectrics: (frustrated spin systems)

Dzyaloshinskii-Moriya interaction (=D . S1X S2)

spin current

“electromagnon” (spin waves excited by ac E fields)

• Geometric ferroelectrics: hexagonal RMnO3

BaNi(Mn, Co, Fe)F4

Origin of ferroelectricity

Sergienko and Dagotto, Phys. Rev. B 73, 094434 (2006)

Katsura, Nagaosa and Baltasky, Phys. Rev. Lett. 95, 057205 (2006)

• Electronic ferroelectrics:Combination of bond-centered and site-centered charge order

Efremov et al., Nature Materials 3, 853, (2004)

Pimenov et al. Nature Phys (2006)

Page 17: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

17

Nature, 426, 55 (2003)

TbMnO3

incommensurate AF order ME effect

Page 18: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

18

T=35 KT=15 K

TN=42 K

TC=27 K

TbMnO3

Kenzelmann et al., PRL 95, 087206 (2005)

IC sinusoidally modulated collinear magnetic order, inversion symmetric

IC noncollinear magnetic order, inversion symmetry broken

Page 19: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

19

• 3 transitions on cooling. • Magnetic field induces a sign reversal of the electric polarization.

TbMn2O5 Nature, 429, 392 (2004)

Page 20: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

20

Difficulty in microscopic measurement2

max 40 /P nC cm

4/ 10 is extremely sma

0.56 ,

ll

0.85 ,

!

0.73

a nm b nm c nm

L. C. Chapon et al. Phys. Rev. Lett. 93, 177402, 2004

Scattering amplitude accumulates microscopic effects and is macroscopic:

ii q rq i

i

f S S e

1210 r m

Page 21: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

21

Nature of the transition

N. Hur et al. Phys. Rev. Lett. 93, 107207, 2004

Page 22: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

22

Tb

O

Mn4+O6 octahedronq

P

• orthorhombic structure (a b c, = = = 90˚)

•AFM insulator (TN=42 K )magnetization in the ab plane

•AFM square lattice with asymmetrical next-nearest-neighbor interactions, i.e., geometrically frustrated

•Spontaneous polarization P // b

q P

Mn3+O5 pyramid

TbMn2O5

Tb3+ Mn4+ , Mn3+ O2-

Chapon et al, PRL (2004)

Blake et al, PRB (2005)

Page 23: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

23Blake et al., PRB (2005)

20°

ab planeab plane

6° 31°17°

TbMnTbMn22OO55

Mn4+O6Mn3+O5

Tb3+ O2-

The spins lie in the ab plane. Within the ab plane, two zigzag chains of AFM-coupled nearest-neighbor Mn4+ and Mn3+ run in a direction parallel to the a axis.

orthorhombic structure a=7.3233 Å, b=8.5205 Å c=5.6601 Å

Page 24: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

24

qx

qz

0 20 40 60Temperature (K)

0.25

0.30

0.50

0.55

Chapon et al, PRL (2004)

(½ 0 ¼) commensurateincommensurate

33

incommensurate

24 42

Neutron diffraction: complex spin structure AFM, TN= 42 K, q = (qx 0 qz)

Mechanism of ME effect ?

Page 25: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

25

qx

qz

0 20 40 60Temperature (K)

0.25

0.30

0.50

0.55

Chapon et al, PRL (2004)

(½ 0 ¼) commensurateincommensurate

33

incommensurate

24 42

Neutron diffraction: complex spin structure

Kobayashi et al, JPSJ(2004)

3724 42

AFM, TN= 42 Kmodulation vector q = (qx 0 qz)

Page 26: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

26

Issues: -What is the underlying mechanism of

thegigantic ME effect?

-Is a spiral-spin configuration necessary?

-Can collinear spins lead to a polarization?

Page 27: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

27

• Introduction

• Resonant soft x-ray scattering

• Ginzburg-Landau approach

Page 28: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

28

Elastic x-ray scattering

2

qfd

d

scattering form factor

k

'k

k'kq

momentum transfer

q

sin

4sin2 kq

2

A volume element at will contribute an amount to the scattering field with a phase factor .

r3d r

reqi

r)er( r df qi

q Fourier transform of charge distribution.

Bragg condition:q = modulation vector of charge, spin , or orbital order

r

rk r'k

' kk

elastic scattering

Fourier transform of spin distribution. r)er( r

dSS qiq

detectable?

Page 29: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

29

X-ray scatteringkkq '

drrrq

rqrnf i

2)sin(

)(4

k

'k

)(rni : electron density

charge scattering

EFe emagnetic-moment scattering

B)mFm (

32

e

m 10~~F

F

mc

6

e

mag 10~

Non-resonant X-ray magnetic scattering is very weak.

(for ~ 600 eV)

Page 30: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

30

Resonant X-ray magnetic scattering

1 lm electric dipole transitions

0ε ε • F1,1 F1,-1

• scattering amplitudes enhanced

)(ˆ)εε(8

31,11,10

* FFzif res

mag

Hannon et al., PRL(1988)

2p3/2

1 lm 1 lm

3d

2p1/2

(F1,±1 => Sq )

Page 31: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

31beamline4-m long elliptically polarized undulator

UHV, two-circlediffractometer

detector

Soft X-ray Scattering Set-up at NSRRC, Taiwan

H. J. Lin & C. T. Chen et al.

Page 32: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

32

Soft x-ray scattering of TbMn2O5

3d

2p3/2

Mn

cm

TbMn2O5 single crystal

h = 637.7 eVE bT = 30 K

) 0 ( 41

21q

'k

k

q )(0 σε

)(ε

[100]

[001]

[010]

Page 33: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

33(½ 0 ¼) commensurateincommensurate incommensurate

Coexistence of ICM and CM AF order

3d

2p3/2

Mn

640 eV

) 0 ( 41

21

zxq

Page 34: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

34

qx

qz

Kobayashi et al, JPSJ(2004)

CM

CM

3d

2p3/2

Mn

) 0 ( 41

21

zxq

qz = 1/4

IC

) 0 ( 41

21

Page 35: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

35

AF transitions closely resembles ferroelectric transitions

ICM AF order

ICM

CM

Page 36: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

36

'k

kq 001

100

010

2aqS

2bqS

Antiferromagnetism and ferroelectrics are strongly coupled.

Page 37: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

37

• Introduction

• Resonant soft x-ray scattering

• Ginzburg-Landau approach

Page 38: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

38

Magnetoelectric Effect (ME)

0 Si ij j iji iM E EM

*Induction of M by E, induction of P by H

0 Si ij j iji jP E HP

*Can the ME be enhanced by the internal fields?

Page 39: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

39

Symmetry consideration

time reversal, -t t

q qM M S PS P

Two important symmetries:

inversion, -r r

q qS S PM M P

Page 40: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

40

Symmetry properties

1;

i iiq r iq r

q i i qi q

S S e S S eN

* *

iiq rq

q

Si Si real S e

*

q qS S

*1[ ]

iiq rq i q q

i

I S S e S SN

*Inversion invar ant: i

q qS S

Page 41: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

41

Inversion symmetry broken in magnetic phases

3 2 8Ni V O

4BaMnF3TbMnO

Page 42: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

42Blake et al., PRB (2005)

20°

ab planeab plane

6° 31°17°

TbMnTbMn22OO55

Mn4+O6Mn3+O5

Tb3+ O2-

The spins lie in the ab plane. Within the ab plane, two zigzag chains of AFM-coupled nearest-neighbor Mn4+ and Mn3+ run in a direction parallel to the a axis.

a

b

c

a

d

a

b

c

d d

c

b

Page 43: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

43

( ) ( )

i ii q r i q ri q qS S e S e

Inversion symmetric magnetic phase

Common phase can be removed

by choosing the correct center

(2 ,2 ,2 ) cos( ) x y zq q q iS S S q r

0 / 2 q

Page 44: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

44

Inversion Symmetry versus collinearity

*

i iiq r iq ri q qS S e S e

*collinear =0

q qS S

( ) ( )* ] [

i i i iiq r r iq r ri j q qS S S S e e

*Inversion symmetric [: ]

q q qS I S S

*collinear (inversion symmetri c)

q qS S

Page 45: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

45

Inversion symmetric broken - spiral

Example of non-common phases

ˆ ˆcos( ) sin( )

x yi q qS S qx x S qx y

xy

*

q qS S

ˆ ˆ ˆ ˆ=

2 2

x y x yq q q qiqx iqxS x iS y S x iS y

e e

Page 46: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

46

Other spirals

ˆ ˆcos( ) sin( )

x yi q qS S qz x S qz y

z

Page 47: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

47

2 (3 ) ˆ( 2 )

iqa iqa iq naq

n

S e e e s

Inversion symmetric broken - collinear

s

*

q qS S

a

Page 48: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

48

Coupling to polarization

Inversion Symmetry in Magnetic Phase

Odd orders of P involved:

Inversion symmetry is broken

Even orders of P involved:Inversion symmetry is not broken

2[ ,..other parameter]

qS P aP bP0( )O P

Uniform M( , )Neel order on sqaure l e: attic

Examples S

Page 49: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

49

Magnetic induced polarization with inversion symmetry broken

Lowest order -- the existence of internal fields

2 20/ 2 ( ) ( )

in q q q qF P J q S S u S SE P

0 e inPF

PE

( ) 2 ( )0

q

inq q q q

q

EJ q S u S

SSS

FS P

Page 50: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

50

Symmetry Constraints

magnetic:

q qq S S

ˆ ( , , or ˆ( ) )

in q q q q q qu S S SS q SE S

under inversion

in inE E

ˆlattice: a b c

eventime num reversa ber ofl:

qShomogeneous: an -d

q q

Page 51: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

51

2 / 2

e inEF P P

0 e inPF

PE

ˆ , ( )

q q q q q qq q

P i S S i u S S

q ˆor ( )

q qS S q

sinq q q q

not consistent with expts.

Page 52: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

52

Electric Polarization Change and Reversal

ˆ ( )

q qP i u S S

ˆ (1,0,0)Take u a

( , ,0)

a bq q qS S S

ˆ| || |- ( * sin )* ˆ) (

a bq q a

a b a bq q q q bbP i S S SS S S b

Strong magnetic field along a or b axis:

/ / - !

a b a bq q PS PS

Page 53: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

53

Nature 429, 392, 2004

Consistent with our result but why it does not happen for b-axis?Possibility: a-axis is an easy axis, and it is very hard to reverse Sb

P must be odd in Sa!

Page 54: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

54

qThe dependence of is weak.q

Direct comparison with expt

commensurate+incommensurateincommensu

rate

incommensurate

Page 55: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

55

Nature of the transition

0

q qS S

0

q qS S

collinear orNoncollinear and Inversion-symmetry broken Inversion-symmetric

Page 56: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

56

Nature of the transition

N. Hur et al. Phys. Rev. Lett. 93, 107207, 2004

Page 57: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

57

Effect of External Fields - the dielectric constant

Nature 429, 392, 2004

ˆ|| , expect only b-axis is soft

P b

1 4 e eP E D E

Page 58: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

58

2( ) ( )ine

PF P E O P

P P P

22 *

2( )2 q

eq q

PO P F E S SP J

magneto-elastic coupling

position of the intermediate atomir

Possible origin: ( , )ij i i jJ R r S S

Expansion of Free Energy

Page 59: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

59

2

1 2( ) ( )2q

PJ g q E P g q

Change of exchange energy

0 Re

FP E

P

*1

*2

1 ( )

1 ( )

e q qRe

e q q

g q S S

g q S S

Page 60: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

60

Dielectric Anomaly

1 2( ) 0, ( ) 0c cg q g q

(Lawes et al., RPL 25, 257208, 2003)

*2

1

1 ( )e

q

R

e qg q S S

Small step

2*

1

1 ( )R

qe q

eg Sq S

Page 61: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

61

Large Step at IC transition

1 2( ) 0, ( ) 0IC ICg q g q

*

2

*11

1

)

(

(

)

q qeRe

e q qg q S S

g q S S

Page 62: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

62

0 0( , ) 0 determines ( )J q T q T

Higher orders may also

*0 ( , )

q qF J q T S S

Wavenumber change of IC moments

* Lock-in transition ( with 2)

nm q qS S nqF G

0 ( )

nc c q qT T S S

* Change of q ( , )( )( )

m c Q Q q qF J q Q S S S S

0 1 2( . . cos cos 2 ) e g J dkT J q J q

0help in selecting q

0 ( , )( )

c Q QJ J J q Q S S

Page 63: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

63

Connection with Microscopic Theories

Sergienko and Dagotto, Phys. Rev. B 73, 094434 (2006)

Dzyaloshinskii-Moriya interaction with atomic displacement

ˆ ˆ and take q u x

xexpt: y z

*ˆ ( ) | || | sin ˆ( )

x zq q q q q q x zi u S S S SP z

Page 64: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

64

Katsura, Nagaosa and Baltasky, Phys. Rev. Lett. 95, 057205 (2006)

Theory of Katsura, Nagaosa and Baltasky

1. Polarization without atomic displacement

Efremov et al., Nature Materials 3, 853, 2004

2.

Page 65: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

65

How to induce polarization without involving atomic displacement?

Essential Physics: Motion of magnetic moments induces electric dipoles! – the intrinsic Aharonov-Casher Effect

02

Lorentz contraction (1 / )

x

dld

c

-

+

2

P

c

Page 66: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

66

( )ij s ij i jij

P e j e S S

*ˆ(sin ) ( )x q qq

P i q a S S

(1,0,0f )I e a

sinq xq

Katsura, Nagaosa and Baltasky : Motion of magnetic moments= spin current

Page 67: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

67

Aharonov-Casher Effect in condensed matter (Meier and Loss, PRL 90, 167204,2003)

2

ij iji i

i j i jij

JH S S e S S e

= phase that the magnetic dipole ˆ experience s- bij g z

2ˆ( ) /

j

i

rb

n ir i n

gdr E z B

cdt EB c

is generated!

HPE

Page 68: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

68

2

i j i j i jij

JH S S S S D S S

if 2

ˆij ij

iji

i

j iij

i

jS S SJ

e S D Dze

ˆˆ ˆ( ) j

i

r

ij ijrdr E z e z E

zziijj

Sj

t

( )ij ij

i j

i izi i

ijj jj i S eS Se

HS

ˆˆ( )ij zi ijj ij

ijs

H HP j P ez e

E Ej

Page 69: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

69

Conclusion

Page 70: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

70

Conclusion

For magnetic phases with inversion symmetry broken

Consistent well with our expts on TbMn2O5TbMn2O5

ˆ ( )

in q q qE i u S S*Response to the internal field:

ˆ ( )

q q qP i u S S

sumarized in the dieletric constant *Response to the external electric field:

Consistent with magneto-elastic effect on exchange energy

Page 71: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

71

Induction of magnetization by an electric field; induction of polarization by a magnetic field.- first presumed to exist by Pierre Curie in 1894 on the

basis of symmetry considerations

Magnetoelectric effect

0 Si ij j iji iM E EM

0 Si ij j iji jP E HP

0 0 0

1 1

2 2

S Si i i i ij i j ij i j

ij i jE H

F F P E M H E E H H

&

i i

i i

F FP M

E H

M. Fiebig, J. Phys. D: Appl. Phys 38, R123 (2005)

Page 72: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

72

Old Examples

Ferromagnetic, ferroelectric, and ferroelastic at Tc=61.5K

3 7 13 boracite (Ni B O I)Ni I

[Ascher et al., J. Appl. Phys. 37, 1404 (1966)]

Page 73: Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach

73

Antiferromagnetic (spiral) & ferroelectric at Tc=28K

2 4Cr BeO

[Newnham et al., J. Appl. Phys. 49, 6088 (1979)]

4BaMF , M=Mg, Mn, Fe, Co, Ni, Zn

[Fox et al., Phys. Rev. B 21, 2926 (1980)]

Ferroelastic at high temperature but Antiferromagnetic at Tc=25-70K