sync sram1 tr

Upload: chethan-jayasimha

Post on 03-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Sync Sram1 tr

    1/50

    S nchronousSRAMs

  • 8/12/2019 Sync Sram1 tr

    2/50

    What is an Synchronous SRAM?

    Async SRAM

    Control

    Data In/OutReg

    Clock

    15

  • 8/12/2019 Sync Sram1 tr

    3/50

    Register

    A Register is an element which is capable of storing binary data.

    A clock is a stream of ositive and ne ative ulses occurrin at re ular intervals.

    Positive pulse is always preceded or succeeded by a negative pulse.

    A register can be activated only at the edges of the clock.Rising Falling

    Clock

    pulse Negative

    pulse

    e ge e ge

    Re ister

    Data In Data Out

    Data Inclock

    Data Out

    A combinatorial signal doesnt pass through registersA combinatorial signal doesnt pass through registers.

    A combinatorial logic responds to any change in the inputsA combinatorial logic responds to any change in the inputs.It is notIt is not

    controlled b a clock.controlled b a clock.

    16

  • 8/12/2019 Sync Sram1 tr

    4/50

    S nc. SRAM OverviewSync SRAM

    FT

    .

    QDR

    B2

    DDR

    B2FT

    ,

    ZBT

    PL(DCD)

    PL(SCD)

    B4

    QDR-II &+

    B4

    DDR-II &+

    PL(DCD)

    QDR-II

    & II+B4

    DDR-II

    &II+ B4

    -II&II+

    SIO (B2)

    17

  • 8/12/2019 Sync Sram1 tr

    5/50

    Sync. SRAM Overview

    Each Family has numerous options as well:

    1 Mb 72 Mb X18, X36 (X8, X9, X32, X72)

    400MHz,300MHz,250MHz, 167MHz, etc.

    Timing Options-> eg Read Latency . , , .

    Burst Options Interleaved, Linear,Burst 2,Burst4

    ore o tage 3.3V, 2.5V, 1.8V

    I/O Volta e

    18

    LVTTL: 3.3V, 2.5V, 1.8V,1.5V

    HSTL, Variable impedance

  • 8/12/2019 Sync Sram1 tr

    6/50

    Sync. SRAM Overview

    Each Family has even more options:

    Packages

    100 TQFP, 165 fBGA, 119 BGA, 209 BGA

    Tem erature Ran es Commercial, Industrial,Automotive

    Chip Enables Address Locations

    JTAG ,

    Names NoBL = ZBT = NtRAM = ZBL = ZERO SB = Etc.

    19

    ,

  • 8/12/2019 Sync Sram1 tr

    7/50

    Sync SRAM Family

    Sync SRAMsSync SRAMs

    Standard SyncStandard Sync NoBLNoBL QDR/QDRII/QDRII+QDR/QDRII/QDRII+ DDR/DDRII/DDRII+DDR/DDRII/DDRII+

    Standard Sync SRAMsStandard Sync SRAMs NoBL SRAMsNoBL SRAMs

    QDR /QDR II/QDRII+QDR /QDR II/QDRII+

    DDR /DDR II/DDRII+DDR /DDR II/DDRII+

    20

  • 8/12/2019 Sync Sram1 tr

    8/50

    Standard Sync SRAM

    Sync SRAMs

    Standard Sync NoBL QDR/QDRII/QDRII+QDR/QDRII/QDRII+ DDR/DDRII/DDRII+DDR/DDRII/DDRII+

    Flowthrough Pipelined

    SCD DCD

    21

  • 8/12/2019 Sync Sram1 tr

    9/50

    Synchronous SRAM

    Standard Sync SRAMStandard Sync SRAM

    Common I/OCommon I/O

    Offered in both Pi eline and Flowthrou hOffered in both Pi eline and Flowthrou h

    Single cycle deselectSingle cycle deselect SCDSCD ( Flowthrough and Pipeline)( Flowthrough and Pipeline)

    Double Cycle DeselectDouble Cycle Deselect DCDDCD ( Pipeline Only!)( Pipeline Only!)Best for either dominated ReadsBest for either dominated Reads ororWritesWrites

    22

  • 8/12/2019 Sync Sram1 tr

    10/50

    Flowthrough Timing Diagram A

    dd.Deco

    Write

    Reg.

    Address

    I/OMemory

    Core

    e

    Logic

    Control

    Flowthrough SRAM = Sync SRAM with only a register on I/P

    Clk

    Clock

    ress

    WE#

    23

    OUT1 IN2Data

  • 8/12/2019 Sync Sram1 tr

    11/50

    Pipelined Timing Diagram

    Address

    Add.Decod

    Write

    Reg.

    Out

    Control I/OCore

    e

    Logic

    putReg.

    Read Write

    Pipelined SRAM = Flowthrough SRAM + Output register

    Clock

    R1 W3Address

    WE#

    24

    OUT1 IN3Data

    Data is pushed out one cycle due to theoutput register

  • 8/12/2019 Sync Sram1 tr

    12/50

    SCD v/s DCD

    SCDSCD SingleSingle--Cycle DeselectCycle Deselect One clock cycle until chip deselectsOne clock cycle until chip deselects Available in Pi elined and Flowthrou hAvailable in Pi elined and Flowthrou h

    DCDDCD DoubleDouble--Cycle DeselectCycle Deselect Two clock cycles until chip deselectsTwo clock cycles until chip deselects Available in Pipelined onlyAvailable in Pipelined only

    ClockClock

    CE#CE#

    p ese ec ep ese ec e

    I/O Disabled within one clock

    OUT1 OUT2 OUT3SCD Data

    25

    DCD Data OUT1 OUT2 OUT3 OUT4

    I/O Disabled within two clockcycle after deselect

  • 8/12/2019 Sync Sram1 tr

    13/50

    Flowthrough vs. Pipeline

    Pipeline operates at higher frequency than FlowthroughPipeline operates at higher frequency than Flowthrough

    Flowthrou h is used where the initial latenc is a criticalFlowthrou h is used where the initial latenc is a critical

    issue and a Pipeline SRAM is used where the speed is aissue and a Pipeline SRAM is used where the speed is acritical issue.critical issue.

    r e opera ons can a e a s ng e c oc cyc e o comp e er e opera ons can a e a s ng e c oc cyc e o comp e e

    for both Flowthrough and Pipeline.for both Flowthrough and Pipeline.

    Read operations take 2 clock cycles in flowthrough and 3Read operations take 2 clock cycles in flowthrough and 3clock cycles in Pipeline.clock cycles in Pipeline.

    In networking applications where read/write is balancedIn networking applications where read/write is balanced

    ,,as efficient.as efficient.

    26

  • 8/12/2019 Sync Sram1 tr

    14/50

    NoBL SRAMs

    Sync SRAMs

    Std Sync NoBL QDR/QDRII/QDRII+QDR/QDRII/QDRII+ DDR/DDRII/DDRII+DDR/DDRII/DDRII+

    Pipelined Flowthough

    No Bus Latency (NoBLNo Bus Latency (NoBLTMTM))

    No dead cycles between reads and writesNo dead cycles between reads and writes

    pt m ze or rea s an wr tespt m ze or rea s an wr tes

    Best for Networking ApplicationsBest for Networking Applications

    27

    Offered in both Pipelined and Flowthrough modesOffered in both Pipelined and Flowthrough modes

  • 8/12/2019 Sync Sram1 tr

    15/50

    NoBL SRAMs

    Read BWrite A

    Now a write is possible here

    Write C

    No Operation. (Dead Cycles!)

    Standard Pipelined SRAM

    Clock

    Data I O A B C

    Write A Read B Write C Read Write

    NoBL Pipelined SRAM = Read and Write on Every Cycle!

    Data I/O A B C

    28

  • 8/12/2019 Sync Sram1 tr

    16/50

    What is NOBL ?

    NoBL SRAMs = Stand Sync SRAMs(FL or PL) + NoBL logicNoBL SRAMs = Stand Sync SRAMs(FL or PL) + NoBL logic

    Add.De

    WriteReg.

    /OE

    Address

    Add.Dec

    WriteReg.

    /OE

    I/OMemory

    Core

    code

    No

    Log Control

    I/O

    Memory

    Core

    ode

    NoB

    Logi

    utputReg.

    Clk

    Lic

    Clk

    Flow Through oPipeline

    29

  • 8/12/2019 Sync Sram1 tr

    17/50

    Flowthrough NoBL Operation

    No Dead Cycles between Reads and WritesNo Dead Cycles between Reads and Writes

    ClockClockWriteWrite Read Read WriteWrite WriteWriteReadRead

    /WE/WE

    CECE

    AddressAddress AA BB CC DD EE

    F/T Data I/OF/T Data I/O AA BB CC DD

    Data inData in Data outData out Data inData in Data outData out

    30

  • 8/12/2019 Sync Sram1 tr

    18/50

    Pipelined NoBL Operation

    ClockClockWriteWrite ReaRea r ter te r ter teReadRead

    /CE/CE

    AddressAddress AA BB CC DD EE

    Data inData in

    AA BB CC DD

    Data outData out Data inData in

    P/L Data I/OP/L Data I/O

    31

  • 8/12/2019 Sync Sram1 tr

    19/50

    Standard Sync Vs NoBL

    STANDARD SYNCSTANDARD SYNC NOBL

    MOST EFFECTIVE FOR BURSTMOST EFFECTIVE FOR BURST

    READS OR WRITES FOR L2 CACHEREADS OR WRITES FOR L2 CACHE

    IDEAL FOR NETWORK APPLICATIONSIDEAL FOR NETWORK APPLICATIONS

    IDEAL FOR READ/WRITE RATIO OF 1IDEAL FOR READ/WRITE RATIO OF 1

    IDEAL FOR DOMINANT READ ORIDEAL FOR DOMINANT READ OR

    WRITEWRITE

    LATENCY OCCURS WHENLATENCY OCCURS WHEN

    ENABLES FASTER MEMORYENABLES FASTER MEMORY

    PERFORMANCEPERFORMANCE -- ELIMINATES THEELIMINATES THE

    LATENCY CYCLELATENCY CYCLE

    APPLICATIONSAPPLICATIONS

    32

  • 8/12/2019 Sync Sram1 tr

    20/50

    QDRSync SRAMsSync SRAMs

    Std SyncStd Sync NoBLNoBL QDR/QDRII/QDRII+QDR/QDRII/QDRII+ DDR/DDRII/DDRII+DDR/DDRII/DDRII+

    QDR IQDR I QDR II/II+QDR II/II+

    QDR = Quad Data RateQDR = Quad Data Rate

    Optimum for balanced Read/ Write ApplicationsOptimum for balanced Read/ Write Applications

    ==

    Double Data Rate on Separate Ports = 4X BandwidthDouble Data Rate on Separate Ports = 4X Bandwidth

    HSTL(High Speed Transceiver Logic) I/O LevelsHSTL(High Speed Transceiver Logic) I/O Levels

    33

    Programmable output Impedance using ZQ pinProgrammable output Impedance using ZQ pin

  • 8/12/2019 Sync Sram1 tr

    21/50

    QDRI Burst of 2BLOCK DIAGRAM

    2 Word Burst QDR SRAM2 Word Burst QDR SRAM

    Separate Read and Write control signalsSeparate Read and Write control signals

    Vref signal due to HSTL I/OVref signal due to HSTL I/O

    34

  • 8/12/2019 Sync Sram1 tr

    22/50

    QDRI Burst of 2Read Operation

    ReadRead Read Read Read Read

    K

    /K

    /RPS

    A BAdd. C D E GF H

    Data Out Q(A) Q(A)+1 Q(C) Q(C)+1

    C

    Q(E)

    35

    /C

  • 8/12/2019 Sync Sram1 tr

    23/50

    QDRI Burst of 2Write Operation

    WriteWrite

    Address BAddress B

    WriteWrite

    Address DAddress D

    WriteWrite

    Address FAddress F

    K

    /K

    /RPS

    BAdd.

    Data In D(B) D(B)+1 D(D) D(D)+1 D(F) D(F)+1

    D F

    D(H) D(H)+1

    H

    C

    36

    /C

  • 8/12/2019 Sync Sram1 tr

    24/50

    QDRI Burst of 4

    BLOCK DIAGRAM4 Word Burst QDR SRAM4 Word Burst QDR SRAMBurst of 2 and 4 are two different partsBurst of 2 and 4 are two different parts

    37

    Data Flows in one directionData Flows in one direction

  • 8/12/2019 Sync Sram1 tr

    25/50

    QDRI Burst of 4

    Read O erationReadRead Read Read

    K

    /K

    /RPS

    AAdd. B C D

    Data Out

    C

    Q(A) Q(A)+1 Q(A)+2 Q(A)+3 Q(C)

    38

    /C

  • 8/12/2019 Sync Sram1 tr

    26/50

    QDRI Burst of 4

    Write O erationWriteWrite

    Address BAddress B

    K

    /K

    /RPS

    AAdd.

    Data In

    B C D

    D(B) D(B)+1 D(B)+2 D(B)+3

    C

    39

    /C

  • 8/12/2019 Sync Sram1 tr

    27/50

    QDR Advantages

    4x Network Performance

    FeaturesFeatures BenefitsBenefits

    * Simultaneous Accesses* Simultaneous Accesses * Improved* Improved~~

    * DDR Interface on Both Ports* DDR Interface on Both Ports * Improved* ImprovedBandwidth(~2x)Bandwidth(~2x)

    * Pipeline Output* Pipeline Output * Low Initial Latency* Low Init ial Latency

    * Se arate In ut/Out ut Ports* Se arate In ut/Out ut Ports * No Bus* No Bus

    40

    ContentionContention

    * 165 FBGA Package* 165 FBGA Package * Reduced Board Area* Reduced Board Area

  • 8/12/2019 Sync Sram1 tr

    28/50

    QDR to QDR-II Transition

    Address

    D

    /RPS

    /WPS CQ

    /BWSCQb

    K Kb C Cb

    ene sene s

    Provides Echo Clock

    Allows higher speed operationDoff

    41

  • 8/12/2019 Sync Sram1 tr

    29/50

    QDR-II Features

    QDR II Purpose:QDR II Purpose:

    QDRQDR--II Has Internal DLL (Delay Lock Loop)II Has Internal DLL (Delay Lock Loop)-- ,,

    Source Synchronous Clocks (Echo Clock) AddedSource Synchronous Clocks (Echo Clock) Added Echo Clock OutputsEcho Clock Outputs FromFrom SRAMSRAM

    Guaranteed Relationshi to Valid DataGuaranteed Relationshi to Valid Data

    Additional 1/2 Clock of LatencyAdditional 1/2 Clock of Latency

    42

  • 8/12/2019 Sync Sram1 tr

    30/50

    QDR-II Block Diagram

    43

    Data Flows in one directionData Flows in one direction

    QDRII B t f 2

  • 8/12/2019 Sync Sram1 tr

    31/50

    QDRII Burst of 2Operation

    Read/Write Access

    ReadRead Read Read Read ReadWriteWrite WriteWrite WriteWrite

    K

    /K

    /RPS

    Address A C EDB F G

    DataIn (D)

    DataOut (Q)

    D(B) D(B+1) D(D) D(D+1) D(F) D(F+1) D(G) D(G+1)

    Q(A) Q(A+1) Q(C) Q(C+1) Q(E) Q(E+1)

    /C

    44

    Extra cycle of latency

  • 8/12/2019 Sync Sram1 tr

    32/50

    QDRII Burst of 4

    O eration Read/Write Access

    K

    /K

    eaea eaear er e r er e

    /WPS

    /RPS

    Address

    DataIn (D)

    A B C D

    D(B) D(B+1) D(B+2) D(B+3) D(D) D(D+1) D(D+2) D(D+3)

    C

    /C

    45

  • 8/12/2019 Sync Sram1 tr

    33/50

    QDR-II Advantages

    The 2nd Generation

    * 300Mhz Fmax* 300Mhz Fmax * Hi her Bandwidth* Hi her Bandwidth

    * 1.5 Clock cycle Pipeline* 1.5 Clock cycle Pipeline * Low Initial Latency* Low Initial Latency

    * 18Mb / 36Mb / 72Mb* 18Mb / 36Mb / 72Mb * Hi her Densit* Hi her Densit

    * Echo clocks* Echo clocks * Source* Source--Sync. Output DataSync. Output Data

    ** **

    * 1.8V Power Supply* 1.8V Power Supply * Lower Power * Lower Power

    ** **

    46

    QDR QDR II

  • 8/12/2019 Sync Sram1 tr

    34/50

    QDR vs QDR-IISummary of Differences

    QDR QDR-II

    Maximum Frequency

    Burst of 2: 167MHz

    Burst of 4: 200 MHz

    Burst of 2: 167 MHz

    Burst of 4: 300 MHz

    Fre uenc Minimum

    (DLL Constraint) z

    Data Valid Window 1.4ns @ 167MHz

    1.9ns @ 167MHz

    1.4ns 250MHz

    Initial Latency 1 clock cycles* 1.5 clock cycles*

    Echo Clocks No echo clocks Echo clocks

    Density 9Mb / 18Mb / 36Mb 18Mb / 36Mb / 72Mb+

    Power Supply 2.5V 1.8V

    47

    * By adding an clock cycle of latency to QDR-II, the access time is reduced to 0.45ns from QDRs 2.5 ns.

  • 8/12/2019 Sync Sram1 tr

    35/50

    DDR

    Std Sync NoBL QDR/QDRII/QDRII+QDR/QDRII/QDRII+ DDR/DDRII/DDRII+DDR/DDRII/DDRII+

    DDR I DDR II/II+ DDR II/II+ SIO

    DDR = Double Data RateDDR = Double Data Rate

    Optimized for Dominant Reads OR WritesOptimized for Dominant Reads OR Writes

    Double Data Rate InterfaceDouble Data Rate Interface

    Commonly referred to as Networking DDR and DDRCommonly referred to as Networking DDR and DDR--IIIIData transferred on both edges of the clockData transferred on both edges of the clock

    48

    wo an our or urs ev ceswo an our or urs ev ces

  • 8/12/2019 Sync Sram1 tr

    36/50

    QDR vs. DDR

    Address

    DQ

    BW

    RPSWPS

    DDR Characterist ics

    Double Data RateCommon I/O

    K Kb C Cb

    QDR Characteristics

    Address

    D/QDDR

    Double Data RateSimultaneous R/W Access

    possible

    Separate Input and Output ports

    BW

    R/W

    49

    K Kb C Cb

  • 8/12/2019 Sync Sram1 tr

    37/50

    DDR Block Diagram

    Address/

    Input Data

    Address Decode /

    Control Logic

    Memory Arrayegister

    Output Data

    egister

    NOP No Opp Cycle to

    Clock

    R

    Clock

    WriteRead

    prevent bus contention

    R1

    OUT1

    W2

    OUT2 OUT3

    Address

    DataOUT4 IN1

    50

  • 8/12/2019 Sync Sram1 tr

    38/50

    DDR II

    Changes from DDR

    Internal DLL Higher clock frequency

    Latency increased by half a cycle Increase Data Valid Window

    Clock

    WriteRead

    R1

    OUT1

    W2

    OUT2

    Address

    DataIN1

    51

    by half cycle

  • 8/12/2019 Sync Sram1 tr

    39/50

    DDR-II Block Diagram

    Input Data

    Address/

    Control

    ress eco e

    Control Logic

    gister

    Memory Array ster Output Data

    Re

    Reg

    Input Clock

    Output Clock

    52

    DDR & DDR II

  • 8/12/2019 Sync Sram1 tr

    40/50

    DDR & DDR-II

    2 Reads OR 2 Writes / Clock Cycle = DDR & DDR-II

    I/O Bus is the Only Major Difference From QDR & QDR-II

    Feature Benefit

    Bandwidth

    DDR Interfaces Higher Mb/s

    DDR: 200MHz Hi her Mb/s- : z

    Package Pin/Ball Shared I/O bus

    (DDR & DDR-II CIO)Reduces ball count

    Bus ContentionSplit I/O buses

    (DDR-II SIO)

    Eliminates bus

    contention

    53

    z

    clock cycle

    relative to QDR

  • 8/12/2019 Sync Sram1 tr

    41/50

    DDR II SIO

    Address/

    Control

    ress eco e

    Control Logic

    gister

    Memory Array ister Output Data

    Input Data

    Re

    Reg

    Input Clock

    54

  • 8/12/2019 Sync Sram1 tr

    42/50

    DDR II SIO

    DDR-Separate I/O (SIO)

    Separate Input and Output Buses

    n y ne pera on er oc

    Can Not Perform Data Forwarding FeatureEliminates Bus Contention

    Two Word Burst Only

    WriteRead

    R1 W2Address

    OUT1

    IN2

    Port

    OUT2Read

    Data

    55

    QDR & DDR SRAM

  • 8/12/2019 Sync Sram1 tr

    43/50

    QDR & DDR SRAM

    Architectures QDRQDRTMTM // QDRIIQDRIITMTM Separate Input and Output BusesSeparate Input and Output Buses

    4X Increase in Bandwidth From NoBL4X Increase in Bandwidth From NoBL

    TMTM

    TMTM TMTM Single I/O BusSingle I/O Bus

    Double Data Rate InterfaceDouble Data Rate Interface

    2X Increase in Bandwidth Reduces ASIC/FPGA Pin Count2X Increase in Bandwidth Reduces ASIC/FPGA Pin Count

    DDRII Separate I/ODDRII Separate I/O O erates like a DRIIO erates like a DRII--burst of 2 device with access on onlburst of 2 device with access on onl

    one port per clock cycleone port per clock cycle Separate Input and Output BusesSeparate Input and Output Buses

    Double Data Rate Interface on Both BusesDouble Data Rate Interface on Both Buses

    56

    2X Increase in Bandwidth From NoBL2X Increase in Bandwidth From NoBLTMTM

  • 8/12/2019 Sync Sram1 tr

    44/50

    QDR - DDR Summary

    QDR and QDRII are optimized for systems with BalancedQDR and QDRII are optimized for systems with Balanced

    READ and WRITE operationsREAD and WRITE operations

    Packet memoryPacket memory

    Linked-list

    oo up a e

    Statistics Storage

    DDR and DDRII are optimized for data streaming operationsDDR and DDRII are optimized for data streaming operationsor READ/WRITE unbalanced systemsor READ/WRITE unbalanced systems

    L2 CacheL2 Cache

    Micro rocessor network rocessor DSP memorMicro rocessor network rocessor DSP memor

    DDR Separate I/O optimized for 1 address/clock 2-word burstDDR Separate I/O optimized for 1 address/clock 2-word burstsystemssystems

    57

    n m ze us a ency, max m ze requencyn m ze us a ency, max m ze requency

  • 8/12/2019 Sync Sram1 tr

    45/50

    QDRII+/DDRII+ Overview

    What is it?

    Latest QDR Consortium Defined QDR SRAM

    Why do you care?

    Frequency Support up to 500MHz

    Sim lif Board Desi n

    What are the Main Differences to QDRII?

    Read Latency of 2.0 Offered for Latency Critical Applications

    ea a ency o . ere or requency r ca pp ca ons

    Data Valid Pin

    What Densities? Speeds?

    18M, 36M, 72M, 144M Maximum CY Frequency

    Technology 2.0 Cycle Latency 2.5 Cycle Latency

    58

    90-nm 375MHz 400MHz

    65-nm 400MHz 500MHz

  • 8/12/2019 Sync Sram1 tr

    46/50

    QDRII+/DDRII+ Overview

    QDRII+/DDRII+ Differences to QDRII/DDRII

    QDR II / DDRII QDRII+ / DDRII+ Remark

    Frequency (DLL ON) 119MHz~333MHz 300MHz~500MHz

    Organization x8, x9, x18, x36 x9, x18, x36

    VDD 1.8V +/-0.1V 1.8V +/-0.1VVDDQ 1.8V+/-0.1V or 1.5V+/-0.1V 1.5V +/-0.1V

    Read Latency 1.5 clocks 2.0 & 2.5 clocks QDRII+ read latency is not user

    .

    devices.

    Input Clocks Single Ended (K,K#) Single Ended (K,K#)

    Output Clocks(C,C#) Yes No

    A0 DDR B2 Yes No

    Echo Clock Number 1 Pair 1 Pair Echo Clocks are Single Ended.

    PKG 165 ball FBGA 165 ball FBGA

    Individual Byte Write

    (BWa#,BWb#)

    Yes Yes

    QVLD No Yes Edge Aligned with Echo Clocks

    59

    Guide to Support QDRII/DDRII &

  • 8/12/2019 Sync Sram1 tr

    47/50

    Guide to Support QDRII/DDRII &QDRII+/DDRII+

    QDR & DDR Pinout

    P6 Design to use as C Clock or QVLD

    es gn o use as oc or o onnec

    DDR B2 Specific Pinout Design Controller to Always Start the Access/Burst with A0 = 0

    A0 Becomes a No Connect with DDRII+

    I/O Voltage

    Use 1.5V HSTL I/OHost Design

    Design to Support 1.5, 2.0 and 2.5 Cycles for Read Latencies

    Write Latency Remains 1.0 Cycle for QDRII & QDRII+

    Recommend to use Echo Clocks to Latch Read Data

    Board Design

    Design to Take Advantage of QValid Output

    60

    Analyze Timing up to 400MHz

    QDRII ( 18) Pi t Diff

  • 8/12/2019 Sync Sram1 tr

    48/50

    QDRII+ (x18) Pinout Differences

    QDRII - B4

    QDRII+ - B4

    61

    DDRII ( 18) Pi t Diff

  • 8/12/2019 Sync Sram1 tr

    49/50

    DDRII+ (x18) Pinout Differences

    DDRII - B2

    DDRII+ - B2

    62

    Architecture Comparison

  • 8/12/2019 Sync Sram1 tr

    50/50

    p

    Parameter Std. Sync NoBLTM,DDR / DDR-

    II/DDRII+

    QDRTM / QDRTM-II/

    QDRTM-II+

    ata ate ng e ng e ou e ou e

    Data Bus Common I/O Common I/O Common I/O* &Separate I/O**

    Separate I/O

    Data Bus

    Utilization

    NOP between

    reads & writes100%***

    reads* / 50% of

    Separate I/Os**

    100% reading &

    100% writing

    VDD 3.3V / 2.5V 3.3V / 2.5V 2.5V / 1.8V 2.5V / 1.8V

    VDDQLVTTL

    3.3V / 2.5V

    LVTTL

    3.3V / 2.5V / 1.8V

    HSTL

    (1.5V / 1.8V)

    HSTL

    (1.5V / 1.8V)

    Clock

    Fre uenc250 MHz 250 MHz

    200 MHz /

    300 MHz/400MHz

    200 MHz /

    300 MHz/400MHz

    * DDR & DDR-II CIO have a common bus and require 1-2 NOP(s) between reads and writes.

    ** DDR-II SIO has separate input and output buses. Because only one bus can be used at a time, bus

    utilization is exactl 50%.

    63

    *** Applies to clock frequency < 166 MHz. Clock frequencies above this typically requires an NOP.