t. laevastu and f. fukahara - espis.boem.gov

58
OIL ON THE BOTTOM OF THE SEA A SIMULATION STUDY OF OIL SEDIMENTATION AND ITS EFFECTS ON THE BRISTOL BAY ECOSYSTEM by T. Laevastu and F. Fukahara Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 643 January 1985 395

Upload: others

Post on 18-Mar-2022

0 views

Category:

Documents


0 download

TRANSCRIPT

O I L O N T H E BOTTOM O F T H E S E A

A S I M U L A T I O N S T U D Y O F

OIL SEDIMENTATION AND ITS

E F F E C T S O N T H E B R I S T O L B A Y E C O S Y S T E M

b y

T . L a e v a s t u a n d F . F u k a h a r a

F i n a l R e p o r tO u t e r C o n t i n e n t a l S h e l f E n v i r o n m e n t a l A s s e s s m e n t P r o g r a m

R e s e a r c h U n i t 6 4 3

J a n u a r y 1 9 8 5

395

This report is from a series of processed reports andprogram documentation produced by the Northwest andAlaska Fisheries Center, National Marine FisheriesService, NOAA, in Seattle, Washington, and isindividually available as P r o c e s s e d R e p o r t . 8 5 - 0 1 f r o mthat s o u r c e .

This study was funded by Minerals Management Servicethrough an interagency agreement with NOAA.

396

CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 .1 Purpose of th is s tudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2 Existing knowledge on sedimentation of oil and its effects . . . . . . . . .

2. Factors affecting the sedimentation of oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1 Factors affecting sedimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2 Quantitative formulation of oil sedimentati on . . . . . . . . . . . . . . . . . . . . . .

3. Fate of oil on the bottom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3.1 Some observations of the fate of oil on the bottom . . . . . . . . . . . . . . . . .

3.2 Computation of the decay of oil on the bottom . . . . . . . . . . . . . . . . . . . . . .

4. Effects of oil on the bottom on demersal fish and benthic ecosystems . . . .

4 . 1 A v o i d a n c e o f o i l e d b o t t o m s b y f i s h a n d o t h e r m a r i n e a n i m a l s . . . . . . . .

4.2 Uptake of hydrocarbons from oiled bottom . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3 Effects of oil on the bottom on benthic organisms and demersal

fish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4 Decay of hydrocarbons in marine organisms . . . . . . . . . . . . . . . . . . . . . . . . . .

4.5 Effects of oil on the bottom on the benthic ecosystems . . . . . . . . . . . . .

5. Numerical simulation of the sedimentation of oi l . . . . . . . . . . . . . . . . . . . . . . . .

5.1 Overview of the computer programme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2 Symbols and abbreviations used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.3 Programme DEMOIL and subroutines OILBOT, SILITA and PRIMES . . . . . . . . .

6 . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NWAFC PROCESSED REPORT 85-01This report does not constitute a publication and is for information only.

All data herein are to be considered provisional.

3 9 7

P a g e401

401

401

4 0 4

411

411

4 1 4

4 1 9

419

4 2 2

4 2 6

4 2 6

4 2 7

4 2 7

4 2 9

4 3 0

4 3 2

4 3 2

4 3 5

4 3 8

4 4 7

LIST OF FIGURES

Figure 1. --Quantitative estimate of Amoco Cadiz oil d

first month of the spil l (Gundlach et. al., 1983)

Figure 2--- Fate of oil (Elmgren and Frithsen, 1982).

spersal c o m p o n e n t s f o r t h e

F i g u r e 3 . - - O i l s e d i m e n t a t i o n r a t e f a c t o r ( F ) a s r e l a t e d t o d e p t h o f w a t e r .

I n s t a n t a n e o u s s o u r c e .

F i g u r e 4 . - - T i m e f a c t o r f o r o i l s e d i m e n t a t i o n .

F i g u r e 5 . - - O i l s e d i m e n t a t i o n r a t e f a c t o r ( F ) a s r e l a t e d t o d e p t h o f w a t e r .

C o n t i n u o u s s o u r c e .

F i g u r e 6 - - - D i s t a n c e f a c t o r . C o n t i n u o u s s o u r c e .

F i g u r e 7 . - - E f f e c t o f t e m p e r a t u r e o n t h e “ d e c a y ” o f o i l o n t h e b o t t o m . ( T i m e s t e p

1 2 h o u r s . )

F i g u r e 8 . - - E f f e c t o f d e p t h o n t h e “ d e c a y ” o f o i l o n t h e b o t t o m . ( T i m e s t e p 1 2 h o u r s . )

F i g u r e 9 . - - D i s t r i b u t i o n o f o i l i n t h e w a t e r f r o m a b l o w o u t ( 2 0 , 0 0 0 bbl/day) a f t e r

1 0 d a y s . ( C o n c e n t r a t i o n s i n p p b i n w a t e r f r o m s u r f a c e t o 15 m ; g r i d s i z e 2.s k m . )

F i g u r e 1 0 - - - D i s t r i b u t i o n o f o i l i n t h e b o t t o m nepheloid l a y e r ( 1 0 c m ) i n p p b , 1 0 d a y s

a f t e r a w e l l b l o w o u t ( s e e F i g u r e 9 ) . (Grid s i z e 2.3 k m . )

F i g u r e 1 1 . - - T h e e f f e c t o f t e m p e r a t u r e o n t h e “ d e c a y ” o f h y d r o c a r b o n s i n f i s h .

3 9 9

ABSTRACT

Oi l budget s tudies of somei recent o i l sp i l ls show that a considerable

a m o u n t o f o i l s e d i m e n t i z e s t o t h e b o t t o m , w h e r e i t h a s s o m e i m m e d i a t e a s w e l l

a s l o n g t e r m e f f e c t s o n t h e benthos a n d d e m e r s a l f i s h .

T h e r e l a t i v e l y m e a g e r a*.ailable q u a n t i t a t i v e d a t a o n t h e s e d i m e n t a t i o n o f

o i l a n d o f f a c t o r s a f f e c t i n g i t , a r e s u m m a r i z e d . B a s e d o n t h i s k n o w l e d g e , a

n u m e r i c a l m o d e l w a s d e s i g n e d to e s t i m a t e t h e q u a n t i t y a n d r a t e o f o i l

s e d i m e n t a t i o n , i n c l u d i n g t h e d e c a y ( w e a t h e r i n g ) o f t h e o i l . T h e c o m p u t e r

programme is given in F O R T R A N .

T h e p o s s i b l e e f f e c t s o f o i l o n demersal f i s h a n d o n benthic e c o s y s t e m , a s

d e d u c e d f r o m l a b o r a t o r y e x p e r i m e n t s a n d f r o m a f e w f i e l d o b s e r v a t i o n s , a r e

e v a l u a t e d a n d s u m m a r i z e d .

1 . INTRODUCTION

1 . 1 P u r p o s e o f t h i s s t u d y

T h e s i n k i n g o f o i l a n d i t s p o l l u t i o n o f s e a b o t t o m s e d i m e n t s h a s b e e n

d e m o n s t r a t e d i n a n u m b e r o f o i l t r a n s p o r t a t i o n a c c i d e n t s ( F L O R I D A ; Blumer et a l . ,

1 9 7 1 : A R R O W ; K e i z e r e t a l . , 1978: A M O C O CADIZ; D’Ozouville e t a l . , 1 9 7 9 : A R G O—

M E R C H A N T ; H o f f m a n a n d Q u i n n , 1978: TSESIS; L i n d e n - - e t a l . , 1 9 7 9 : SEFIR; L i n d e n

e t a l . , 1983). E s t i m a t e s o f s e d i m e n t e d oil w e r e a l s o o b t a i n e d f o r t h e w e l l

b l o w o u t s a t IXTOC I (Jernel~v a n d L i n d e n , 1 9 8 1 ) a n d P l a t f o r m B r a v o (Ekofisk) i n— —

t h e N o r t h S e a (llackie e t a l . , 1 9 7 8 ) . S t u d i e s d o n e i n l a r g e , c o n t r o l l e d mesocosms

h a v e a l s o d e m o n s t r a t e d t h e s e d i m e n t a t i o n o f o i l i n s e a w a t e r (Elmgren e t a l . ,

1980; Grassle e t a l . , 1 9 8 0 ; E l m g r e n a n d F r i t h s e n , 1 9 8 2 ) . W h e r e a s o i l p o l l u t e d

pelaqic e n v i r o n m e n t s h a v e b e e n o b s e r v e d t o r e c o v e r r e l a t i v e l y r a p i d l y ( e . g . ,

a b o u t a m o n t h a f t e r t h e TSESIS s p i l l a n d w i t h i n 4 m o n t h s a f t e r t h e A M O C O CADIZ

401

s p i l l ) , o i l r e s i d u e s o n o r i n t h e b o t t o m h a v e b e e n s h o w n t o p e r s i s t f o r m a n y

years (Linden et al., 1979; Laubier,1980). O i l i n c o r p o r a t e d i n t o b o t t o m

s e d i m e n t s i s n o w g e n e r a l l y r e c o g n i z e d a s p r e s e n t i n g t h e Lingle g r e a t e s t a n d

l o n g terr,l t h r e a t t o t h e e n v i r o n m e n t f r o m o i l s p i l l a c c i d e n t s ( L i n d e n e t a l . ,

1979; D’Ozouville et al., 1979; Conan, 1982; Elmgren et al., 1983; Gundlach

etal., 1983; Linden et al., 1983).

I n s p i t e o f t h e l o n g t e r m t h r e a t t o t h e epipelagic a n d benthic biota f r o m

o i l r e s i d u e s o n a n d i n t h e s e d i m e n t , t h e r e i s c o m p a r a t i v e l y little k n o w l e d g e

r e g a r d i n g t h e s e d i m e n t a t i o n o f o i l . Direct measurements of oil sedimentation

f r o m p a s t s p i l l s a r e v e r y

s a m p l i n g t h e t e m p o r a l a n d

o b t a i n e d f r o m p a s t s p i l l s

f e w a n d e v e n w h e n d o n e , t h e y w e r e i n c o m p l e t e i n

a r e a l d i m e n s i o n s o f t h e s p i l l s . T h e r e f o r e , e s t i m a t e s

w h i c h w e r e e x t r a p o l a t i o n s o f d a t a f r o m s e d i m e n t t r a p s

or b o t t o m g r a b ~amples, g e n e r a l l y u n d e r e s t i m a t e d t h e a m o u n t o f o i l s e d i m e n t a t i o n

( e . g . , TSESIS and A M O C O CADIZ s p i l l s ) .

T h e p a t h w a y s a n d p r o c e s s e s o f o i l s e d i m e n t a t i o n h a v e b e e n d i s c u s s e d b y m a n y

authors and summarized by Clark and McLeod (1977). We have, therefore, very

positive evidence for the sedimentation of spilled oil and some approximations

o f t h e q u a n t i t i e s sedimented. W e a l s o h a v e s o m e k n o w l e d g e r e g a r d i n g t h e

p a t h w a y s a n d p r o c e s s e s o f o i l s e d i m e n t a t i o n . W e a r e n o t a w a r e . h o w e v e r , o f

a n y genei-alized m o d e l s f o r q u a n t i f y i n g t h e r a t e o r a m o u n t o f o i l s e d i m e n t a t i o n

f r o m s u r f a c e s l i c k s .

T h e p u r p o s e s o f o u r s t u d y a r e t o : 1 ) d e v e l o p m o d e l s f o r q u a n t i f y i n g t h e

a m o u n t a n d r a t e o f o i l s e d i m e n t a t i o n ; 2 ) s i m u l a t e t h e f a t e o f o i l o n t h e b o t t o m

u s i n g a v a i l a b l e i n f o r m a t i o n ; 3) summarize and analyze the effects of oil on and

i n t h e b o t t o m o n d e m e r s a l f i s h a n d benthic e c o s y s t e m s . T h e r e s u l t s o f t h e s e

402

s t u d i e s w i l l b e

w i l l a s s e s s t h e

t h r e e l o c a t i o n s

B e r i n g S e a .

i n c o r p o r a t e d t o g e t h e r w i t h o t h e r a n a l y s e s i n t o a r e p o r t w h i c h

p o s s i b l e e f f e c t s o f t w o h y p o t h e t i c a l o i l s p i l l s c e n a r i o s a t

o n s e v e r a l c o m m e r c i a l l y v a l u a b l e f i s h e r y r e s o u r c e s o f s o u t h e a s t e r n

T h e t h r e e h y p o t h e t i c a l s p i l l s i t e s a r e s e a w a r d o f P o r t Moller, P o r t H e i d e n

a n d C a p e N e w e n h a m i n B r i s t o l B a y . O n e s p i l l s c e n a r i o i s a n i n s t a n t a n e o u s s p i l l

o f 2 0 0 , 0 0 0 bbls o f a u t o m o t i v e d i e s e l f u e l a n d t h e o t h e r a w e l l b l o w o u t o f

3 0 0 , 0 0 0 b b l o f Prudhoe B a y c r u d e o i l d i s c h a r g e d a t a r a t e o f 2 0 , 0 0 0 bbl/day f o r

1 5 d a y s . T h e v o l u m e o f o i l s p i l l e d i n t h e h y p o t h e t i c a l t a n k e r a c c i d e n t i s

e x c e e d e d o n l y b y t h e s p i l l o f t h e A M O C O CADIZ ( a b o u t 1.6 m i l l i o n bbl) a n d t h e— .

IXTOC I w e l l b l o w o u t ( a b o u t 3 . 5 million bbl). B o t h o f t h e s e a c c i d e n t s i n v o l v e d— .

c r u d e p e t r o l e u m . T h e h y p o t h e t i c a l s p i l l o f a u t o m o t i v e d i e s e l f u e l e x c e e d s b y

f a r a n y p a s t s p i l l s o f m i d d l e o r h e a v y d i s t i l l a t e p e t r o l e u m f u e l s . T h e t o t a l

v o l u m e ( 3 0 0 , 0 0 0 bbl) o f t h e w e l l b l o w o u t s c e n a r i o i s a l s o c o n s i d e r a b l y l e s s

t h a n t h a t d i s c h a r g e d f r o m t h e IXTOC I w e l l b l o w o u t o r t h e s p i l l f r o m t h e A M O C O— —

CADI Z. T h e v o l u m e i s c o m p a r a b l e t o t h e Ekofisk B r a v o b l o w o u t (l46,ooo -

Z1’j,000 b b l , M a c k i e e t a l . , 1978). T h e d i s c h a r g e r a t e i n t h e h y p o t h e t i c a l

s c e n a r i o ( 2 0 , 0 0 0 bbl/day) i s l e s s t h a n t h e m a x i m u m d a i l y l o s s f r o m IXTOC I— .

( a b o u t 32,000 bbl/day) b u t s o m e w h a t c o m p a r a b l e t o t h e e s t i m a t e d r a t e o f

d i s c h a r g e i n t h e Ekofisk

I n i t i a l c a l c u l a t i o n s

c o l u m n ( b o t h s o l u b l e a n d

b l o w o u t ( 1 9 , 5 0 0 -

i n d i c a t e t h a t t h e

e m u l s i f i e d ) a b o v e

29,200 bbl/day).

o i l c o n c e n t r a t i o n s i n t h e w a t e r

t h e thermocline f r o m a b l o w o u t o f

3 0 0 , 0 0 0 bbl of Prudhoe B a y c r u d e oi

T h e r a t h e r l o w c o n c e n t r a t i o n s s e e n

t h o s e e s t i m a t e d f o r p a s t o i l spills

w i l l b e l e s s t h a n 1 p p m i n m o s t a r e a s .

n t h e h y p o t h e t i c a l s p i l l a r e n o t u n l i k e

a n d b l o w o u t s a t s e a .

4 0 3

T h e s e l o w c o n c e n t r a t i o n s m a y r e s u l t i n t a i n t i n g b u t s h o u l d i n f l i c t l i t t l e

i f a n y m o r t a l i t y t o a d u l t f i s h n o r a f f e c t t h e l o n g t e r m p r o d u c t i v i t y o f f i s h

S t o c k s . C e r t a i n i n v e r t e b r a t e s a n d ichthyoplankton, h o w e v e r , m a y b e d r a s t i c a l l y

a f f e c t e d . A s p r e v i o u s l y m e n t i o n e d , h o w e v e r , t h e d a m a g e t o

ccmnunities c a n b e e x p e c t e d t o b e a c u t e b u t r e l a t i v e l y sho

t h e s e l o w c o n c e n t r a t i o n s o f o i l i n t h e w a t e r c o l u m n , e m p i r

t h e s e p e l a g i c

t t e r m . E v e n w i t h

c a l o b s e r v a t i o n s h a v e

d e m o n s t r a t e d t h a t c o n c e n t r a t i o n s i n d e e p e r s o f t b o t t o m s c a n b e c o n s i d e r a b l y

h i g h e r znd o f m u c h l o n g e r dliration. T h e a s s e s s m e n t o f t h e e f f e c t s o f p o s s i b l e

o i l s p i l l s i n e a s t e r n Berinu S e a m u s t , t h e r e f o r e , f o c u s u p o n t h e e x t e n t a n d

d u r a t i o n o f o i l o n t h e b o t t o m a n d i t s s h o r t a n d l o n g t e r m c o n s e q u e n c e s t o t h e

a b u n d a n t a n d v a l u a b l e f i s h a n d s h e l l f i s h r e s o u r c e s .

1 . 2 E x i s t i n g k n o w l e d g e o n s e d i m e n t a t i o n o f o i l a n d i t s e f f e c t s .

A n o i l s l i c k i s d y n a m i c , c h a n g i n g n o t o n l y i n p h y s i c a l d i m e n s i o n s b u t a l s o

i n c h e m i c a l c o m p o s i t i o n p r i m a r i l y d u e t o t h e l o s s o f c e r t a i n c o m p o n e n t s t h r o u g h

e v a p o r a t i o n i n t o t h e a t m o s p h e r e a n d d i s s o l u t i o n i n t o t h e s e a . T h e r a t e o f

p r o c e s s e s i s d e p e n d e n t u p o n s u c h l o c a l e n v i r o n m e n t a l f a c t o r s a s a i r a n d s e a

t e m p e r a t u r e , w i n d s t r e n g t h , s u r f a c e a g i t a t i o n a n d c u r r e n t s a s w e l l a s p h y s i c a l

( e . g . , vjscosity) a n d c h e m i c a l c h a r a c t e r i s t i c s ( e . g . , h y d r o c a r b o n c o m p o s i t i o n )

o f t h e o i l . T h e l o w e r m o l e c u l a r w e i g h t c o m p o n e n t s w i l l i m m e d i a t e l y b e g i n t o

v a p o r i z e o r l e a c h i n t o t h e w a t e r . V i r t u a l l y

w i l l v o l a t i l i z e f r o m t h e s e a s u r f a c e w i t h i n

v o l a t i l e m a t e r i a l s d i s a p p e a r i n g witk.in hours,

c~= r a n g e a n d a l l h y d r o c a r b o n s l o n g e r t h a n Cq

all h y d r o c a r b o n s C 15a n d s h o r t e r

O d a y s , m a n y o f t h e l i g h t e r ,

M o s t c o m p o n e n t s i n t h e C15 t o

~ w i l l b e r e t a i n e d i n t h e s l i c k .~> ~>

E v a p o r a t i o n a l o n e w i l l r e m o v e a b o u t 3 0 t o 5 0 % o f t h e h y d r o c a r b o n s f r o m a

t y p i c a l c r u d e p e t r o l e u m s l i c k . A b o u t 7 5 % o f t h e h y d r o c a r b o n s f r o m N o . 2 f u e l

4 0 4

(automotive diesel) and 100% Of the hydrocarbons from kerosene or gasoline will

vaporize (Clark and McLeod, 1977).

Surface oil enters the sea as dissolved fractions, oil droplets or emulsions

(oil-in-water or water-in-oil), the dominant processes being the latter two.

I n o r d e r f o r t h e p e t r o l e u m i n t h e w a t e r t o s i n k , p r o c e s s e s m u s t i n t e r v e n e t o

d i s r u p t i t s p o s i t i v e o r n e u t r a l b u o y a n c y . T h e s p e c i f i c g r a v i t y o f o i l m a y b e

i n c r e a s e d b y e v a p o r a t i o n a n d d i s s o l u t i o n o f l o w m o l e c u l a r w e i g h t h y d r o c a r b o n s ,

d e g r a d a t i o n a n d o x i d a t i o n o f o i l c o m p o n e n t s , f o r m a t i o n a n d a g g l o m e r a t i o n o f

d i s p e r s e d p a r t i c l e s a n d t h e u p t a k e o f s e a w a t e r d u r i n g e m u l s i f i c a t i o n (Clark

and McLeod, 1977). Fresh and weathered oil may be vertically transported

throuqh the water column, however, the particles cannot remain near the bottom

or be incorporated into bottom sediments unless they adhere to suspended

particulate matter which is heavier than sea water. Pathways by which oil is

s e d i m e n t e d i n c l u d e t h e a d s o r p t i o n o f o i l d r o p l e t s o n s u s p e n d e d m i n e r a l m a t t e r

s u c h a s c l a y , i n c o r p o r a t i o n o f o i l d r o p l e t s i n t h e f e c a l p e l l e t s

a n d t h e o i l i n g o f d e a d s i l i c e o u s phytoplankton o r z o o p l a n k t o n .

i m p o r t a n c e o f t h e s e p a t h w a y s o f o i l s e d i m e n t a t i o n w i l l d e p e n d

u p o n t h e a r e a , t i m i n g a n d e n v i r o n m e n t a l c i r c u m s t a n c e s o f a sp

n e a r s h o r e a n d e s t u a r i n e spills i n s u b a r c t i c e n v i r o n m e n t , p a r t

o f zooplankton

T h e r e l a t i v e

s o m e e x t e n t

. i n m o s t

t o

11

cularly d u r i n g t h e

late f a l l t h r o u g h e a r l y s p r i n g m o n t h s w h e n s e a s a r e m o s t t u r b u l e n t , a d h e r e n c e

o f o i l d r o p l e t s t o p a r t i c u l a t e , m i n e r a l m a t t e r w o u l d s e e m t h e m o s t s u b s t a n t i a l

p r o c e s s o f o i l s e d i m e n t a t i o n . I n o u r s t u d y w e w i l l a s s u m e t h a t s e d i m e n t a t i o n

i s e n t i r e l y a t t r i b u t a b l e t o a d s o r p t i o n o f o i l o n t o p a r t i c u l a t e m i n e r a l m a t t e r .

It s h o u l d b e n o t e d t h a t P r u d h o e B a y c r u d e o i l i s r e l a t i v e l y v i s c o u s . R i c e

e t a l . ( 1 9 7 6 ) o b s e r v e d t h a t u n d e r i d e n t i c a l c o n d i t i o n s o f m i x i n g , t h e yield o f

4 0 5

w a t e r s o l u b l e f r a c t i o n s f r o m Prudhoe Bay c r u d e w e r e a b o u t h a l f t h e c o n c e n t r a t i o n s

f r o m C o o k Inlet c r u d e .

T h e r e i s n o w e l l - s u b s t a n t i a t e d d a t a a v a i l a b l e o n t h e r e l a t i v e q u a n t i t i e s o f

o i l r e a c h i n g t h e b o t t o m ; t h e f e w r e p o r t e d d a t a a r e i n d i r e c t e s t i m a t e s . E 1 mgren

(pers. comm.) e s t i m a t e s t h a t 1 0 t o 30% of the spi l led TSESIS o i l r e a c h e d t h e

b o t t o m . O f t h e A M O C O CADIZ spill, 8% is estimated to have gone into subtidal— —

s e d i m e n t , 2 8 % went o n s h o r e , a n d 2 0 . 5 % i s u n a c c o u n t e d f o r (Grundlach, e t a l . ,

1 9 8 3 ) ( F i g u r e 1 ) . I f t h e o i l h a d n o t r e a c h e d t h e s h o r e , i t c o u l d b e a s s u m e d

t h a t t h e g r e a t e s t p o r t i o n o f t h e t w o l a s t c o m p o n e n t s m i g h t have u l t i m a t e l y

s e d i m e n t i z e d ( i . e . . 30 to 50% of total oil). Some direct quantitative data on

s e d i m e n t a t i o n o f t h e o i l h a s b e e n o b t a i n e d i n l a r g e e x p e r i m e n t a l t a n k s ( 5 m .

d e e p ) , w h e r e Elmgren a n d F r i t h s e n , 1982 , found that 40 to 50% of t h e o i l

a d d e d t o t h e w a t e r i n t h e t a n k s r e a c h e d b o t t o m ( F i g u r e 2 ) . Boehm a n d F i e s t

0980) concluded that only 1 to 3% of IXTOC I oil was to be found in offshore— —

s e d i m e n t s , a l t h o u g h n e a r t h e well b l o w o u t h i g h c o n c e n t r a t i o n s o f o i l i n t h e

s e d i m e n t (100 p p m ) w e r e d e t e c t e d . Jernel~v a n d L i n d e n (?981) e s t i m a t e d t h a t

2 5 % ( 1 2 0 , 0 0 0 m t ) o f t h e lXTOC I b l o w o u t s a n k t o t h e b o t t o m .— .

Elmgren ct a l . , 1 9 8 3 , f o u n d t h a t t h e o i l f r o m TSESIS s p i l l s e d i m e n t i z e d

( s a n k ) t o t h e b o t t o m r e l a t i v e l y r a p i d l y . T h e r e w a s a t l e a s t 0.5 g o i l p e r m2 ,

a n d i n h e a v i l y o i l e d a r e a s p o s s i b l y c o n s i d e r a b l y m o r e .

I f w e a s s u m e t h a t t h e o i l w a s a c c u m u l a t i n g inif.ially in a nepheloid l a y e r

n e a r t h e b o t t o m , s a y 1 5 c m t h i c k ( t h e t h i c k n e s s o f t h i s l a y e r i s v a r i a b l e i n d e e d ) ,

t h e r e s u l t i n g c o n c e n t r a t i o n f r o m 0 . 5 g / m2 on the b o t t o m wou?d g i v e ~n o i l

c o n c e n t r a t i o n i n t h i s r e l a t i v e l y t h i n nepheloid layer of 3 .3 p p m , w h i c h i s a b o u t

t e n t i m e s h i g h e r c o n c e n t r a t i o n t h a n n o r m a l l y f o u n d i n t h e w a t e r i n oil spill

a r e a s . T h i s s i m p l e c a l c u l a t i o n t h u s d e m o n s t r a t e s t h e i m p o r t a n c e o f t h e

c o n s i d e r a t i o n o f o i l o n t h e b o t t o m .

4 0 6

Subtidd sedimentslB,000 tons (B%) 62,WXI tons (2B%)

Water column30.WO tons ( 13.5%)

Biodegraded10,000 tons (4.5%)

Unacmtnted for”4WI0 torts {20.5%)

Evamwation67,Ci10 tons (30%)

F w$t month “Probably SUrf= slicksTotdl spilled: 223,000 tons and tar balls

F i g u r e 1 . - - Q u a n t i t a t i v e e s t i m a t e o f flrnoco C a d i z o i ld i s p e r s a l c o m p o n e n t s f o r t h e f i r s t m o n t ho f t h e s p i l l (Gundlach, et. al., 1 9 8 3 ) .

I Spilled oilI

I

100% added

40-50%

-5% Wadtout

<1%

40-50?4

20-30%

1 0-20%

t-Biod+gradedin water

I Oil reaching sed,mmt 1

*

-

Im tc+ls

600-700tons

--4043 tolls

?

7

?

7

>20 tons

?

?

Figure 2--- Fate of oil (Elmgren and Frithsen, 1982).

4 0 7

S o m e a s p e c t s o f t h e o i l s e d i m e n t a t i o n p r o c e s s h a s b e e n s t u d i e d i n t h e

l a b o r a t o r y . G e a r i n g e t a l . , 1979, found that minerogen fe.g., silt and clay)

particulate matter absorbed ca 15% of oil from the tank and carried it to the

bottom. Low molecular weight aromatic compounds were not found in this sedimented

oil.

T h e o i l o n t h e b o t t o m a c c u m u l a t e s f i r s t i n a f l o c c u l e n t (nepheloid) l a y e r ,

w h i c h f l o a t s i m m e d i a t e l y a b o v e t h e b o t t o m a n d i s d i f f i c u l t t o s a m p l e . T h i s

f l o c c u l e n t l a y e r h a s a t e n d e n c y t o a c c u m u l a t e i n s m a l l d e e p e n i n g i n t h e b o t t o m

(Elmgren, p e r s . comm.) w h e r e n e a r - b o t t o m c u r r e n t i s a b s e n t . T h e n e w l y s e d i m e n t e d

o i l c o n t a i n s l i t t l e t o x i c a r o m a t i c c o m p o n e n t s (Elmgren a n d Frithsen, 1 9 8 2 ) .

These components decay relatively quickly in the water and near and on the

bottom. Therefore, the sedimented oil can be considered as weathered oil.

Moore and Dwyer, 1 9 7 4 , a l s o f o u n d t h a t o i l i n w a t e r w e a t h e r s b y l o s i n g i t s

t o x i c f r a c t i o n v e r y r a p i d l y , m o s t l y b y e v a p o r a t i o n . H o w e v e r , Falk-Petersen a n d

L o e n n i n g ( M S ) h a v e f o u n d t h a t s e a w a t e r e x t r a c t s o f p h o t o - o x i d i z e d ( w e a t h e r e d )

o i l i s m o r e t o x i c t h a n e x t r a c t o f u n w e a t h e r e d o i l .

Oil w i l l p e n e t r a t e t h e s e d i m e n t s t o 5 t o 7 c m d e p t h ( a n d o c c a s i o n a l l y

d e e p e r , d e p e n d i n g o n t h e t y p e o f t h e s e d i m e n t ) . T h i s p e n e t r a t i o n o f o i l

s e d i m e n t i s a s s u m e d t o b e c a u s e d b y “ r e w o r k i n g ” o f t h e s e d i m e n t b y b u r r o w

n t o

ng

a n i m a l s ( i n f a u n a ) . H i g h e r a m o u n t s of oil are found in fine-grained s e d i m e n t s

( w h e r e t h e i n f a u n a b i o m a s s i s a l s o e x p e c t e d t o b e h i g h e r ) a n d l o w e r a m o u n t s

i n coarse-grained s e d i m e n t s ( s a t - i d a n d g r a v e l ) (D’Ozouville et a l . , 1979) .

T h e a b s o r p t i o n a n d a g g l o m e r a t i o n o f t h e o i l i n s e d i m e n t i s a c c o m p a n i e d b y

f u r t h e r f r a c t i o n a t i o n o f t h e o r i g i n a ? o i l m i x t u r e . Z[rcher and Th[erer, 1978,

found that 200 ppm of oil in dry clay is close to “saturation absorption” of

4 0 8

t h i s m a t e r i a l . I n a d d i t i o n t o o i l a d h e r i n g t o s e d i m e n t , t h e r e i s a l s o o i l i n

i n t e r s t i t i a l w a t e r . V a n d e r m e u l e n a n d G o r d o n , 1976, found 10 mg oil per gram

n a t u r a l s e d i m e n t . I+ayes e t a l . , 1 9 7 9 , a l s o f o u n d t h a t i n t e r s t i t i a l w a t e r g e t s

h e a v i l y o i l e d , f r o m w h e r e i t c a n r e e n t e r t h e w a t e r a b o v e .

T h e l o n g e v i t y o f oil i n s e d i m e n t i s n o t k n o w n . A c c o r d i n g to Vandermeulen

and Gordon, 1976, f l o w e x p e r i m e n t s ( o f i n t e r s t i t i a l w a t e r ) i n d i c a t e t h a t

stranded oil could remain in sediment in excess of 150 years (by which time

it is fully buried).

In tank tests 10 to 20% of the total oil added to tanks (of which 40 to

5 0 % =dirnentized) r e m a i n e d i n sediment a f t e r 1 y e a r (Elmgren a n d Frithsen, 1982).

I n A M O C O CADIZ o i l s p i l l a r e a ,— . s o m e o i l r e m a i n e d i n f i n e - g r a i n e d s e d i m e n t s

3 y e a r s a f t e r s p i l l (Grundlach e t a l . , 1983). O i l d e g r a d e d ( w e a t h e r e d ) s l o w e r

i n m u d d y s e d i m e n t s t h a n i n s a n d y s e d i m e n t s . W h e t h e r t h e m o r e r a p i d d e g r a d a t i o n

i n s a n d y s e d i m e n t i s d u e t o m o r e i n t e n s i v e m i c r o b i a l a c t i o n , i s u n k n o w n a t p r e s e n t .

B i o d e g r a d a t i o n o f o i l m i g h t b e o n e o f

o f o i l y b o t t o m s . B i o d e g r a d a t i o n i s k n o w n

(Gearinget a l . , 1979).

Laboratory research on the short term

t h e m a i n f a c t o r s f o r “ d e p u t a t i o n ”

t o i n c r e a s e w i t h i n c r e a s e d t e m p e r a t u r e

e f f e c t s o f w e a t h e r e d o i l o n benthos

s e e m s t o b e d i f f i c u l t t o i n t e r p r e t (Kalko, Duke, a n d Flint, 1982). T h e b e s t

o b s e r v a t i o n s o n t h e e f f e c t o f o i l o n b o t t o m o n b e n t h o s o r i g i n a t e f r o m t h e

s t u d i e s o f t h e TSESIS spill ( e . g . , Elmgren e t a l . , 1983).

A m o n g i n i t i a l e f f e c t s o f t h e TSESIS s p i l l w e r e t h e d i s a p p e a r a n c e o f a m p h i p o d s

( e s p e c i a l l y P o n t o p o r e i a affinis) a n d polychaetes. B i v a l v e s ( e . g . , Macoma

balthica) c o n t a i n e d h i g h a m o u n t s o f h y d r o c a r b o n s ( o h s . t h e s e a n i m a l s a c c u m u l a t e

h y d r o c a r b o n s f r o m w a t e r w h i l e f i l t e r i n g f o o d ) . T h e i r b i o m a s s i n c r e a s e d r a p i d l y

4 0 9

a y e a r

of t h e

a f t e r t h e spill

benthos communi

a n d c o n t i n u e a t a b o v e presp il l l e v e l s . Full recovery

ty {in respect to species composition) had not yet

o c c u r r e d 5 years after the TSESIS spill; P o n t o p o r e i a h a v e s t i l l n o t r e t u r n e d

to prespill l e v e l s .

T h e r e s p o n s e o f benthos t o A M O C O CADIZ o i l s p i l l w a s s i m i l a r ( C o n a n , 1982).— .

I m m e d i a t e m o r t a l i t i e s o f b i v a l v e s , p e r i w i n k l e s , l i m p e t s , p e r a c a r i d c r u s t a c e a n s ,

a n d h e a r t u r c h i n s w e r e o b s e r v e d i n h e a v i l y o i l e d s h a l l o w w a t e r . P o p u l a t i o n s

o f c l a m s a n d n e m a t o d e s i n t h e meiofauna d e c l i n e d a f t e r t h e s p i l l , a n d f o r

s e v e r a l c l a m p o p u l a t i o n s r e c r u i t m e n t r e m a i n e d u n s t a b l e . Benthic species with

s h o r t l i f e c y c l e t e n d e d t o r e p l a c e l o n g - l i v e d s p e c i e s .

T h e e f f e c t s o f o i l o n t h e b o t t o m o n t h e d e m e r s a l f i s h s p e c i e s i s d i f f i c u l t

t o o b s e r v e i n n a t u r e . I n t h e TSESIS s p i l l a r e a s o m e f l o u n d e r s (Pleuronectes

flesus) showed 50 p p m h y d r o c a r b o n s i n liver and muscle one year a f ter the sp i l l

( o h s . f l o u n d e r s a r e f e e d i n g o n Macoma s p . ) ( L i n d e n e t a l . , 1 9 7 9 ) . I n t h e

A M O C O C A D I Z o i l s p i l l a r e a ,. — e s t u a r i n e flatfishes a n d m u l l e t s h a d r e d u c e d

g r o w t h , f e c u n d i t y , a n d r e c r u i t m e n t ; a n d w e r e a f f e c t e d b y f i n r o t (Conan, 1 9 8 2 ) .

A n a b s e n c e o f y o u n g s o l e i n s h a l l o w w a t e r a y e a r a f t e r t h e s p i l l w a s n o t i c e d

(Grundlach e t a l . , 1983). C h a n g e s i n t h e a v a i l a b i l i t y o f flatfish ( s o l e ) i n

shallow water were noted, h o w e v e r , n o c h a n g e s w e r e n o t i c e d i n f i s h p o p u l a t i o n s

i n d e e p w a t e r . A taste panel detected tainting in haddock, plaice, gurnard, and

l e m o n s o l e a f t e r t h e Ekofisk b l o w o u t , h o w e v e r , no o i l de r ived h y d r o c a r b o n s

cou”ld b e f o u n d i n t h e m u s c l e s (Mackie, 1 9 7 8 ) . T h i s m a y b e c o n f i r m a t i o n t h a t

s o m e o f the m a j o r f l a v o r c o m p o n e n t s o f o i l a r e n o t h y d r o c a r b o n s (Howgate et a l . ,

1 9 7 7 ) a n d a r e , t h e r e f o r e , n o t m e a s u r e d .

4 1 0

Any reduction in “worst case” sp

against t h e b a c k g r o u n d o f normal v a r

a g r e e d t h a t c o m m e r c i a l s t o c k s i n t h e

f r o m o i l (Mclntyre, 1982).

1 1 o n f i s h s t o c k s i s d i f f i c u l t t o d e t e c t

a b i l i t y i n t h e s e a . I t i s , i n general,

o p e n p a r t s o f t h e s h e l f a r e n o t a t r i s k

T h e l a r g e e x p e r i m e n t a l e c o s y s t e m s ( i n t a n k s ) o f f e r s o m e p o s s i b i l i t y t o

t e s t t h e s e n s i t i v i t y o f bentttic o r g a n i s m s t o w e a t h e r e d o i l o n t h e b o t t o m

( e . g . , Elmgren a n d F r i t h s e n , 1 9 8 2 ; Grassle, Elmgren, a n d Grassle, 1 9 8 1 ) . S o

f a r l o n g - t e r m t e s t s o f t h e t o x i c i t y o f o i l o n d e m e r s a l f i s h h a v e b e e n m o r e

t h e e x c e p t i o n t h a n t h e r u l e . T h e t o x i c i t y t e s t s o n f i s h h a v e m o s t l y b e e n d o n e

i n s m a l l l a b o r a t o r y t a n k s a n d t h e d u r a t i o n o f w h i c h w e r e m e a s u r e d i n h o u r s a n d

d a y s r a t h e r t h a n i n w e e k s o r m o n t h s ( s e e C h a p t e r ~). T h e t r a n s l a t i o n o f t h e s e

r e s u l t s t o f i e l d c o n d i t i o n s i s o f t e n q u e s t i o n a b l e .

2 . SEDIMENTATION OF OIL AND FACTORS AFFECTING IT

2 . 1 F a c t o r s a f f e c t i n g s e d i m e n t a t i o n

T h e o i l f r o m a w e l l b l o w o u t o r f r o m a t a n k e r a c c i d e n t r i s e s t o t h e s u r f a c e ,

w h e r e g r a v i t y a n d s u r f a c e t e n s i o n p r o m o t e s p r e a d i n g o n c a l m w a t e r w h i l e i n e r t i a

a n d v i s c o s i t y r e t a r d s p r e a d i n g . T h e t r a n s p o r t a t i o n , d i s s o l u t i o n , a n d w e a t h e r i n g

o f t h e s u r f a c e o i l s l i c k d e p e n d s u p o n t h e c h a r a c t e r i s t i c s o f t h e o i l , a n d s u c h

e n v i r o n m e n t a l f a c t o r s a s a i r a n d w a t e r t e m p e r a t u r e , w i n d v e l o c i t y a n d d i r e c t i o n ,

s u r f a c e t u r b u l e n c e , a n d s u r f a c e a n d s u b s u r f a c e c u r r e n t s . T h e o i l w h i c h

s e d i m e n t i z e s ( s i n k s ) t o t h e b o t t o m o r i g i n a t e s f r o m t h i s o i l s l i c k o n t h e s u r f a c e .

( N o t e : B e a c h e d o i l w h i c h h a s b e e n s h o w n t o c a u s e c a t a s t r o p h i c m o r t a l i t i e s t o ‘

i n t e r t i d a l a n d s u b t i d a l f a u n a i s n o t c o n s i d e r e d i n t h i s p a p e r . ) T h e s e d i m e n t i z i n g

o i l m u s t p a s s t h e w a t e r m a s s b e t w e e n t h e s u r f a c e a n d t h e b o t t o m . T h e p r o c e s s e s

o f t h e s o l u t i o n a n d d i s p e r s i o n o f o i l f r o m t h e s u r f a c e slick i n t o t h e w a t e r h a v e

411

b e e n s u m m a r i z e d b y C l a r k a n d M c L e o d ( 1 9 7 7 ) . P a y n e , K i r s t e i n , McNabb, Lambach,

d e 0 1 i v e r a , J o r d a n , and Horn (1982) had a more recent summary with procedures

f o r q u a n t i f y i n g t h e w e a t h e r i n g o f o i l .

T h e a m o u n t o f d i s s o l v e d a n d e m u l s i f i e d o i l i n t h e w a t e r i s a b o u t 1 0 % ( a n d

sl ight ly more) of the o i l on the sur face a t any g iven t ime and locat ion. One

o f t h e m a i n f a c t o r s “ f o r c i n g ” e m u l s i f i e d o i l i n t o t h e w a t e r i s t u r b u l e n c e

c a u s e d b y w a v e s ( a n d c u r r e n t s ) . T h e l a t t e r a r e a f u n c t i o n o f w i n d ( w i n d e n e r g y ) .

T h e t u r b u l e n c e c a u s e d b y w i n d - g e n e r a t e d w a v e s d e t e r m i n e s a l s o t h e t h i c k n e s s o f

t h e n e a r - s u r f a c e t u r b u l e n t m i x e d l a y e r ( d e p t h o f t h e thermocline). O b v i o u s l y

t h e r e a r e o t h e r f a c t o r s b e s i d e s w i n d w a v e s c o n t r i b u t i n g t o s p a c e a n d t i m e

v a r i a b l e m i x e d l a y e r d e p t h a n d t u r b u l e n t m i x i n g , s u c h a s c o n v e c t i v e t u r n o v e r ,

t i d a l c u r r e n t s , e t c . ( f o r a s u m m a r y o n m i x e d

I n t h e 9 m o n t h s p l u s d u r a t i o n o f t h e IXTOC I— —

m e t r i c t o n s o f o i l e s c a p e d , o f w h i c h 1 2 0 , 0 0 0

layer processes see Laevastu , 1 9 7 6 ) .

blowout, a release of 475,000

mt (or 25%) was estimated to have

s u n k to t h e b o t t o m (Jerne18v a n d L i n d e n , 1 9 8 1 ) . (Some empirical data on the

q u a n t i t a t i v e d i s t r i b u t i o n o f o i l i n t h e w a t e r f r o m IXTOC I b l o w o u t i s g i v e n— —

b y B o e h m a n d F i e s t , 1 9 8 2 . ) Grundlach e t a l . , 1983, f o u n d t h a t 1 3 . 5 % o f A M O C O

CADIZ o i l g o t i n t o t h e w a t e r , a n d t h i s a m o u n t i s c o n s i d e r e d t o p r e s e n t a

maximum, d u e t o h e a v y w a v e a c t i o n i n t h e l o c a t i o n a n d t i m e o f t h e A M O C O CADIZ— —

a c c i d e n t .

O n l y v e r y f e w c r u d e o i l s h a v e a s p e c i f i c g r a v i t y h i g h e r t h a n s e a w a t e r a n d

can sink (e.g., Michel, 1984). I n m o s t c a s e s t h e o i l i s l i g h t e r t h a n w a t e r

and rises to the surface, from which it must pass through water column and

must be made heavier than water by various processes, i n o r d e r t o s e d i m e n t i z e

t o t h e b o t t o m .

4 1 2

T h e m i n u t e o i l d r o p l e t s p r e s e n t i n w a t e r a s o i l - i n - w a t e r m a y b e t r a n s p o r t e d

t o w a r d t h e b o t t o m b y e n t r a i n m e n t i n v e r t i c a l c u r r e n t s . H o w e v e r , u n l e s s t h e y

b e c o m e h e a v i e r t h a n w a t e r , e m u l s i o n o r d r o p l e t s c a n n o t r e m a i n n e a r o r b e c o m e

i n c o r p o r a t e d i n t o b o t t o m s e d i m e n t s . I t h a s b e e n o b s e r v e d t h a t o i l a b s o r b s t o

m i n e r o g e n s u s p e n s i o n ( c l a y ) p r e s e n t i n t h e w a t e r . T h e a m o u n t o f o i l w h i c h

s e d i m e n t s c a n c a r r y d o w n i s i n v e r s e l y p r o p o r t i o n a l t o g r a i n s i z e (Poirier a n d

Thiele, 1 9 4 1 ) . T h e c l a y p a r t i c l e s , w h i c h a r e h e a v i e r t h a n w a t e r , c a n a g g l o m e r a t e

a n d a c c e l e r a t e s e d i m e n t a t i o n . T h u s , t h e s e d i m e n t a t i o n r a t e d e p e n d s n o t o n l y

u p o n t h e q u a n t i t y a n d c h a r a c t e r i s t i c s o f o i l , b u t a l s o o n t h e a m o u n t a n d n a t u r e

o f s u s p e n d e d m i n e r o g e n p a r t i c l e s p r e s e n t . T h e c o a g u l a t i o n o f t h e p a r t i c l e s i s

f a s t e r i n s a l t w a t e r t h a n i n f r e s h w a t e r due to e l e c t r o l y t i c a c t i o n (Bassin

a n d !chiye, 1 9 7 7 ) . T h e c o l l i s i o n o f t h e c l a y p a r t i c l e s ( a n d / o r o i l p a r t i c l e s

c o n t a i n i n g minerogen p a r t i c l e s ) d u e t o d i f f e r e n t i a l s e t t l i n g r a t e s a r e t h e

g o v e r n i n g nonbiological p r o c e s s e s i n f o r m a t i o n o f n a t u r a l a g g r e g a t e s ( H a w l e y ,

1982) . T h e s e a g g r e g a t e s f a l l s i g n i f i c a n t l y f a s t e r t h a n S t o k e s L a w p r e d i c t s

( H a w l e y , ~. c i t . ) .

I t h a s also b e e n p o s t u l a t e d ( b u t n o t e x p e r i m e n t a l l y p r o v e n ) t h a t f e c a l

p e l l e t s o f z o o p l a n k t o n w i l l f a c i l i t a t e t h e s e d i m e n t a t i o n o f o i l . T h i s m e c h a n i s m

m i g h t w o r k i f t h e s e p e l l e t s w e r e m a d e h e a v i e r , e . g . , b y i n c o r p o r a t i o n o f

d i a t o m s h e l l s i n f e c a l p e l l e t s .

T h e a m o u n t o f s u s p e n d e d minerogen m a t t e r p r e s e n t i s a f u n c t i o n o f d e p t h ,

b o t t o m t y p e , t u r b u l e n t m i x i n g ( e . g . , b y t i d a l c u r r e n t s ) , a n d s p e c i f i c locations

( e . g . , e s t u a r i e s w h e r e s u s p e n d e d m a t t e r i s c a r r i e d b y r i v e r r u n o f f ) ( B a k e r , 1983).

B a k e r ( 1 9 8 3 ) m e a s u r e d s e d i m e n t a t i o n r a t e s o f s u s p e n d e d m a t t e r < 2 t o > 9 g m- 2

-1day . F o r t y t o f i f t y p e r c e n t o f t h e s u s p e n d e d m a t t e r w a s o r g a n i c . F u r t h e r m o r e ,

4 1 3

B a k e r f o u n d e x p e r i m e n t a l l y t h a t t h e s e d i m e n t a t i o n r a t e o f o i l w a s 0 . 5 t o 3 2 m g

m-2 day-’ . T h e r e i s a t u r b i d b o u n d a r y l a y e r n e a r t h e s e d i m e n t s u r f a c e . T h i s

l a y e r a n d its d y n a m i c s w a s e x t e n s i v e l y s t u d i e d i n t h e 1 9 5 0 ’ s ( r e . K u e n e n ’ s

t u r b i d i t y c u r r e n t s ) . S o m e l a t e r s t u d i e s o f t h e t u r b i d b o t t o m b o u n d a r y l a y e r

( o r nepheloid l a y e r ) h a v e b e e n e m p i r i c a l ( e . g . , B a k e r , 1 9 8 3 ) a s w e l l a s

theoretical (Adams and Weatherly, 1981).

There would obviously be some direct absorption of oil to sediments if and

w h e n t h e m i x e d layer r e a c h e s t h e b o t t o m .

T h e s e d i m e n t a t i o n o f o i l i s a f u n c t i o n o f t i m e . U l t i m a t e l y 3 0 t o 5 0 % o f t h e

o i l r e s i d u e m a y r e a c h t h e b o t t o m (Elmgren and F r i t h s e n , 1 9 8 2 ) . H o w e v e r , m u c h

o f t h e s e d i m e n t a t i o n o f t h e o i l o c c u r s a f t e r t h e s u r f a c e s l i c k i s b r o k e n u p a n d

t r a n s p o r t e d l o n g d i s t a n c e s . T h u s , e x p e c t e d l y t h e s e d i m e n t e d o i l w i l l c o v e r

l a r g e a r e a s a n d t h e r e s u l t i n g c o n c e n t r a t i o n s o f o i l o n t h e b o t t o m w o u l d b e l o w

o v e r m o s t o f t h e s e a r e a s . I n o u r s t u d y w e a r e i n t e r e s t e d i n t h e s e d i m e n t a t i o n

i n t h e f i r s t 1 5 d a y s ( t o m a x i m u m 3 0 d a y s f o r a l o n g - l a s t i n g blwout) b e f o r e

t h e s u r f a c e s l i c k i s b r o k e n u p a n d d i s a p p e a r s a s a semicontinuous l a y e r .

2 . 2 Q u a n t i t a t i v e f o r m u l a t i o n o f o i l s e d i m e n t a t i o n .

T h e d i s t r i b u t i o n o f o i l o n a n d i n t h e w a t e r i s c o m p u t e d a n d g i v e n i n m o d e l

g r i d s ( a b o u t 2 . 3 k m g r i d ~ize) e i t h e r i n 1 2 - h o u r o r d a i l y t i m e s t e p s (Liu,

1983) . T h e oil i n t h e w a t e r c o l u m n i s c o n v e r t e d t o c o n c e n t r a t i o n s ( e . g . , ppb)

t o f a c i l i t a t e t h e e v a l u a t i o n o f i t s e f f e c t s t o biota. T h u s , w e n e e d t o g i v e

the

t h e

quant i t ies of o i l on or in the bot tom a l s o i n t e r m s o f c o n c e n t r a t i o n s .

Sedimented oil accumulates init ial ly in a flocculus nepheloid layer near

b o t t o m (Elmgren, pers. comm.)’. F o r o u r p r e s e n t p u r p o s e w e a s s u m e t h a t t h e

4 1 4

thickness of this layer is 10 cm, with the concentration of the oil in this

l a y e r e x p r e s s e d i n t h e s a m e u n i t s a s i n t h e w a t e r (ppb). T h e t h i c k n e s s o f

t h i s nepheloid l a y e r i s n o t u n i f o r m a n d m i g h t

F u r t h e r r e s e a r c h i s r e q u i r e d i n t h i s m a t t e r .

T h e f o l l o w i n g f o r m u l a s f o r t i m e - d e p e n d e n t

e v e n be a b s e n t i n m a n y l o c a t i o n s .

c o m p u t a t i o n o f t h e s e d i m e n t a t i o n

o f o i l h a v e b e e n d e r i v e d o n t h e b a s i s o f t h e a v a i l a b l e m e a g e r i n f o r m a t i o n , m o s t

o f w h i c h i s s u m m a r i z e d i n C h a p t e r 1 . 2 a n d 2 . 1 . I t i s n e i t h e r p o s s i b l e , n o r

j u s t i f i a b l e t o d e v i s e t h e o r e t i c a l f o r m u l a s f o r w h i c h n e c e s s a r y p a r a m e t e r s a r e

n o t a v a i l a b l e , n o r v e r i f i c a t i o n / v a l i d a t i o n p o s s i b l e . T h e v a r i o u s e a r

t h e o r i e s o n s e d i m e n t a t i o n a r e n o t v a l i d , m a i n l y d u e t o c o m p l e x floccu

p r o c e s s e s a s s h o w n i n e a r l i e r c h a p t e r s . T h e f o l l o w i n g p r o p o s e d e m p i r

( o r , r a t h e r , r a t

w h i c h c a n b e e s t

F o r e x a m p l e , t h e

i e r

ation

ca 1

onal) f o r m u l a s a r e d e r i v e d o n t h e p r e m i s e s t h a t t h e p a r a m e t e r s ,

m a t e d , a r e r e l a t e d t o t h e p r o c e s s e s o f s e d i m e n t a t i o n of o i l .

t u r b u l e n c e i n t h e w a t e r , w h i c h e n h a n c e s t h e c o l l i s i o n b e t w e e n

m i n e r o g e n s u s p e n d e d p a r t i c l e s a n d o i l d r o p l e t s , i s a f u n c t i o n of w i n d s p e e d .

F u r t h e r m o r e , t h e h i g h e r t h e w i n d s p e e d s t h e d e e p e r t h e s u r f a c e m i x e d l a y e r ,

w h i c h m i g h t r e a c h b o t t o m i n s h a l l o w e r w a t e r . I n t h i s c a s e t h e t u r b u l e n c e w i l l

b r i n g o i l e m u l s i o n i n t o c o n t a c t w i t h t h e b o t t o m a n d e n h a n c e a d s o r p t i o n o f o i l

t o b o t t o m s e d i m e n t s . F u r t h e r m o r e , h i g h e r t u r b u l e n c e ( e q u a t e d h e r e w i t h w i n d )

m i g h t s u s p e n d ( e r o d e ) m o r e s e d i m e n t , t h u s e n h a n c e o i l s e d i m e n t a t i o n .

T h e r a t e o f d e p o s i t i o n o f o i l i s m a d e a f u n c t i o n o f t u r b u l e n c e , w h i c h i s

a p p r o x i m a t e d w i t h w i n d s p e e d ( W ) , d e p t h o f w a t e r ( D ) , a n d c o n c e n t r a t i o n o f

o i l i n t h e w a t e r ( S ) . T h e t i m e s t e p i s s e l e c t e d e i t h e r a s 1 2 o r 2 4 h o u r s .

C o m p u t a t i o n s a r e m a d e a t e a c h g r i d p o i n t a t e a c h t i m e s t e p . T h e b a l a n c e o f oil

415

is n o t p r e s e r v e d i n t h e f o l l o w i n g f o r m u l a t i o n . T h e r e a s o n f o r t h i s i s t h a t

t h e r e i s a n e x c e s s o f o i l o n t h e s u r f a c e w h i c h m i g h t g o i n e m u l s i o n i n t o t h e

w a t e r ( o r m i g h t b e t r a n s p o r t e d a w a y w i t h s u r f a c e w i n d a n d c u r r e n t s ) .

in o r d e r t o s i m u l a t e k n o w n d i f f e r e n c e s i n s e d i m e n t a t i o n r a t e , s l i g h t l y

different constants are used in the continuous source (blowout) and instantaneous

s o u r c e ( e . g . , t a n k e r a c c i d e n t ) c a s e s . S o m e c o n s t a n t s also d i f f e r , d e p e n d i n g

uporI t h e p r e s e n c e o r a b s e n c e o f a therrmcline ( r e . s u s p e n d e d o i l c o m i n g intc

d i r e c t c o n t a c t w i t h s e d i m e n t ) .

I n s t a n t a n e o u s s o u r c e w i t h o u t thermocline:

AO=AOt-, +St’:F**P*R *B ( 1 )

w h e r e : Fs = (0.0015W + 015/D0”7) * TKS ( 2 )

a n d : T K s = K / ( 3 +0.2K) ( 3 )

A Ot i s t h e c o n c e n t r a t i o n o f o i l i n “nepheloid l a y e r ” a t t i m e t ; AOt-, i s t h e

s a m e c o n c e n t r a t i o n i n p r e v i o u s t i m e s t e p a f t e r d e c a y ( s e e C h a p t e r 3 below);

S t i s t h e

P

R

B

i s t h e

o n t h e

i s t h e

made a

c o n c e n t r a t i o n o f o i l i n t h e w a t e r i n t h e s u r f a c e m i x e d l a y e r ;

z o o p l a n k t o n a b u n d a n c e i n d e x ( r e l a t i v e v a l u e s f r o m 1 . 0 t o 2 . 0 , e s t i m a t e d

b a s i s o f e x p e c t e d z o o p ? a n k t o n a b u n d a n c e i n t h e l o c a t i o n a n d s e a s o n ) ;

m i n e r o g e n s u s p e n s i o n i n d e x ( a b u n d a n c e o f m i n e r o g e n m a t t e r ) a n d i s

f u n c t i o n o f d e p t h : R+o.2D~, whereby R is selected between 20 and

5 0 ( N o t e : t h e a m o u n t o f m i n e r o g e n s u s p e n d e d m a t t e r i s s e l d o m m e a s u r e d , t h u s

a r e l a t i v e a b u n d a n c e i n d e x ( t u r b i d i t y i n d e x ) m u s t b e e s t i m a t e d ) ;

i s t h e b o t t o m t y p e i n d e x ( 0 . 3 - r o c k y ; 0 . 6 - c o a r s e s a n d a n d g r a v e l ; 1 . 5 - f i n e

s i l t a n d c l a y ) ; ( t h i s i n d e x s i m u l a t e s t h e a d h e r e n c e o f o i l t o t h e b o t t o m ) ;

4 1 6

F~ is the sedimentation rate

TK~ is t h e t i m e f a c t o r ;

w i s w i n d s p e e d ( i n m / s e e ) ;

D i s d e p t h i n m e t e r s ;

K i s n u m b e r o f t i m e s t e p s (

N o c o m p u t a t i o n o f o i l s e d

factor;

n d a y s ) .

m e n t a t i o n i s m a d e f o r f i r s t 1 2 - h o u r p e r i o d .

I n s t a n t a n e o u s s o u r c e w i t h thermocline:

AO t =AOt-, +St ‘: Fd ‘~ P ‘~ R

w h e r e : F d = (0.00IW +0.20 /D0”7) J’ T Kd

( 4 )

( 5 )

and: T Kd = 6 / ( 3 + 0.5K) (6)

‘ d i s t h e s e d i m e n t a t i o n r a t e f a c t o r ;

T Kd i s t h e t i m e f a c t o r .

A l l o t h e r s y m b o l s ( a n d p a r a m e t e r s ) a r e t h e s a m e a s i n F o r m u l a s 1 t o 3 . N o

c o m p u t a t i o n o f o i l s e d i m e n t a t i o n i s m a d e f o r t h e f i r s t 2h-hour p e r i o d a s

s e d i m e n t a t i o n t h r o u g h t h e thermocline i s a t i m e - d e p e n d e n t p r o c e s s .

T h e r e l a t i o n s h i p o f s e d i m e n t a t i o n f a c t o r t o d e p t h i s s h o w n i n F i g u r e 3 a n d

t h e i n c r e a s e ( g r o w t h ) . o f t i m e f a c t o r w i t h t i m e i s g i v e n g r a p h i c a l l y i n F i g u r e f+.

C o n t i n u o u s s o u r c e , n o thermocline p r e s e n t :

AOt=AOt-, +St~’Fcs fiDF$’Pf:RfiB ( 7 )

w h e r e : F = (0.000iW + 0 . 2 5 / D 0 “ 7 4) $< T K s ( 8 )Cs

a n d : D F = ( D i s + 4 ) / 2 0 + O.lDis (9)

DF is t h e “ d i s t a n c e f r o m s o u r c e ” f a c t o r ;

Dis is d i s t a n c e ( o f t h e g r i d p o i n t ) f r o m s o u r c e i n k m .

4 1 7

No thermocline F,= (0.0015W + 0.15/D07)

Thermocline present Fd= (0.00IW + 0.2/D07)

W = 15m/sec

:

;2z

o 140 80 120 160 200

Figure

3

“ 2

Yi-

1

Depth in meters (D)

3 . --Oi 1 sedimentation factor F, Instantaneous source .

No thermocline TK,= K/(3 + 0,2K)Therm ocline present TKd = K/(3 +0.5K) TK~

TKd

Ov I I I I [

4 8 12 16 20Days (K)

Figure 4. --Time factor for oi 1 sedimentation.

4 1 8

All other symbols correspond to the symbols in Formulas 1 to 3. No

c o m p u t a t i o n i s m a d e f o r t h e f i r s t 1 2 - h o u r p e r i o d . T h e d e p e n d e n c e o f

s e d i m e n t a t i o n r a t e f a c t o r (Fc~) o n d e p t h i s s h o w n i n F i g u r e 5 , a n d t h e d i s t a n c e

f a c t o r i s s h o w n i n F i g u r e 6 .

C o n t i n u o u s s o u r c e , thermocline p r e s e n t :

Aot = AOt-, +St + Fcd * DF ‘* P ‘~ R

w h e r e : F = (0.0008w + 0.035/D 0 “ 7 4) $: TKdcd

No c o m p u t a t i o n i s m a d e i n t h e f i r s t 2 4 - h o u r p e r i o d a s

t h e thermocline i s a t i m e - d e p e n d e n t p r o c e s s . A l l s y m b o l s

in Formulas 1 to 3 and 7 to 9.

( l o )

(11)

s e d i m e n t a t i o n t h r o u g h

c o r r e s p o n d t o t h o s e

3 . FATE

3.1

OF OIL ON THE BOTTOM

S o m e o b s e r v a t i o n s o f t h e f a t e o f o i l o n t h e b o t t o m .

T h e i n i t i a l a c c u m u l a t i o n o f o i l i n t h e b o t t o m nepheloid l a y e r i s d i f f i c u l t

t o o b s e r v e a n d s a m p l e . T h e s e flocculous a c c u m u l a t i o n s a r e n o t r e t a i n e d b y

c o n v e n t i o n a l g r a b s a n d o t h e r b o t t o m s a m p l i n g d e v i c e s . Some c o n c l u s i o n s a b o u t

i t s e x i s t e n c e c a n b e d r a w n f r o m l a b o r a t o r y t e s t s a n d f r o m u$take o f h y d r o c a r b o n s

b y sessile filering o r g a n i s m s , s u c h a s c l a m s a n d polychaetes.

T h e o i l - c o n t a i n i n g nepheloid l a y e r i s e x p e c t e d t o m o v e a r o u n d along t h e

b o t t o m w i t h c u r r e n t s n e a r t h e b o t t o m a n d m a y a c c u m u l a t e i n d e e p e r h o l e s

( d e e p e n i n g ) i n t h e b o t t o m . L i n d e n , e t . a l . , 1979, found ten months after the

TSESIS spill that hydrocarbon concentrations in Macoma balthica increased .

unexpectedly at a given sampling station. S u c h a n e v e n t m a y b e t h e r e s u l t o f

t h e e x p o s u r e o f t h e c l a m s t o r e c o n t a m i n a t i o n f r o m o i l i n t h e d r i f t i n g b o t t o m

4 1 9

6-No thermocline, FC= 0.0008W + 0.25/D074

W = 15m/secF:4 -c.-.calu:&2L

()~40 W3 120 160 200

Depth in meters (D)

F i g u r e 5 - - - O i l s e d i m e n t a t i o n f a c t o r F, C o n t i n u o u s s o u r c e .

4’ -

3 -

:2 -

1 -

DF = [Dis(km)+4] /[20+o.l *Disl

o 20 40 60 80 100

Distance (km)

F i g u r e 6 - - - D i s t a n c e f a c t o r , C o n t i n u o u s s o u r c e .

4 2 0

nepheloid layer. H o w e v e r , t h e o i l c o n c e n t r a t i o n s a s s o c i a t e d w i t h t h e nepheloid

layer and with sediments is in ppb range and cannot be a major pathway f o r

d i s p e r s a l o f o i l ( M a

T h e o i l f r o m t h e

c a r r i e d d e e p e r i n t o

o i l c o n c e n t r a t i o n i n

i n k y a n d S h a w , 1 9 7 9 ) .

n e p h e l o i d l a y e r g e t s a b s o r b e d i n t o t h e s e d i m e n t , a n d i s

t b y b u r r o w i n g a n i m a l s . I n e x p e r i m e n t a l t a n k s , w h e r e t h e

water was kept about 190 ppb for 25 weeks, the top 2 cm of

s e d i m e n t h a d a h y d r o c a r b o n c o n c e n t r a t i o n o f 1 0 9 p p b a f t e r 2 0 w e e k s (Grassle,

e t al., 1 9 8 1 ) . I n t h e a r e a o f A M O C O CADIZ s p i l l , oil was found to 5 to 7 cm. —

d e p t h i n t h e s e d i m e n t f i v e m o n t h s a f t e r t h e s p i l l . Higher concentrations were

f o u n d i n f i n e s e d i m e n t s (D’Ozouville, e t a l . , 1 9 7 9 ) .

T h e o i l i n t h e s e d i m e n t u n d e r g o e s d e c a y ( w e a t h e r i n g ) ; b i o d e g r a d a t i o n b e i n g

p r o b a b l y t h e m o s t i m p o r t a n t d e c a y p r o c e s s . B i o d e g r a d a t i o n i s k n o w n t o i n c r e a s e

w i t h t e m p e r a t u r e ( G e a r i n g , e t a l . , 1 9 7 9 ) . F u r t h e r m o r e , t h e d e c a y i s a s s u m e d t o

b e a f u n c t i o n o f d e p t h ( t h e “ a e r a t i o n ” o f s e d i m e n t s a n d t h e a m o u n t s o f biota

i n t h e m a r e b o t h i n g e n e r a l f u n c t i o n s o f d e p t h ) . A f t e r c o n c e n t r a t i o n s a r e

r e d u c e d t o sorw t o l e r a b l e r a n g e , t h e w e a t h e r i n g r a t e o f s e d i m e n t e d o i l m a y b e

a c c e l e r a t e d b y t h e a c t i v i t i e s o f d e p o s i t f e e d e r s s u c h a s polychaetes ( G o r d o n

e t al., 1978).

S o m e o f t h e o i l g e t s b a c k i n t o t h e w a t e r a b o v e v i a i n t e r s t i t i a l w a t e r

( V a n d e r m e u l e n a n d G o r d o n , 1 9 7 6 ) . I n e x p e r i m e n t a l

r e m a i n e d i n t h e s e d i m e n t s a f t e r o n e y e a r (Elmgren

A M O C O CADIZ o i l s p i l l a r e a s o m e o i l r e m a i n e d i n f. —

tanks,

and F r

n e - g r a

y e a r s a f t e r t h e spill (Gundlach, e t a l . , 1983). R e s i d u e s o f B u n k e r C w e r e

10 to 20% of the oil

t h s e n , 1 9 8 2 ) , a n d i n

n e d s e d i m e n t s t h r e e

i d e n t i f i a b l e i n s o m e l o c a t i o n s o f f N o v a S c o t i a 6 y e a r s a f t e r t h e s p i l l f r o m t h e

A R R O W (Keizer e t a l . , 1 9 7 8 ) .

4 2 1

3.2 Computation of the decay of oil on the bottom.

I n t h e o i l - o n - b o t t o m s i m u l a t i o n m o d e l ( C h a p t e r 5 ) t h e “ d e c a y ” o f o i l f r o m

p r e v i o u s t i m e s t e p i s d e c a y e d b e f o r e n e w o i l i s a d d e d . T h e “ d e c a y ” s i g n i f i e s

t h e p h o t o - o x i d a t i v e d e g r a d a t i o n o f a r o m a t i c m o r e t o x i c c o m p o n e n t s , b i o d e g r a d a t i o n ,

a s w e l l a s o i l b e i n g buried i n t o t h e s e d i m e n t . The following formula (12)

g i v e s t h e d e c a y i n 1 2 - h o u r t i m e s t e p w h i c h i s repaated f o r t h e 2 4 - h o u r t i m e

s t e p .

A Ot o = AOt-, e-(t+d) ( 1 2 )

2.7 -4w h e r e : t = T ‘~ 10 ( 1 3 )

and: d = 0.15/fi (14)

t i s t e m p e r a t u r e f a c t o r ;

T i s t e m p e r a t u r e i n “ C ;

d is depth factor ;

D i s d e p t h i n m e t e r s ;

T h e r e l a t i o n s b e t w e e n t a n d T , a n d d a n d D a r e g i v e n i n F i g u r e s 7 a n d 8 ,

r e s p e c t i v e l y .

E x a m p l e s o f c o m p u t e d d i s t r i b u t i o n o f o i l i n t h e w a t e r a n d i n t h e b o t t o m

a r e given i n F i g u r e s g a n d 1 0 . F i g u r e 9 g i v e s t h e d i s t r i b u t i o n o f o i l i n t h e

w a t e r 1 0 d a y s a f t e r a b l o w o u t . C o r r e s p o n d i n g to t h e s a m e e v e n t , t h e d i s t r i b u t i o n

o f o i l o n t h e b o t t o m i s given i n F i g u r e 1 0 . T h e b o t t o m s l o p e s u p f r o m t h e

b l o w o u t t o t h e n o r t h , c a u s i n g t h e h i g h e r va?ues i n t h e n o r t h e r n p a r t o f t h e

f i e l d . F i g u r e 1 0 s h o w s t h a t t h e c o n c e n t r a t i o n s o f o i l i n t h e b o t t o m nepheloid

l a y e r c a n b e c o n s i d e r a b l y h i g h e r t h a n t h e c o n c e n t r a t i o n s o f o i l i n t h e w a t e r ,

t h u s d e m o n s t r a t i n g t h e g r e a t e r i m p o r t a n c e o f o i l i n the b o t t o m i n r e s p e c t t o

i t s e f f e c t s o n m a r i n e biota.

4 2 2

14

12

10

g8

c.-‘l-Cc1u. 6aQ

4

2

Temperature factort= T27*0.0001

Temperature in ‘C {T)

F i g u r e 7 . - - E f f e c t o f t e m p e r a t u r e o no n t h e b o t t o m ( t i m e s t e p

4

3

2

1I

Depth factor

t h e “ d e c a y ” o f o i l1 2 h o u r s ) .

o~40 80 120 160 200

Depth in meters (D)

Figure 8--- Effect of depth on the “decay”bottom (time step 12 hours).

o f o i l o n t h e

4 2 3

It Oaaaao$ otYc.2Ge 1 0 00 0 co o

19 0 0 000 00 00 0 0 0 Oc 1 0 011 0 0 0 0

20 0 0 0 a o 00 0 01 0 0 0 0 0 5 00 0 co G

21 0 0 0 00 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0

.22 0 0 0 0 0 0 0 C03 0 9 0 0 ? 0 0 0 0 0 0 0

23 0 0 0 00 0 0 0 0 0 0 0 00 0 0 000 0 0 0

z+ 90000 J o C23 00 000 0 co o 1 z 3

‘- : 0CZ020G C31J 20000 0 0 2 4 7 7

26 00302 a>cJ>c2

[

C95002690 1

27 c c OJ : :JC51 O:CGC: 15 $ 11 8Ze 0 000,30 )C’2> fi9 01 C03ZL9S J

d9 oooooo~ 0 0 ) 0 0 0 0 0 0 4 1 0 6 Z O

so

/-(/o 0 009 co OfJl 00 0 0 014 .0 1

11 2 0 0 0 0 00 Ooa 0000016 19

32 OGOOCG Oo 1 3 0 0 0 1 1 2 7 1 a

s: OGOCO.JO03 300 Z6? 11 r

34 0 ilG C: J ‘Z O 1: 9 z 7 3 13 12 101 s3s o 0 0 00 II o 0 al 11s17 3 13 11 , 4

36 Ooocooc 00 3 T 212 5 5 1121?

37 ‘oooooo o’’o:fop: ::,::3a o 0 Oao 00 00 5

39

~

o 0 0 0 0 a 0 a 11 131 ! ‘1 o : zLo

ho 0 0 0 0 0 0 0 Ii. 13 ? 1 0 9 0 00 n

61 0 0 0 0 0 0 91T16 816 * 0 0 0 0 900

62

9

0 0 0 0 o~7:!)

Is 15 16 1 Zoo flonoo

43 0 0 0 c 23- . ;6 5>00>0030

64 0 0 0 37 15 z 4 960000900 0 0

&s 0 0 0 0 11’3GO0 ,00 0 ~ 8 0 0 9 0

&oo

3 0 0

zoo

100

1 0 0

c o o

Cao

0 0 0

C$o

c o o

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

C o i l

c c o co o 00 00 c o 00 000 0

Oooaooooo 0 0 0 0 0 0 0 0 0

Ccocoooo Coooooooo o

Ooooooooc 0 0 0 0 0 0 0 3 0

C05000Coc ooaoooogo

c o 0 0 00 00 co 000 0 000 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sloo~oooo 0 0 0 9 0 0 0 0 0

b 1 0 0 0 0 c 0 0 0 0 00 0 0 00 0

lcoooo:a CC CO OOOOFI 0

0 0 0 0 0 0 00 ao o 09 0 0 Oa ~“

Coocooooo Oaooooooo

aoooooooo 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 00 a o 0 0 000 0

0 0 0 a o 0 Uo o 0 0 00 0 0 00 0

c 00 c o 0 00 c o 0 0 0 0 0 0 0 0

c o 0 a o 0 co o 0 0 00 0 0 0 0 0

c 00 0 0 0 00 00 000 0 0 a rj o

C C o a o 0 C 0 c o 000 0 0 a o 0

Ccooooooo 0 0 0 0 0 0 0 0 0

c ~,~ aaco CO(IO3 0 0 0 0 0

Coc Cooooaaoo 0 0 0 0 0 0

0 0 0 0 0 a 00 c o c 00 0 a o 0 0

0 00 0 0 0 00 00 000 0 0 0 0 .2

COODOJ Coaoouollo 000

0 0 0 0 0 0 0 0 00 0 00 0 000 0

a 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0

co 0 0 * o 0 0 0 0 0 00 0 000 0

Cooooo co o 0 0 0 0 0 0 00 0

cc. c o 0 0 0 0 0 0 00 0 0 00 0

CCoooo?oo 0 0 0 0 0 0 0 0 3

Figure !3. --Distribution of oil from a blow-out (20,000 bblfday) after

10 days (concentrations in ppb in water - from surface to

1!5 m; grid size 2.3 km).

18 00 000 0 0 co 1 0 0 Oc’c 009 0 0 0 0 c c

19 Ooocooooo : occcccoco caocc

<0 0 0 00 0 0 a 000 Oocrlcoooo COLICC

22 0 0 0 00 40 0 0 0 0 tioooo 00 0 000 c c

23 0 0 0 G9 00 coo 0 0 C0OOOOO :2210

37

A

OIIOOIJ’17C) ?

36 “’w::::::OOOC030Clb :llj

, , ’ Joo19 aaooooo~z 112321 COO0 o

60 0 0 0 0 0 0 1 Lb I!lk 1?3COCCOCC c

61 ooaoolb 1Z111S7Z oo~cddcogg c

b2 aoo Q16? 1112 131’51 oo~ooq COO(C

43 OOO0311J 55522 O’1oooooooo 4

+4 o

u

Orliolbll S?l 19coooto 4000ac

+5 ooo~l .2101 qoooooaooa aoco

9acoaoco .30 ~aaaoo

ooaoaaaaao oooaao

oooaaoaooo 900000

ccoaoococo 0 0 0 0 0 0

Oco acocoaaoao 0 0 0

oaa. acoco coo 0 0 0 0 0

oaooooaooo aooooa

Ocoococooo 0 00930

1 ooaooaoaoa 0 0 0 0 0

0 0 0 Qca: aca~ooooa

Occaco 0 0 0 0 looooa

Oc aocooo aJ3000 aa

0 0 aaooasoooo 0 0 0 0

oooizaacoao oooaoo

ooaoaooaoo ooo ago

oaaoaaoo aa OOOOOa

ooaoooaooa ooooao

ooooaooooo ooaaoo

aaoooo 00000 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 qooooa

Ocolzcoooog gooooo

aooocoaooo 9 Ooaoo

ao30coaooo ooaooo

aoogcu ooco 300000

o coacocaaoo aa*OO

0 0 0 0 CO C0909Q oooa

QOOOIJLI ao cooa 000.3

aoooao oaooo 00090

~aooloooaa ~ooo aa

oaoooo 0 0 0 0 0 0 0 0 0 0

0 0 ? 0 0 0 C O O O 1 O O O O D

Oofl oao coaooooooo

F i g u r e 1 0 . - - D i s t r i b u t i o n o f o i l i n t h e b o t t o m nepheloid l a y e r ( 1 0 c m )

i n p p b 1 0 d a y s a f t e r a w e l l b l o w o u t ( s e e F i g u r e 9 ) ;

grid size 2.3 km.

4 2 5

T h e e m p i r i c a l f o r m u l a e f o r t h e t i m e - d e p e n d e n t s i m u l a t i o n o f t h e s e d i m e n t a t i o n

o f o i l , g i v e n i n t h i s c h a p t e r , a r e b a s e d o n m e a g e r s e m i - q u a n t i t a t i v e i n f o r m a t i o n

( m o s t l y e s t i m a t e s ) a v a i l a b l e i n t h i s s u b j e c t . F u r t h e r q u a n t i t a t i v e e x p e r i m e n t a l

s t u d i e s a r e n e e d e d t o i m p r o v e t h e p r o v i s i o n a l v a l u e s f o r

c o e f f i c i e n t s p r o p o s e d i n t h i s p a p e r , a n d t o v a l i d a t e t h e

g e n e r a l .

t h e p a r a m e t e r s a n d

n u m e r i c a l m o d e l i n

4 . EFFECTS OF OIL ON THE BOTTOM ON DEMERSAL FISH AND BENTHIC ECOSYSTEMS

4 . 1 A v o i d a n c e o f o i l e d b o t t o m s b y f i s h a n d o t h e r m a r i n e a n i m a l s .

S o m e l a b o r a t o r y t e s t s s h o w t h a t f i s h ( e . g . , c o d ) c a n d e t e c t v e r y l o w

c o n c e n t r a t i o n s o f h y d r o c a r b o n s , i n d i c a t i n g t h i s d e t e c t i o n b y s n a p p i n g , d a r t i n g ,

c o u g h i n g , a n d r e s t l e s s s w i m m i n g (Hellstrom and Doving, 1983) . I t i s t h u s

p o s s i b l e t h a t s o m e f i s h ( e s p e c i a l l y s e m i - d e m e r s a l s p e c i e s ) m i g h t a v o i d o i l e d

b o t t o m s b y v e r t i c a l ( u p w a r d s ) m o v e m e n t i n t o t h e w a t e r m a s s a b o v e t h e o i l e d

nepheloid l a y e r . T h e c h a n g e s o f a v a i l a b i l i t y o f f l a t f i s h ( s o l e ) i n s h a l l o w

abers a f t e r t h e A M O C O CADIZ s p i l l m i g h t be a n i n d i c a t i o n o f a v o i d a n c e o f t h e s e— —

o i l e d a r e a s b y f i s h (Gundlach, e t a l . , 1 9 8 3 ) . O n t h e o t h e r h a n d , l a b o r a t o r y

e x p e r i m e n t s w i t h o i l e d a n d c l e a n s e d i m e n t s d o n o t i n d i c a t e a d e f i n i t e c h o i c e

o f c l e a n s e d i m e n t s b y f l a t f i s h ( F l e t c h e r e t a l . , 1981).

S o m e e p i b e n t h i c c r u s t a c e a n s m i g h t also u s e t h e e s c a p e f r o m o i l e d s e d i m e n t s

by movement into water mass above, which might partly explain the disappearance

of amphipods from TSESIS spill area.

B u r r o w i n g c l a m s d o n o t b u r r o w d e e p i n o i l e d s e d i m e n t s . T h i s b e h a v i o r m i g h t

also b e c o n s i d e r e d a s a n e s c a p e b e h a v i o r (Olla a n d Bejda, 1983) . Many animals

remain, however , o n a n d i n o i l e d b o t t o m s a n d g e t c o n t a m i n a t e d b y h y d r o c a r b o n s

b y d i r e c t a d s o r p t i o n a s w e l l a s v i a f o o d c h a i n . O t h e r k n o w n e f f e c t s o f o i l e d

b o t t o m s o n a n i m a l s a r e giver, i n C h a p t e r s 4 . 3 a n d 4 . 5 .

4 2 6

4 . 2 U p t a k e of h y d r o c a r b o n s f r o m o i l e d b o t t o m .

H y d r o c a r b o n s a r e t a k e n u p b y b i o t a w i t h d i f f e r e n t p r o c e s s e s , s u c h a s

a d s o r p t i o n a n d a b s o r p t i o n ( e s p e c i a l l y t h r o u g h gills) a n d t h r o u g h f o o d c h a i n .

M a n y f i l t e r i n g a n i m a l s ( s u c h a s b i v a l v e s ) will t a k e u p h y d r o c a r b o n s f r o m t h e

n e p h e l o i d l a y e r i n t h e i r f i l t e r i n g p r o c e s s .

C o n s i d e r a b l e bioaccumulation o f h y d r o c a r b o n s i n t h e benthic a n i m a l s i n

o i l e d a r e a s h a s b e e n

u p t a k e a n d bioaccumu

Connell a n d M i l l e r ( ’

o b s e r v e d i n n u m e r o u s s t u d i e s . T h e s e s t u d i e s o n t h e

a t i o n o f h y d r o c a r b o n s f r o m s e d i m e n t s a r e r e v i e w e d b y

981]. T h e f o o d c h a i n t r a n s f e r p r e d o m i n a t e s t h e h y d r o c a r b o n

t r a n s f e r p r o c e s s e s (Fowler, 1982). F o r t h e p u r p o s e

c a r b o n t r a n s f e r t h r o u g h t h e f o o d c h a i n , a c o n s e r v a t

o f 5 0 i s a s s u m e d . T h e u p t a k e a n d d e c a y ( d e p u t a t i o n

o f c o m p u t a t i o n o f hydro-

v e bioaccumulation r a t i o

o f h y d r o c a r b o n s b y f i s h

a n d i t s e f f e c t s ( e . g . , t a i n t i n g ) a r e d e s c r i b e d i n a n o t h e r r e p o r t i n t h i s p r o j e c t

r e p o r t s e r i e s .

4 . 3 E f f e c t s o f o i l o n t h e b o t t o m o n benthic o r g a n i s m s a n d demersal f i s h .

T h e e f f e c t o f o i l s t u d i e s h a v e b e e n m o s t l y t o x i c i t y s t u d i e s , u s i n g h i g h

o i l c o n c e n t r a t i o n s i n l a b o r a t o r y t a n k s w h i c h c a n n o t o c c u r i n a n y a c c i d e n t a l

r e l e a s e o f o i l i n n a t u r e . T h e c o n c e n t r a t i o n s o f o i l o n t h e b o t t o m , t h o u g h

h i g h e r t h a n i n w a t e r , r a r e l y r e a c h 1 p p m ( e x c e p t i n c a s e o f b e a c h i n g o f o i l )

( s e e F i g u r e 1 0 ) . U s u a l l y l e s s t h a n 1 0 % o f t h e o i l i n i t i a l l y r e a c h i n g t h e

b o t t o m i s s o l u b l e a r o m a t i c d e r i v a t i v e s ( S A D ) , w h i c h a r e m o r e t o x i c . F u r t h e r -

m o r e , S A D d i s a p p e a r q u i c k l y f r o m t h e “ w e a t h e r e d ” o i l o n t h e b o t t o m . Moore and

D w y e r , 1 9 7 4 , g i v e t h e f o l l o w i n g t a b l e s o f t o x i c c o n c e n t r a t i o n s o f S A D .

5 to 50 ppm f i s h

0.1 to 1 ppm larvae

1 to 10 ppm crustaceans

5 to 50 ppm bivalves

427

F e e d i n g a n d r e p r o d u c t i o n c a n b e “ d i s r u p t e d ” w i t h lower c o n c e n t r a t i o n s

( 1 0 t o 1 0 0 ppb). O n e r e c e n t s t u d y b y K a n t e r e t al. (1$)83) h a s , h o w e v e r , u s e d

low levels of petroleum hydrocarbons (6 to 760 ppb) and longer exposure times

(about a month) in the studies of the effects of oil on larval and adult stages

of California halibut, northern anchovy, and mussels. Results show that larval

s t a g e s a r e m o r e s e n s i t i v e t o t h e e x p o s u r e t o h y d r o c a r b o n s t h a n p r e v i o u s l y

e x p e c t e d . H o w e v e r , t h e s e r e s u l t s a r e i n c o n f o r m i t y w i t h N o r w e g i a n i n v e s t i g a t i o n s

o n t h e e f f e c t s o f h y d r o c a r b o n s o n e g g s a n d l a r v a e ( 5 0 ppb and u p ) , w h e r e t h e

e f f e c t s o c c u r y e a r s l a t e r a s l o w e r e x p l o i t a b l e biomasses. H o w e v e r , t h e s e l a t e r

e f f e c t s a r e d i f f i c u l t t o q u a l i f y a n d s e p a r a t e f r o m c h a n g e s o f n a t u r a l m o r t a l i t y ,

e f f e c t s o f f i s h i n g , a n d o t h e r n a t u r a l f l u c t u a t i o n s .

Benthic a n i m a l s a r e c o n s i d e r e d t o b e l e s s s e n s i t i v e t o t h e t o x i c i t y o f oil

t h a n t h e p e l a g i c a n i m a l s ( R i c e e t a l . , 1 9 7 9 ) . O n t h e o t h e r h a n d , f i l t e r i n g

a n i m a l s c a n a c c u m u l a t e h y d r o c a r b o n s r a p i d l y f r o m r e l a t i v e l y low c o n c e n t r a t i o n s

i n b o t t o m nepheloid l a y e r . O y s t e r s c a n g e t t a i n t e d f r o m 1 0 p p b o f h y d r o c a r b o n s

i n w a t e r i f e x p o s u r e i s o f s u f f i c i e n t d u r a t i o n . T h e t a i n t i n g l e v e l s f o r f i s h ,

c r u s t a c e a n s , a n d c l a m s i s b e t w e e n 4 t o 3 0 0 p p m (Connell a n d M i l l e r , 1 9 8 1 ; s e e

a l s o s u m m a r y o f v a r i o u s s u b l e t h a l e f f e c t s b y t h e s e a u t h o r s ) .

O i l o n t h e b o t t o m c a n a f f e c t t h e r e p r o d u c t i v e c a p a c i t y a n d e m b r y o n i c

d e v e l o p m e n t o f benthic a n d demersal a n i m a l s . L i n d e n e t a l . , 1 9 7 9 , f o u n d t h a t

t h e amphipods P o n t o p o r e i a affinis a n d P . f e m o r a t a h a d a b n o r m a l e g g s 5 m o n t h s—

a f t e r t h e TSESIS s p i l l . A f t e r t h e A M O C O CADIZ s p i l l , l o w p e r c e n t a g e o f egg-

c a r r y i n g f e m a l e o y s t e r s w e r e o b s e r v e d i n 1 9 7 8 / 7 9 (Gundlach e t a l . , 1 9 8 3 ) .

Augenfeld ( 1 9 8 0 ) f o u n d t h a t v e r y h

s e d i m e n t ( 5 0 0 t o 1 0 0 0 p p m ) c a u s e d s o m e

pacifica. R e d u c e d f e e d i n g b y w i n t e r f

gh l e v e l s o f o i l c o n c e n t r a t i o n i n

r e d u c t i o n i n f e e d i n g o f Aharenicola

o u n d e r o n h e a v i l y o i l e d s e d i m e n t s

428

(2s00 to 4.500 p p m ) w e r e a l s o r e p o r t e d b y Flelcher ct al., 1981. S u c h h e a v y

concentrat ions of o i l can be found only in shal low water in case of beaching

o f oil s l i c k s . O n t h e o t h e r h a n d , P a y n e e t a l . , 1 9 8 3 , f o u n d t h a t t h e s u b l e t h a l

e f f e c t s o f h y d r o c a r b o n s o n A m e r i c a n

b r o w n i n g m i g h t h a v e b e e n c o n s i d e r e d

w i t h f i s h b y P a y n e e t a l . , 1978, n o

lobster were minor indeed, only gill

p a t h o l o g i c a l i n n a t u r e . I n s i m i l a r s t u d i e s

histopathological c h a n g e s w e r e o b s e r v e d

a f t e r 6 m o n t h s a n d n o s e r i o u s d i f f e r e n c e s i n g r o w t h a n d r e p r o d u c t i o n b e t w e e n

o i l e x p o s e d a n d c o n t r o l e x p e r i m e n t s w e r e o b s e r v e d .

Eggs and larvae might be

1 9 8 2 , s t a t e s t h a t g r o w t h a n d

o i l c o n c e n t r a t i o n o f 5 0 p p b ,

m o s t s u s c e p t i b l e t o e x p o s u r e t o o i ? . M c I n t y r e ,

b u o y a n c y i n c o d e g g s and l a r v a e w e r e a f f e c t e d b y

a n d a t 2 5 0 p p b m a l f o r m a t i o n o f l a r v a e o c c u r r e d .

There a r e r e l a t i v e l y f e w s p e c i e s w i t h demersal e g g s ( e . g . , h e r r i n g , e g g - c a r r y i n g

f e m a l e s o f c r a b s ) . The problems of pelagic eggs are dealt with elsewhere in

t h i s r e p o r t s e r i e s ( s e e R E E S T , 1 9 8 3 ) .

4 . 4 D e c a y o f h y d r o c a r b o n s i n m a r i n e o r g a n i s m s .

T h e k n o w l e d g e o n the m e t a b o l i s m o f h y d r o c a r b o n s i n m a r i n e o r g a n

b e e n s u m m a r i z e d b y Connell a n d M i l l e r , 1981. N u m e r i c a l s t u d i e s o f

sms has

h e d e c a y o f

h y d r o c a r b o n s i s d e s c r i b e d i n a n o t h e r r e p o r t i n t h i s s e r i e s p e r t a i n i n g t o t h e

e f f e c t s o f o i l o n f i s h ( s e e R E E S T , 1 9 8 3 ) .

T h e d e c a y o f h y d r o c a r b o n s i n demersal f i s h a n d b e n t h i c o r g a n i s m s i s

c o m p l i c a t e d b y t h e c o n t i n u o u s u p t a k e o f o i l f r o m s e d i m e n t s . F i l t e r i n g a n d

b u r r o w i n g a n i m a l s e f f e c t t h e u p t a k e o f t h e w e a t h e r e d o i l , w h i c h i s t r a n s f e r r e d

t o f i s h f e e d i n g o n t h e m . L i n d e n e t a l . , 1 9 7 9 , f o u n d t h a t f l o u n d e r s (Pleuronectes

flesus, w h i c h f e e d o n Macoma balthica, s h o w e d 5 0 p p m o f h y d r o c a r b o n s i n l i v e r

a n d m u s c l e s o n e y e a r a f t e r TSESIS s p i l l .

4 2 9

T h e a c c u m u l a t i o n , a s w e l l a s d e c a y o f h y d r o c a r b o n s i n f i s h , i s a f u n c t i o n

o f t e m p e r a t u r e ( V a r a n a s i , Gmur, a n d R e i c h e r t , 1981) . R e t e n t i o n i s h i g h e r

and decay slower at lower temperatures. In general, the hydrocarbons are

lost at a slower rate than they are accumulated (Fowler, 1982).

The computations of decay of hydrocarbons in fish was done in this study

w i t h t h e f o l l o w i n g g e n e r a l e x p o n e n t i a l f o r m u l a , c o r r e s p o n d i n g t o the f i n d i n g s

o f F o w l e r , 1982:

Ct = Ct., e - b ( 1 5

where:

and: b

t is

c i s

b i s

T is

Th

of the

b = 0.0015T2 f o r demersal f i s h ( 1 6 )

= 0 . 0 0 2 T2 f o r p e l a g i c f i s h (17)

t i m e s t e p ( 1 2 h o u r s ) ;

c o n c e n t r a t i o n o f h y d r o c a r b o n s i n f i s h ( m a i n l y m u s c l e ) ;

d e c a y f a c t o r ;

t e m p e r a t u r e i n ‘ C .

s f o r m u l a g i v e s a b o u t 8 % d e c a y i n 1 2 h o u r s a t a b o u t 10°C. The dependence

decay from temperature is shown in Figure 11.

4 . 5

Most

T h e e f f e c t o f o i l o n t h e b o t t o m o n t h e benthic e c o s y s t e m s .

of the knowledge of the e f fect o f o i l on benthic e c o s y s t e m s o r i g i n a t e s

f r o m t a n k e x p e r i m e n t s a n d f i e l d r e s e a r c h i n TSESIS s p i l l a r e a . Elmgren e t a l . ,

1 9 8 0 , f o u n d i n t a n k e x p e r i m e n t s t h a t b e n t h i c macrofaunal a n d m e t a z o a n meiofaunal

p o p u l a t i o n s d e c l i n e d d r a s t i c a l l y i n “ o i l e d s e d i m e n t s ” , w h e r e a s benthic d i a t o m s

a n d p r o t o z o a i n c r e a s e d c o n s i d e r a b l y . Benthos b i o m a s s i n o i l e d t a n k s w a s o n l y

a b o u t 10% of that in control tanks. Amphipods were sensit ive to oil,

harpacticoids w e r e not (Elmgren a n d F r i t h s e n , 1 9 8 2 ) .

4 3 0

--

rml

c.-

Zu

16

12

8

4

0

Decay factor = e-0002T2

2 4 6 8 10 12 14

Temperature in “C (T)

F i g u r e 1 1 .--The effect of temperature on the decay of hydrocarbons

i n f i s h .

431

M i d d l e d i t c h e t a l . , 1982, found tha t shrimppopulations in Buccaneer o i l

f i e l d w e r e n o t a f f e c t e d by oil d e v e l o p m e n t s . O n t h e o t h e r h a n d , c h a n g e s i n

benthos i n s h a l l o w w a t e r w e r e r a t h e r p r o f o u n d i n A M O C O CADIZ s p i l l a r e a , a n d

a f t e r t h r e e y e a r s benthos c o m m u n i t i e s h a d n o t r e a c h e d t h e i r f o r m e r n o r n e w

e q u i l i b r i a (Conan, 1 9 8 2 ) . Species with short l ife cycles tend to replace

l o n g - l i v e d s p e c i e s .

I n TSESIS s p i l l a r e a , m o b i l e epibenthic m a c r o f a u n a w a s d r a s t i c a l l y r e d u c e d .

H o w e v e r , b i v a l v e s (Macoma balthica) i n c r e a s e d g r e a t l y ( L i n d e n e t a l . , 1 9 7 9 ) .

S m a l l b i v a l v e s s e r v e a s f o o d s o u r c e f o r m a n y d e m e r s a l f i s h s p e c i e s . T h u s , i t

c a n n o t b e a s s u m e d t h a t t h e c h a n g e s i n benthic

f r o m t h e f i s h e r i e s p r o d u c t i o n p o i n t o f v i e w .

5 . NUMERICAL SIMULATION OF THE SEDIMENTATION

5 . 1 O v e r v i e w o f t h e c o m p u t e r programme.

G e n e r a l

e c o s y s t e m a r e a l w a y s n e g a t i v e

OF OIL

T h e s u b r o u t i n e OILBOT f o r s e d i m e n t a t i o n o f o i l i s a p a r t o f a l a r g e r

p r o g r a m m e f o r n u m e r i c a l c o m p u t a t i o n s o f t h e e f f e c t s o f o i l o n m a r i n e f i s h e r i e s

e c o s y s t e m (DEMOiL). O n l y t h e s u b r o u t i n e OILBOT a n d a f e w o t h e r s u b r o u t i n e s

e s s e n t i a l t o i t a r e d e s c r i b e d a n d d o c u m e n t e d h e r e i n .

T h e c o n t r o l programme DEMOIL s e t s v a r i o u s p a r a m e t e r s a n d c a l l s o t h e r

s u b r o u t i n e s . T h e c o m p u t a t i o n s i n t h e e n c l o s e d m o d e l a r e d o n e i n a 4 9 x 54

g r i d , w i t h a g r i d s i z e o f 2 . 3 k m .

T h e i n d e x B L O ( i n p u t i n c o n t r o l p r o g r a m m e ) d e t e r m i n e s w h e t h e r t h e o i l

s o u r c e i s c o n t i n u o u s ( w e l l b l o w o u t ) o r i n s t a n t a n e o u s ( t a n k e r a c c i d e n t ) . T h e r e

4 3 2

a r e s e v e r a l i n d i c e s t o s e l e c t f o r

w i t h c u r r e n t s . A c u r r e n t subrout

movement of oi 1 on the bottom, wh

t h e m o d e o f t r a n s p o r t o f o i l o n t h e b o t t o m

ne (CUROIL) is used for computation of

ch i s e s s e n t i a l l y t h e s a m e a s t h a t u s e d f o r

a d v e c t i o n of s m e l l f r o m b a i t s , a n d i s d o c u m e n t e d b y O l s o n a n d L a e v a s t u , 1983.

T h e o i l d i s t r i b u t i o n i n t h e w a t e r i s c o m p u t e d b y R a n d C o r p o r a t i o n (Liu, 1983)

a n d p r o v i d e d t o t h i s p r o j e c t i n a g r i d i n 2 4 - h o u r t i m e s t e p . T h i s o i l

c o n c e n t r a t i o n f i e l d ( S ) i n w a t e r i s r e a d i n e v e r y t i m e s t e p a n d c o n v e r t e d t o

c o n c e n t r a t i o n s o f p p b . T h e f i e l d i s p r i n t e d o u t w i t h p r i n t i n g s u b r o u t i n e

PRIMFS ( o u t p u t s e e F i g u r e 9 ) . T h e f i e l d i s s c a l e d w i t h s c a l i n g i n d e x L U f o r

c o n v e n i e n t p r i n t i n g o f the a r r a y .

T h e s u b r o u t i n e EGGLAR is for computat

i n w a t e r t o d i f f e r e n t c o n c e n t r a t i o n s of o

on of the exposure of eggs ard larvae

1. Subroutine STAFIE computes the

c o r r e s p o n d i n g e x p o s u r e o f f i s h , b o t h t o o i l i n t h e w a t e r a s w e l l a s o i l o n t h e

b o t t o m . S u b r o u t i n e C O N F O O D c o m p u t e s t h e c o n t a m i n a t i o n ( a n d t a i n t i n g ) o f

s t a t i o n a r y a s w e l l a s m i g r a t i n g f i s h t h r o u g h t h e f o o d c h a i n . T h e l a s t - m e n t i o n e d

t h r e e s u b r o u t i n e s w i l l b e d o c u m e n t e d i n NWAFC/REEST P r o g r a m m e D o c u m e n t a t i o n

s e r i e s .

S u b r o u t i n e SILITA, inc luded in Chapter 5 . 3 , i s a 5 - p o i n t Laplacian t y p e

s m o o t h e r .

S u b r o u t i n e OILBOT

T h i s

i n f i r s t

p r e p a r e d

subroutine, reproduced in Chapter 5.3, inc’

time step. In the operational mode, depth

d a t a s t a t e m e n t o r f r o m t a p e o r c a r d s .

u d e s a s i m u l a t i o n o f d e p t h

s h o u l d b e r e a d i n f r o m a

433

F o u r d i f f e r e n t b o t t o m t e m p e r a t u r e s , t w o m i x e d layer d e p t h s , a n d t h r e e

wind s p e e d s a r e i n t r o d u c e d w i t h s t a t e m e n t s ( s e e I n p u t P a r a m e t e r s ) w h i c h c a n

b e s e l e c t e d f o r t h e r u n s b y t h e “ s e l e c t i o n p a r a m e t e r s ” ( K T , K p , a n d KM).

I n d i c e s f o r p l a n k t o n c o n c e n t r a t i o n s , s u s p e n d e d m i n e r o g e n m a t t e r , a n d t y p e o f

b o t t o m a r e a l s o i n t r o d u c e d i n t h e f i r s t t i m e s t e p .

In a l l o t h e r t i m e s t e p s , e x c e p t t h e f i r s t , t h e d e c a y o f t h e oil o n t h e

b o t t o m l e f t f r o m p r e v i o u s t i m e s t e p , i s c o m p u t e d b e f o r e a d d i n g n e w o i l

( f o r m u l a - s e e C h a p t e r 3 . 2 ) .

T h e c o m p u t a t i o n of t h e s e d i m e n t a t i o n o f t h e o i l i s d o n e i n 1 2 - h o u r t i m e

s t e p s ( r e p e a t e d i f 2 4 - h o u r t i m e s t e p f o r c a l l i n g o f the s u b r o u t i n e i s u s e d ) .

T h e s e l e c t i o n o f t h e c o m p u t a t i o n f o r m u l a ( s e e C h a p t e r 2 . 3 ) d e p e n d s o n t h e

n a t u r e o f t h e s p i l l ( c o n t i n u o u s o r i n s t a n t a n e o u s ) a n d w h e t h e r thermocline i s

p r e s e n t a t t h e g r i d p o i n t o r n o t .

A f t e r t i m e s t e p c o m p u t a t i o n s , t h e field i s s m o o t h e d ( s u b r o u t i n e SILITA)

a n d p r i n t e d ( s u b r o u t i n e PRIMFS).

434

5.2 Symbols and abbreviations used.

N o t e : S y m b o l s m a r k e d w i t h * a r e i n p u t p a r a m e t e r s .

*ALPHA

AO(N,M)

‘~AP D

‘~BB

~’B C F

;fB LO

‘~BW F

*CCF

“cCDF

$’D(N,M)

DDP

D FA

D I FAC

DIS

$’DL

EFA

FDD

FS

K

~’KA

S m o o t h i n g p a r a m e t e r ( 0 . 7 8 )

C o n c e n t r a t i o n o f o i l i n t h e b o t t o m n e p h e l o i d layer (ppb)

M i n i m u m d i s t a n c e f r o m b l o w o u t w h e r e s e d i m e n t a t i o n i s c o m p u t e d ( 2 . 5 k m )

B o t t o m t y p e i n d e x 1

s i l t a n d c l a y )

W i n d s p e e d c o e f f i c

0 . 3 - r o c k y , 0 . 6 - c o a r s e s a n d a n d g r a v e l , 1 . 5 - f i n e

e n t ( 0 . 0 0 1 5 , 0 . 0 0 1 )

I n d e x o f t h e m o d e o f c o m p u t a t i o n ; 2 - c o n t i n u o u s s o u r c e , l - i n s t a n t a n e o u s

s o u r c e

W i n d s p e e d c o e f f i c i e n t ( 0 . 0 0 1 6 , 0 . 0 0 1 )

D e p t h c o e f f i c i e n t ( 0 . 1 5 , 0 . 2 )

D e p t h c o e f f i c i e n t ( 0 . 1 5 , 0 . 2 ) ( P o s s i b i l i t y t o s e l e c t d i f f e r e n t

v a l u e s w i t h c o n t i n u o u s s o u r c e )

Depth in m e t e r s

Intermediate (depth factor)

Intermediate (depth exponent)

Intermediate (distance factor)

Distance factor (from blowout)

Grid size (m)

Intermediate (decay exponent)

Intermediate (turbulence factor) ( Fd)

Intermediate (turbulence factor) (Fs)

C o u n t e r o f 2 4 h t i m e s t e p s

I n d e x f o r t y p e o f b o t t o m c u r r e n t ; 1 - laminar (used in th is programme)

( 2 l a y e r t h i c k n e s s i n c r e a s i n g w i t h d i s t a n c e f r o m “ s o u r c e ” - u s e d i n

c o m p u t a t i o n o f d i s t r i b u t i o n o f s m e l l f r o m b a i t s )

435

>kKAL

*~p

,tKT

,tKU

~:KW

*LU

‘*ME

~’rMO

+NE

N

ApLD(i)

,kp p

‘~R

RR

*S(N, M)

SK

STK

T

,tTAT

~TB(i)

‘~TD

TDK

- I n d e x f o r c o m p u t a t i o n

l - c o m p u t e a d v e c t i o n

- I n d e x f o r p o t e n t i a l m

of oil advection on the bottom; O-no advection,

x e d l a y e r d e p t h v a l u e

- I n d e x f o r b o t t o m t e m p e r a t u r e v a l u e

- “ T y p e o f c u r r e n t ” i n d i c a t o r ; ( 1 - uni-directional i n u d i r e c t i o n ,

2 - u n i d i r e c t i o n a l i n v d i r e c t i o n ) , 3 - c u r r e n t i n b o t h c o m p o n e n t s

( U and v) - u s e d i n t h i s p r o g r a m m e

- I n d e x f o r w i n d s p e e d value

- P r i n t i n g a n d

s u b r o u t i n e O

- T o t a l n u m b e r

- m c o o r d i n a t e

s c a l i n g i n d e x ( s e e l i s t i n g i n t h e b e g i n n i n g o f

LBOT)

o f g r i d p o i n t s i n x d i r e c t i o n

o f b l o w o u t l o c a t i o n

- N u m b e r o f g r i d p o i n t s i n y d i r e c t i o n

Gr id point counter (y a x e s )

- Poten

- Relat

- R e l a t

i a l m i x e d l a y e r d e p t h ( m ) ( 2 v a l u e s g i v e n )

v e , c o n c e n t r a t i o n o f p l a n k t o n ( 1 . 0 t o 1.8)

ve amount o f minerogen suspended mat ter in the water (20 to 30)

I n t e r m e d i a t e ( m i n e r o g e n s u s p e n s i o n c o e f f i c i e n t )

- Oil c o n c e n t r a t i o n i n w a t e r i n p p b

- K , t i m e s t e p c o u n t e r

I n t e r m e d i a t e ( t i m e s t e p c o e f f i c i e n t ) (TKs)

- T i m e c o u n t e r i n m i n u t e s

- T i m e s t e p i n h o u r s

- B o t t o m t e m p e r a t u r e s ( “ C ) (4 v a l u e s g i v e n )

- T i m e s t e p in m i n u t e s , f o r c o m p u t a t i o n o f a d v e c t i o n o f o i l

( s u b r o u t i n e CUROI L )

- I n t e r m e d i a t e ( t i m e s t e p c o e f f i c i e n t ) (TKd)

4 3 6

T F A - I n t e r m e d i a t e ( t e m p e r a t u r e e x p o n e n t )

*U I - u c o m p o n e n t o f t h e c u r r e n t o n t h e b o t t o m ( i n m/mi n ) .

*VI - v c o m p o n e n t o f t h e c u r r e n t o n t h e b o t t o m ( i n m/min)

‘:W(i) - W i n d s p e e d ( m / s e e ) ( 3 v a l u e s g i v e n )

4 3 7

5.3 Programme DEMOIL and subroutines OILBOT, SILITA and PRIMFS.

PREIGRNI DEMOILDIME;J.SICHN S{4.5’, 54),PF(49,54}, D~49,54}, AO~49,54)> TB(4), F’LD{2), W~

“ E(5,2), SE(5,14) ,FE(!3),DIF{5,2)L-. ,CC)HMCH4 S, PF, D, AO, TB, PLD,W, E,!3E,FE)DIF’~

ZK,T, T13, DL, UI,VI,13LC), KAL, Kl),i4AI TATPRINT 30

20 FOFIM&l_(lHl, 5X, 201-lWIhli3 SPEED 10 M/’SEC ~’1)PRIN?- 3 1

31 F0RM,4T(/5X,2UHE0TT~l~ TEMP. El DEG.C//)PRINT 3 2

32 FCll?MA7(/5X,22i-!T!-iERMOCLINE DEPTH 2@’t//l~E=4:3l’?E=5flV.=1111-o=s.Bi-Cl=2 CCJNTIIWJLHJS S O U R C E , 13LCI=I Il$lSTANTAhtECJUS SOJRCE.13L=2300.T A T T I M E S T E P IN HOURSTAT=24.TI)=’W

10 T=K*2440.TIME IN M I N U T E SKAL= 1KAL=O - NO OIL MOVEMENT ON THE BC3TTUM, 1 OIL ADVECTED ON !30TTOPK(J - C(J~RENT INDEX, S E E CUR131L; KA - TURD!JLENCE INDEX(NO1 U S E D )L U - PRINT SCALING INDEXK(.).qKA=lLIJ=~Ur=o.VI=(I.READ(3, 12) {(5(NJM)*M=I, 54), N=I,49)

IZ FGRMAT(’?FH.C))C(3NCENTRATIC!N!3 IN PPM, C O N V E R T E D T~ P?13m ii N=l,N’E?3El 11 M=I,MES(N, N)=s(ruj~)/130~300c~.

4 3 8

4 3 9

cccccccccccr

;ccccc

ccc

SU13RCJI.JTINE Oli-E!CJT(S, K, TJ3, DL, D, AC?, T13, 13L0, UIJ VI, KU, KAL> T, KA, T A T )D I M E N 5 1 O N S(4S}54), D(49J54)JAOf~$9} 34), TB(J4), PL. D(2), W(2)D-DEPTHAIJ-OIL. ON THE 130 TTCIMTB-DOTTOM TEMPEI?ATURE, FOUR VALUES GIVENPLII-”il+ERMQCL I NE DEPTH, TWO V A L U E SW-W1!JI) SPEEI), T H R E E V A L U E SKT-I?.IEEX CIF TZl V A L U E C H O S E N FOR THE RUNKP-l NDEX OF PLD VALUEKM-INDEX O F !41ND VALUEBi_U=l INST14hiTANECiUS EiOURCE, = 2 C O N T I N U O U S WXJRCElJI-S’JF?FACE C’.JRRENT !3PEEDKAL=I COMPUTATION OF OIL MOVEMENT ON BOTTOMLU=I DEPTH llA”rA “LU=2 ZiECAY O F OIL O N THE 13(3TTOMLU=.3 OIL ON THE 130TTOtl BEF~RE AIIVECTIONL U = 4 C)IL ON THE BCITTC)M.LAYER TH1CKNE3S DECRE.%lNG) A D V E C T E DLU=5 ADVECTED i31L O N “T’HE BCITTOYl~~J=&) L’ONT#+MIFJ~T~DN INDEX, P E L A G I C F(3UDLU=i’ C O N T A M I N A T I O N I N D E X , DEMERSAL FCIC)IJNE=~~ME=54MO=3MU IS T H E M LOCATION OF 13LClWEiUTS I M U L A T I O N UF I)EP~H, S L O P I N G TOWARDS HIGHER N

DEPTH CAN BE READ IN

c EB - 130TT0M TYPE INDEXPP=l. 5R=20.BE=O. El

c S E T T I N G f3F I N D I C E S FOR INPUT PARAMETERSKT=3Kf=lKW=2

Cxxxxxxxxxxxxxxxxxxxxx ~~c DECAY C)F CIIL UN TFiE BC)TT(IM

IF(K--2)3C),25, 2325 DO 29 N=lJNE

DO 29 Pl=l,MEIF(Ail(hl,M~)25’,29,26

2A TFA={TBtKT)*”*2. 7)++0. 0 0 0 112FA=5. 15iSC2RTf13(Ri, M])EFA=- (TFA+DFA)AO(NJM)=AO(NJ M)*EXP{EFA)IF(TAT-12. )25’, 29>27

2 7 Ag(pJ, M)=AO{ti, tfl)*EXp (EFA)

25’ CCINTINUECxxxxxxxxxxxxxxxxxxxxxxxx

LU=2c C A L L FRIMFS(AO! T, UI, ~}X,DL, P\, KA,KAL,13Lt),LU)Cxxxxxxxxxxxxxxxxx:<xxxxxxx

30 IF(HLCkl)31~21,5ic INSTANTANEOUS SOURCE (TANKER ACCIDENT)

31 DO 45 !N=l,NEDD 43 PI=l, PIEIFIPLD(KP)-D(PJJ M)?401 33)33

c ND @YCNt)CLINE32 !3V.=w.2.: STIA=.3i/(3. +0 2*SV.?5.5 BCF=3.0C)15

CCF=C. 15RR=(R+O. l*D(rJJM)J/SQRT(DiN,ll) )FS=(~;;F%N{KW:+CCF/ (D(N, P?)*.%0. 7) l*STKAf3(N, i’~)=ACl!N, FI)+51N, M)*F!3*PP*FIR*1313~~(lK-~)45,45, 131

131 IF{T,%T-IZ. )45145~2737 #ICII,N ;x)=AO(N,P I)+5(N}M )*FSRFP+RR*EE

:Ja Ta 45,-1L THERW3CLINE PRESENT

40 IF~ii-I )45, 45/ 2S3= a“>=~

TDY/=SK/(3. +0. 5*SK)-J. 001nr!=--..

Cct==o. 20RR=(,~+~. I%~(Pd,~I))/sQ~T(D(~, I’I);

FDD=(BCF*W(Kid)+CCF/(D(N, M)*%C!. 7))*TDw:A:3(NJ PI)=AO(NJ M)+5(N, M)*FDD’*F’F*RP.*BSIF(K-1)45} 45, 132

:32 IFITaT-12. )45,45/4444 aCl(N. tl)=AU(PJ, M)+S(N, M)*FDD-zPP*HF:-*BE45 CtlftiTINUE

GO TO 70c CCINTII’WJt3US SOURCE (BLOW(2UT:)

5i Da 65 hl=l,NED(I 65 M=I,MEDIS=((M-MC))*O. OCI1*DL)

1F{1315) 53, 52, !5453 131 S=(2. C)O15 4 14 PD=2. 5

c Ml C~lWUTATIEml IN I M M E D I A T E AREA W BLCN4(3UTc I . E . 2. 5Ktl FRCIM T H E St3URCE

IF(DI.s-r4PD)&5,59,59’59 IF(PLP(KP )-D(N,M))6C), 55,!55

(: NO PYCNC)CLINE55 SK=K5 7 sTK=sK/{3.+o.2*sK)5= EIMF=O, C)016

CDF=O. 15RR=(R+O. l*D(NJM))/SQRT(D(N,M))DIFAC=(131S+4. )/(2(3.+0. luDIS)FS={GMF*M(KW)+CDF/(D(NJ M)**e. 7))MsTK.+{DIFAC)AC)(N, M)=A13(N,M)+S(N, M)*FS*PP*F!R%BHIF(K-I]65,A5>69

b? IF(TAT–12. ) 6 5 , 6 5 , 7 17 1 AD(N, M)=AD(N, M)+S(N, M)*FS*fP*RR.XEfi

(m TO &5c CUMPiJTATICIN MiTH THERMCICLINE P R E S E N T

6(J r%PD=2. 5IF(r)rs-AP13)65! &i$f51

61 SK=K62 STK=94/(3. +0. S*!3K)&#~ DNF=~.o~l

CDF=(:I. 2C)DI)P=D(N, M)**O. 7 4RF?=(R+O. l*I)(N,M)}/SQRT(D(N, Ml)DIFAC;=(DIS+4. ?/(20.+0. l*DIS)FS=(2NF*U( KldJ+CDF/DDP )*STK*(DIF,4C )i4Cl!N, i?)=At3(N, PI)+S(N, M)*FS*PP*!3R+J3BIF(~-~)65,65, 4/J

~~ IF{TAT–12. )65> 651 676:? AG(rd.r!)=A~!Fl,M?+.S[td, PI)%FS*PF+f?R*13i365 CC)NTINUE

cxxx:<xxxx)?(xxxxxxx~x ~x70 ALFHA=O. 7S

CALL SILITA(AO}ALPHA)I:;<XXX;<XXXX’<XXXXXXX”X Xxxxxxxx

L{J=QCAL-L FRIMFS(,%CI, T, Ul, VI,DL, K, KA>AAL, 2L:5,LU;

CX.XXK:XXXXX:<YXXXXXXX:<XXXXXXXIC)J RETURN

ENI)

4 4 2

443

SU13R!3UT1NE PRIMFS(S, T, UI, VI, DL, K> KA, KAL, BLO, LU)DIMENS1ON S(49 , 54) , 1S(49 ,54)NE=49ME=54

c IF(LU-I 12(22, 401, 420I F { LU-l ) 2 7 0 , 401/420 “

252 PRINT 201, K, T, IJI, VI, DL, KA, KAL201 FC)F!I’?AT( 11-il, 5X, lHHCJIL CONCEFJTRATIONS, 2X) 2HK=, 151 3X, 2HT=, F6. 0, 3X, 3 H U

21=, F&. 4, 3X, 3HVI=, F&. 4, 3X, 3HDL=~ F6. 0, 3X, 3HKA=, 13, 3X, 4HKAL=, 1 3 )270 PRIN” F 271> K~ DL?71, F13,RMAT( lH1, 5 X , lH-iCIIL CONCENTF?ATIUNS, .2X, 2HK=J 15, 3X, 3HDL=, F6. O )

c PRINT 2 0 3PR~(QT 5(J4

203 FORMAT ( /3X} 12 HCC)NC. I N PPB/)504 Ff3RMAT(5X> 19 HPRINT F A C T ( 3 R = 0. 1> 4X1 7HPPB/10. /}

Cxxxxxxxxx %xxxxxxxxxxxxxxCW T(J 212

401 PF?Ii~T 402402 FCIRMAT(l Hl, 5 X , 16 HDEPTHS IN METERS, )

GCI TCl 3204’20 IF(LU-3)421, 423, 4 3 04 2 1 PRINT 422/ K422 FC)RMAT(l H1, 5%,34 HDECAY t3F OIL CWJ T“HE 130TTCIM> PEE ICD, 15)

CC) To 2 1 2425 PF?If’JT 42!6, K424 FOR!fiiS-: {l Hl,5X,41HltiEW OIL CM BC1-iTOPl J3EFURE Al) ’JECTIOhl,PE RIO I), 15)

(Xl T!2 212430 IFtl<,%L-l )202 J431,4214.31 FRIPJT 432, K432 F(3RP!AT(1H1, 5X, 34HADVECTf33 ~lL ON THE HOTTtlPl, P~:F!IUI), 15)

PRINT 272,UI, VI272 FORMA”7(3X, 2H:JI=, F5. 2,3X, 3HVI=, F5. 2)

G O T(3 212Cxxxxxxxxxxxxxxxxxxxxxxxx

I F ( K A - 1 ) 2 1 O I 210~ 215210 FRIN”~ 2112ii FCN?MAT’(5X, 12H1-AMINAl<,FLOW/)

WI TO 212~1~ PRI~lT 21621b FORMAT(5X, 26Hl_AYER T H I C K N E S S INCREA’51NG/’)

CXXXY:<XXXX:<:<XXXXXX:<XXX:<XXc ’212 IF(liAL-l )230J22a# 220

212 IF(KA1.-l )53O,22Ur22O~~u IF{BLD—1 )~50, 25(3> 25225:2 DC) 225 N=I,NE

D O 225 M=l,MEIS(Pd, M}=S{N, Ml*iOOO.

S25 CCINTINUEPRIPJT 260

260 FOR!%AT(5X, 16HPRINT FACTOR = 1/)CO TC) 2 4 0

252 DO S53 N=lf N EDO 2 5 3 M=l,MEIS(N, M)=S(N,M)*iC)(3.

S33 CONTINUEPRINT 2 6 1

2 6 1 FORMAT(5X, l~HPRINT FACTOR = 0. l,4X}7HPPB/10.~)G O To 2 4 0 4 4 4

320 Do 3 2 1 N=l>NED O 321 M=l, I’IEIS(N, M)= S(N, tl)

321 C O N T I N U ECO TU 240

230 D(I 205 N=l)NED O 205 l’l=l, MEIS(N, M)= S(N, Mj*1000.

205 CClfiTINUE530 I)U 321 N=I,NE

m) 521 Pl=l,lmIS(N, M)=S(N}M)*iOO.

531 CCINTINUE24~:) PRINT 206, (N, N=i, 40)20& FmPle%T(/4x,4013)

PRINT 2 0 7 , (N, (15(N,M},M=l,~0)/N=l# 49)207 FORMAT(/lX, 12, 1X,40131

c Xxxxxxxxxxxxxxxxxxx(2CJ TCl 300

c XxxxxxxxxxxxxxxxxxxxPRINT 20E, (N, PJ=41,54)

20~ FORMAT{lHl}/’Y4X~ 1413~PRINT 2 0 9 , (N, (IS(l’J~M)~ M=41>54)}N=l, 4?)

209 F(JRMAT(/lX, 12, IX, 1413)c XXX)(XX

GO TO 300c Xxxxxx

PRINT 20S, (N> N=81, 1 2 0 )PRINT 207> fhl, {IS(l’J~M)~H=Bl? 120~sN=?~, !.00)

300 RETURNEND

445

. .

4 4 6

6. REFERENCES

Adams , C.E. and G.L. Weatherly.

1981. Some effects of suspended sediment stratification on an oceanic bottom

boundary layer. J. Geophys. Res. 86(c5) :4161-4172.

Augenfeld, J.M.

1 9 8 0 . Effects of Prudhoe Bay crude o i l c o n t a m i n a t i o n o n s e d i m e n t w o r k i n g r a t e s

o f Abarenicola pacifica. Marine Environmental Research

Baker, E.T.

3:307-313.

1 9 8 3 . S u s p e n d e d p a r t i c u l a t e m a t t e r d i s t r i b u t i o n , t r a n s p o r t , a n d p h y s i c a l

c h a r a c t e r i s t i c s i n t h e N o r t h A l e u t i a n S h e l f a n d S t . G e o r g e B a s i n l e a s e

a r e a s . M S , P a c . M a r . E n v . L a b . 134 p p .

B a s s i n , N.J. a n d T . Ichiye.

1977. F l o c c u l a t i o n behaviour o f s u s p e n d e d s e d i m e n t s a n d o i l e m u l s i o n s . J .—

S e d i m . P e t r o l . 47(2):671-677.

Blumer, M., H.L. Sanders, J.F. Grassle, a n d G.R. Hampson.

1 9 7 1 . A s m a l l o i l s p i l l . E n v i r o n m e n t 13(2):1-12.

B o e h m , P.D. a n d D.L. Fiest.

Bc

9 8 2 . Subsurface distributions of petroleum from an offshore we 1 blowout.

T h e IXTOC I b l o w o u t B a y df Campeche. E n v . Sci. Technol. 1 6 ( 2 ) 6 7 - 7 4 .

h m , P.D. a n d D.L. Fiest.

t h e o f f s h o r e1 9 8 0 . A s p e c t s o f t h e t r a n s p o r t o f p e t r o l e u m h y d r o c a r b o n s t o

benthos d u r i n g t h e IXTOC 1 b l o w o u t i n t h e B a y o f Campeche.

2 9 pp.

C l a r k , R . C . , J r . , a n d W.D. McLeod, J r .

M s . r e p o r t ,

1977. I n p u t s , t r a n s p o r t m e c h a n i s m s a n d o b s e r v e d c o n c e n t r a t i o n s o f p e t r o l e u m

i n t h e m a r i n e e n v i r o n m e n t . E f f e c t s o f P e t r o l e u m o n A r c t i c a n d S u b a r c t i c

M a r i n e E n v i r o n m e n t s a n d O r g a n i s m s . vol . 1 . N a t u r e a n d F a t e o f P e t r o l e u m

( D . C . Malins, ed. ):91-223.

4 4 7

C o n a n , G .

1 9 8 2 . T h e l o n g - t e r m e f f e c t s o f t h e A m o c o Cadiz o i l s p i l l . P h i l . T r a n s . R .

S o t . L e n d . B297:323-333.

Connell, D.W. a n d G.J. M i l l e r .

1981. Petro leum hydrocarbons in aquatic ecosystem - b e h a v i o r a n d e f f e c t s o f

s u b l e t h a l c o n c e n t r a t i o n s : P a r t 1 . C R C C r i t i c a l R e v i e w s i n E n v i r o n m e n t a l

C o n t r o l 11(1):37-104.

C o n n e l l , D.W. a n d G.J. M i l l e r .

1 9 8 1 . P e t r o l e u m h y d r o c a r b o n s i n a q u a t i c e c o s y s t e m s - b e h a v i o r a n d e f f e c t s o f

s u b l e t h a l c o n c e n t r a t i o n s : P a r t I l . C R C C r i t i c a l R e v i e w s i n E n v i r o n m e n t a l

C o n t r o l 11(2):105-162.

C o n o v e r , R.J.

1971. Son-e r e l a t i o n s b e t w e e n z o o p l a n k t o n a n d B u n k e r C o i l i n Chedabucto B a y

followinq t h e w r e c k o f t h e t a n k e r A r r o w . J . F i s h . R e s . B d . C a n a d a 28:1327-30.

D’ OZOUV

1979.

s p i

-.=-

h e , L . , M.O. H a y e s , E.R. Grundlach, W.J. S e x t o n , a n d J . Michel.

Occurrence of oi l in offshore bottom sediments at the Amoco Cadiz oil

1 s i t e . Proc. 1979 O i l S p i l l C o n f e r e n c e . A m . P e t r . I n s t . , E P A a n d

USCG. 1 8 7 - 1 9 1

E l m g r e n , R . , G.A. V a r g o , J.R. Grassle, J.P. Grassle, D.R. Heinle, G . Langlois,

a n d S.L. Vargo.

1980. Trophic interactions in experimental marine ecosystems perturbed by oil.

M i c r o c o s m s i n E c o l o g i c a l R e s e a r c h (J.P. Giesy, E d . ) , Techn. I n f o . C e n t e r .

U . S . D e p t . E n e r g y , Symp. S e r . 52:779-800.

Elmgren, R . a n d J.B. F r i t h s e n .

1 9 8 2 . T h e u s e o f e x p e r i m e n t a l e c o s y s t e m s f o r e v a l u a t i n g t h e e n v i r o n m e n t a l

i m p a c t s o f p o l l u t a n t s : A c o m p a r i s o n o f a n o i l spill i n t h e B a l t i c S e a a n d

t w o l o n g - t e r m , l o w - l e v e l o i l a d d i t i o n e x p e r i m e n t s i n mesocosms. I n G.D. Grice—

a n d M.R. R e e v e (eds), M a r i n e Mesocosms. S p r i n g e r - V e t - l a g , H e i d e l b e r g : 1 5 3 - 1 6 5 .

Elmgren, R . , S. H a n s o n , U . L a r s s o n , B .

1 9 8 3 . T h e “Tsesis” o i l s p i l l : A c u t e

M a r i n e B i o l o g y 73:51-65.

Sundel i n , a n d P.. D. Boehm.

a n d l o n g - t e r m impact o n t h e benthos.

Falk-Petersen, I.B. a n d S . Loenning.

(MS) E f f e c t s o f h y d r o c a r b o n s o n m a r i n e e g g s a n d l a r v a e . MS r e p o r t , U n i v .

o f T r o m s o e , N o r w a y .

F a y , J.A.

1 9 6 9 . T h e s p r e a d o f o i l s l i c k s o n a c a l m s e a . I n : O i l o n t h e S e a (D.P.

Hoult, ed.) :53-63.

G o r d o n , D . C . J r . , J . D a l e a n d P.D. K e i z e r .

1979. I m p o r t a n c e o f s e d i m e n t w o r k i n g by the d e p o s i t - f e e d i n g polychaete

Arenicola m a r i n a o n t h e w e a t h e r i n g r a t e o f s e d i m e n t - b o u n d o i l . J . F i s h .

R e s . B d . C a n a d a 3 5 ( s ) :591-603.

Grassle,

1 9 8 1 .

l o w

Gundlach

1 9 8 3 .

J . F . , R . Elmgren a n d J.P. Grassle.

R e s p o n s e o f

eve 1, ch ron

E . R . , P . D

T h e f a t e o f

benthic communities in MERL experimental ecosystems to

c additions of No. 2 fuel oil. M a r . E n v . R e s . 4:279-297.

B o e h m , M . M a r c h a n d , R.M. A t l a s , D.W. W a r d , D . A . W o l f e .

A m o c o Cadiz oi l . S c i e n c e 221:122-129.

Hellstrom, T . a n d K.B. Doving.

1 9 8 3 . P e r c e p t i o n o f d i e s e l o i l b y c o d (Gadus m o r h u a L . ) . A q u a t i c T o x i c o l o g y

4:301-315.

H o f f m a n , E.J. a n d J.G. Q u i n n .

1978. A comparison of Argo Merchant oil and sediment hydrocarbons from

N a n t u c k e t S h o a l s . I n t h e W a k e o f t h e A r g o Merchant:80-88.

449

Howgate, P. A., A.D. McIntyre, A. Eleftheriou, P.R. Mackie, K-J. whittle and

J . F a r m e r .

1977. P e t r o l e u m t a i n t i n g i n

171:143.

Jernel~v, A r n e a n d O . Lind&.

Ka

981. IXTOC 1: A c a s e s t u d y

f i s h .

of the

Rapp . P.V. Reun. C o n s . I n t . Expl. M e r

w o r l d ’ s l a r g e s t o i l s p i l l . Ambio. 1 9 8 1 .

k o , R . D . , T.A. D u k e , a n d R.W. F l i n t .

1 9 8 2 . W e a t h e r e d IXTOC I o i l e f f e c t s o n e s t u a r i n e benthos. E s t u a r i e s , C o a s t a l

a n d S h e l f S c i e n c e 1s:75-84.

K a n t e r , R . G . , R.C. Wingert, W.H. Vick, M.S. S o w b y , a n d C.J. Foley.

1 9 8 3 . C a l i f o r n i a c o m m e r c i a l / s p o r t f i s h a n d s h e l l f i s h o i l t o x i c i t y s t u d y . v o l . 1

E x e c u t i v e S u m m a r y . MBC A p p l i e d E n v i r . S c i e n c e s a n d S c i e n c e A p p l i c a t i o n s ,

Calif. 2 6 p p .

K e i z e r , P . D . , T.P. A h e r n , J . D a l e a n d J.H. Vandermeulen.

1 9 7 8 . R e s i d u e s o f

t h e A r r o w s p i l l .

L a e v a s t u , T .

1 9 7 6 . C l a s s i f y i n g

B u n k e r C oi l in Chedabucto B a y , N o v a S c o t i a , 6 y e a r s a f t e r

J . F i s h . B e s . B d . C a n a d a 3 5 ( 5 ) :5z8-537.

a n d f o r e c a s t i n g n e a r - s u r f a c e o c e a n t h e r m s ”

T o p i c s i n O c e a n E n g i n e e r i n g (C.L. B r e t s c h n e i d e r , E d . ) . Gu’

Larsonneur, a n d L . L e B o r g n e .

s t r u c t u r e .

f Publ. Co. 7 0 - 8 5 .

1 9 8 1 . T h e p o l l u t i o n o f s u b l i t t o r a l s e d i m e n t s i n t h e n o r t h o f B r i t t a n y b y

h y d r o c a r b o n s f r o m t h e A m o c o Cadiz: D i s t r i b u t i o n a n d E v o l u t i o n . A m o c o Cadiz.

F a t e s a n d E f f e c t s o f t h e O i l S p i l l . P r o c . Int. Symp., C e n t r e Oceanol. d e

B r e t a n g e , Brest, N o v . 1 9 7 9 .

L a u b i e r , L .

1980. T h e A m o c o C a d i z O i l S p i l l : A n E c o l o g i c a l I m p a c t S t u d y . Ambio 9(6):268-276,

4 5 0

Lind~n, O . , R . Elmgren, a n d

1979. T h e Tsesis o i l s p i

Baltic Sea. Ambio 8 ( 6 )

P. Boehm.

1. Its impact on the coastal ecosystem of the

244-253.

Lind~n, O . , J . Mattsson, a n d M . N o t i n i .

1 9 8 3 . A s p i l l o f l i g h t f(!el o i l i n t h e B a l t i c S e a . 1 9 8 3 Oil S p i l l Conf.

5 1 7 - 5 2 0 .

L i u , D .

1 9 8 3 . D i s p e r s i o n o f o i l u n d e r s t o c h a s t i c w e a t h e r s t a t e s . R a n d C o r p . ,

S a n t a M o n i c a , M S .

Mackie, P . R . , R . H a r d y a n d K.J. W h i t t l e .

1 9 7 8 . P r e l i m i n a r y a s s e s s m e n t o f t h e p r e s e n c e o f o i l i n t h e e c o s y s t e m a t

Ekofisk a f t e r t h e b l o w o u t , A p r i l 2 2 - 3 0 , 1 9 7 7 . J . F i s h . R e s . B d . C a n a d a

3 5 ( 5 ) : 5 4 4 - 5 5 1 .

Mal i n k y , G . a n d D.G. Shaw.

1979. M o d e l i n g t h e a s s o c i a t i o n o f p e t r o l e u m h y d r o c a r b o n s a n d s u b - a r c t i c

s e d i m e n t s . 1 9 7 9 O i l S p i l l C o n f . 6 2 1 - 6 2 3 .

Marchand, M . a n d M.P. Capra

1981. Suivi de la pollut

sediments marins. In:

par les hydrocarbures.

M c I n t y r e , A.D.

1 9 8 2 . O i l p o l l u t i o n

Michel, P .

1984. E v o l u t i o n d e

C.M. 1984/E:23, 1 2

s .

on d e I ’ A m o c o Cadiz c l a n s I’eau de mer e t les

A m o c o C a d i z , c o n s e q u e n c e s d’une p o l l u t i o n accidentelle

C e n t . Natl. E x p l o i t . O c e a n s , P a r i s , F r a n c e , pp 23-54.

a n d f i s h e r i e s . P h i l . T r a n s . R . S o t . L e n d . B297:401-411.

a c o n t a m i n a t i o n p a r les hydrocarbures d u “ G i n o ” . I CES

PP.

451

Middled itch, B. A., B. Basile, and E.S. Chang.

1982. Alkanes i n s h r i m p f r o m t h e B u c c a n e e r o i l f i e l d . Bull. E n v i r o n .

C o n t a i n . Toxicol. 29:18-23.

M o o r e , S.F. a n d R.L. Dwyer.

1 9 7 4 . Effects of oil on marine organisms: A critical assessment of published

d a t a . W a t e r R e s e a r c h 8:819-827.

N o r g e s O f f e n t l i g e U t r e d n i n g e r , N O U 1980:25.

1 9 8 0 . Muligheter og konsekvenser v e d petroleumsfunn n e r d f o r 62”N.

Universi tetsforlaget, 0s10. 124 pp.

Olla, B.L. a n d A.T. Bejda.

1 9 8 2 . Effects of oiled sediment on the burrowing behaviour of the hard clam,

Mercenaria m e r c e n a r i a . M a r i n e E n v i r o n m e n t a l R e s e a r c h 9:183-193.

O l s e n , S . a n d T . Laevastu.

1 9 8 3 . F i s h a t t r a c t i o n t o b a i t s a n d e f f e c t s o f c u r r e n t s o n t h e d i s t r i b u t i o n o f

s m e l l f r o m b a i t s . NWAFC P r o c e s s e d R p t . 83-05, 45 pp.

Parker, C.A., M. Freegarde, and C.G. Hatchard.

1 9 7 1 . T h e e f f e c t o f s o m e c h e m i c a l a n d b i o l o g i c a l f a c t o r s o n t h e d e g r a d a t i o n

o f c r u d e o i l a t s e a . I n : W a t e r P o l l u t i o n b y O i l ( P . Hepple, c d . ) ,—

p . 2 3 7 - 4 4 .

P a y n e , J . F . , J.W. Kiceniuk, W.R. S q u i r e s , a n d G.L. F l e t c h e r .

1 9 7 8 . P a t h o l o g i c a l c h a n g e s i n a m a r i n e f i s h a f t e r a 6 - m o n t h e x p o s u r e t o

p e t r o l e u m . J . F i s h . R e s . B d . C a n a d a . 35:665-667.

P a y n e , J . F . , J . K i c e n i u k , a n d R . Misra.

1 9 8 3 . S u b l e t h a l e f f e c t s o f p e t r o l e u m h y d r o c a r b o n s o n a d u l t A m e r i c a n l o b s t e r

(Homarus amer icanus) . C a n . J . F i s h . Aquat. S c i . 40:705-715.

4 5 2

P a y n e , J. R., G.S. Smith, L. Lambach, and P.J. Mankiewicz.

1980. Chemical weathering of petroleum hydrocarbons in sub-Arctic sediments:

Results of chemical analyses of naturally weathered sediment plots spiked

with fresh and artificially weathered Cook Inlet crude oil. S c i e n c e

A p p l i c a t i o n s , I n c . , L a J o l l a , M S r e p o r t , 5 0 p p .

P a y n e , J . R . , B.E. K i r s t e i n , G.D. McNabb

and W. Horn.

1 9 8 2 . M u l t i v a r i a t e a n a l y s i s o f petro”

J.L. L a m b a c k , C . deOlivera, R.E. J o r d a n ,

e u m h y d r o c a r b o n w e a t h e r i n g i n t h e s u b a r c t i c

marine environment. Igtls Oil Spill Conference, 42s-434.

Poirier, O.A. and G.A. Thiele.

1 9 4 1 . D e p o s i t i o n o f f r e e o i l b y s e d i m e n t s s e t t l i n g i n s e a w a t e r . B u l l . A m .

A s s o c . P e t r o l e u m G e o l o g i s t s 25(12):2170-2180.

R i c e , S . D . , J.W. S h o r t , C.C. B r o d e r s o n , T.A. Mecklenburg, D . A . M o l e s , C.J. Misch,

D.L. C h e a t h a m a n d J.L. K a r i n e n .

1 9 7 6 . A c u t e t o x i c i t y a n d u p t a k e - d e p u r a t i o n s t u d i e s w i t h C o o k I n l e t c r u d e

o i l . P r u d h o e B a y c r u d e o i l , N o . 2 f u e l oil a n d s e v e r a l s u b a r c t i c m a r i n e

o r g a n i s m s . N o r t h w e s t a n d A l a s k a F i s h e r i e s C e n t e r , N a t . M a r . F i s h . S e r v . ,

N O A A , Proc. R e p t . 9 0 p .

S a n d e r , H . L . , J.F. Grassle, G.R. H a m p s o n , L.S. M o o r e , S . G a r n e r - P r i c e , a n d

C.C. J o n e s .

1 9 8 0 . A n a t o m y o f a n o i l s p i l l : l o n g t e r m e f f e c t s f r o m t h e g r o u n d i n g o f the

b a r g e ; lordia o f f W e s t Falmouth, M a s s a c h u s e t t s . J . M a r . R e s . 38(2):265-380.

V a n d e r m e u l e n , J.H.

1 9 7 8 . Introduction to the Symposium on Recovery Potential of Oiled Marine

N o r t h e r n E n v i r o n m e n t s . J. Fish. ReS. Bd. of Canada. 35(5):505-508.

4 5 3

Vandermeulen, J.H. and D.C. Gordon.

1976. R e e n t r y o f 5 - y e a r - o l d s t r a n d e d B u n k e r C f u e l o i l f r o m a l o w - e n e r g y

beach into the water, sediments and biota of Chedabucto Bay, Nova Scotia.

J. F i s h . R e s . B d . C a n a d a 33:2002-2010.

4 5 4