taller de transformaciones lineales

8

Click here to load reader

Upload: taramina

Post on 06-Jul-2015

293 views

Category:

Education


3 download

DESCRIPTION

Se trata de un taller de transformaciones lineales del Jaime Isaza Cadavid

TRANSCRIPT

Page 1: Taller de transformaciones lineales

Aseciencia amv

Taller de transformaciones lineales

Desde que estábamos peques nos han ensañado que una función, en matemáticas,

es como una operación (una operación es un cambio. Cuando un médico te opera,

cambia algo en vos) que toma un número o una variable de un conjunto y lo

convierte en otro número. O sea que relaciona ése número que tomó con otro

número. Por ejemplo: ( ) . Toma la y la eleva al cuadrado.

En algebra lineal existen unas funciones que toman vectores de un espacio vectorial

y los convierten en otros vectores, puede ser del mismo espacio vectorial o de otro

espacio vectorial. A esas funciones se les llama Transformaciones lineales. Lo

que quiere decir que es una función, pero ya no aplicada a números o variables si

no, aplicada a vectores.

Para que una función de este tipo sea transformación lineal (porque en ocasiones

no lo es) se deben dar dos condiciones o requisitos:

1. ( ) ( ) ( )

2. ( ) ( )

Solución del taller:

1. Determine si la transformación T: R2 R3 definida por ( ) (

) es una transformación lineal.

Esta transformación lineal toma elementos (vectores) de R2 y los convierte en

vectores de R3. Miremos si cumple con las condiciones:

Sean R2 tales que =( ) y = (

).

( ) (( ) (

))= (

) Aquí aplicamos la definición de

la transformación que nos piden:

Page 2: Taller de transformaciones lineales

Aseciencia amv

(

)= (

( ) ( )

( )

( ) ( )) Aquí podemos deshacer los paréntesis al

interior de la matriz y aplicar la propiedad conmutativa de la suma para luego

separar la matriz en dos matrices:

(

( ) ( )

( )

( ) ( ))= (

)= (

) + (

)

Pero observe que, por la forma como está definida la transformación lineal dada,

(

) = ( ) y (

) = ( ) y con esto acabamos de demostrar que

( ) ( ) ( )

Vamos a demostrar, ahora, la segunda condición para que se dé una T.L esto

es: ( ) ( ).

( ) = ( ( )) = ((

)) = (

) = (

( )

( )) =

(

). Pero recuerde que (

) = ( ). Luego, (

) =

( )

Por lo tanto la transformación dada es lineal.

2. Determine si la transformación T: R2 R3 definida por

( ) ( ) es una transformación lineal.

Al igual que en el punto anterior, hay que demostrar que se cumplen las dos

condiciones para ser transformación lineal. Sean y dos vectores pertenecientes a

R2 y tales que: =( ) y = (

) , como en el ejercicio anterior.

Page 3: Taller de transformaciones lineales

Aseciencia amv

( ) (( ) (

))= (

) (

)=

(

( ) ( )

( ) ( ) ( )

) Deshagamos los paréntesis interiores,

apliquemos propiedad conmutativa de la suma y, de una, separemos la matriz

en una suma de matrices (un paso menos que los que hicimos en el punto

anterior). Esto es:

(

( ) ( )

( ) ( ) ( )

) = (

) + (

). Observe que

efectivamente (

) = ( ), pero (

) no es igual a ( ) y no es

igual porque a le falta un dos sumado, debería ser .

Como la primera condición no se cumple, sobra demostrar la dos.

No es una transformación lineal.

3. Sea T: R2 R2 una transformación lineal tal que ( ) ( ).

Demuestre que es un monomorfismo.

Se deben mirar, en primer lugar, unas definiciones sencillas:

Sea la transformación lineal . Entonces:

a. ( ( )) , se dice que la transformación es inyectiva o que es un

monomorfismo.

b. Si ( ( )) , se dice que la transformación es suprayectiva,

sobreyectiva o que es un epimorfismo.

c. Si se cumplen al mismo tiempo las dos anteriores, estamos hablando de una

transformación lineal biyectiva o de un isomorfismo.

Ahora sí, demostremos lo que piden:

Page 4: Taller de transformaciones lineales

Aseciencia amv

El núcleo de denotado por está dado por { ( ) } o

sea que, por la forma como está definida la transformación, obtenemos el

siguiente sistema de ecuaciones:

De este sistema obtengo que y .

Observe que el único vector para el que se cumplen estas condiciones es el

vector ( ) y recuerde que el vector cero del espacio vectorial que sea, no

hace parte de la base de ese espacio vectorial.

Así las cosas el vector ( ), que es el único vector para el que se cumple la

transformación, no hace parte de la base de y ( ( )) .

Por la definición a. de las definiciones dadas arriba, estamos ante un

monomorfismo.

.

4. Considere la transformación lineal T: R3 R2 tal que

( ) ( ). Determine ( ( )).

Para que les estén preguntando esto, deben haber visto qué es el núcleo y la

imagen de una transformación lineal. Veamos los conceptos fundamentales

de estos dos términos:

. El núcleo de denotado por está dado por:

{ ( ) }. Las llaves indican que es un conjunto (o un

subconjunto) y lo que hay dentro de las llaves indica que es el conjunto de

vectores que pertenecen al campo y que al aplicarles la transformación

obtenemos el vector cero.

La imagen de denotada por es:

{ ( ) }. Dice que hay un conjunto

de vectores en los cuales se convierten los vectores al aplicarles la

transformación.

Page 5: Taller de transformaciones lineales

Aseciencia amv

Ahora sí. El ejercicio: hallemos el núcleo de

La transformación lineal de este ejercicio convierte los vectores de R3 en

vectores de R2 tales que ( ) ( ). Pero por definición

de núcleo de debe dar un vector ( ), o sea que se debe dar que:

De este sistema obtengo que: y

O sea que el vector para el que se obtuvo ese resultado es ( )

Sustituyendo por 1, esto es , obtengo el vector ( ).

Este vector es el único de R3 al que si le aplico la transformación dada obtengo

el vector cero, los otros a los que les pase eso serán linealmente dependientes

de ( ). Queda entonces claro que ( ( ))

Existe un teorema que dice que la dimensión del espacio donde está el

dominio de (que es R3 cuya dimensión es 3), es igual a

( ( ))+ ( ( )). ( ( )) Despejando:

( ( ))

5. Determine si la transformación T: R2 R2 tal que ( ) ( )

En este ejercicio sucede exactamente igual que en el ejercicio 2. Resuélvalo y

practique.

6. Determine si la transformación T: R3 R2 tal que [ ] (

) dada de en

es lineal.

Sean = (

) y =(

). ( )= ((

) (

))

(

) = (

) = (

) + (

).

Page 6: Taller de transformaciones lineales

Aseciencia amv

Observe que ( ) = ( ), pero (

) ( ) porque en vez de un 1 (que es el que

debería tener) tiene un 0.

No es una transformación lineal.

7. Determine si la transformación T: R2 R tal que ( )= dada de en es

lineal.

Sean y dos vectores pertenecientes a R2 y tales que: =( ) y = (

)

( ) (( ) (

))= (

) = ( )( ) =

. Claramente se ve que con ningún ordenamiento que se dé

obtendremos o , que es lo que necesitamos.

8. Determine si la transformación dada de en es lineal T: Mnn Mnn tal que

T(A)=AtA

9. Sea una transformación lineal de R2 R3 tal que ( ) = (

) y

( ) (

) . Encuentre: a. (

) ; b. (

)

Existe un teorema que dice que si se conoce el efecto de una transformación lineal

sobre los vectores de la base de un campo vectorial (cuando el campo vectorial

tiene dimensión finita y es el dominio de la transformación), entonces se conoce el

efecto sobre cualquier otro vector de esa base.

a. Observe que ( ) = 2(

) + 4(

) , entonces (

) = 2 (

) + 4 (

)

Page 7: Taller de transformaciones lineales

Aseciencia amv

( ) = 2(

) + 4(

) = (

) + (

) (

) = (

)

Los vectores ( ) y (

) nos los dio el ejercicio cuando nos dijo que (

) = (

)

y ( ) (

) .

b. De manera similar al punto a. ( ) = -3(

) + 7(

) o sea que

( ) = -3 (

) + 7 (

) (

) = -3(

) + 7(

) = (

) + (

)

( ) = (

)

10. Para la transformación : R3 R3 definida por ( )

( ).

a. El núcleo de y su dimensión.

b. El recorrido de y su dimensión.

c. Demostrar que R3 = ( ) (R3)

Saquemos el núcleo de , para ello construyamos la matriz asociada a la

transformación. La base canónica de R3 es: ( ) ( ) y ( ). Apliquemos a

cada uno de estos tres vectores la transformación dada:

( ) ( ) ; ( ) ( ) ; ( ) ( )

Estos vectores que resultaron son la imagen de , generan la matriz asociada a

colocándolos como columnas. La matriz que resulta es:

Page 8: Taller de transformaciones lineales

Aseciencia amv

(

). Como dijimos las columnas de esta matriz son la imagen de

pero para determinar la dimensión esas columnas deben ser L.I. Observe que la

columna del medio y la de la derecha con L.D (a la del medio le suman -1 para

obtener la de la derecha). Así las cosas ( ) (

) son la imagen de .

Para hallar el núcleo tomo las relaciones que definen la transformación y las igualo a

cero, como hicimos en el ejercicio 4. Realícelo para que practique, le debe dar el

vector ( ). En conclusión:

a. El núcleo de y su dimensión:

= {( )} y su dimensión es 1.

b. El recorrido de y su dimensión:

= {( ) (

)} y su dimensión es 2.

c. Demostrar que R3 = ( ) (R3)

Se ve como al sumar la dimensión del núcleo y la dimensión de la imagen, esto es

, que es la dimensión de R3.