tam 251 equation sheetmechref.engr.illinois.edu/sol/formulasheet.pdftam 251 equation sheet page 2...

3
TAM 251 E QUATION S HEET Main Equations Stress σ avg = F A τ avg = V A Strain eng = δ L 0 true = ln L f L 0 γ = δ x L y + δ y L x Constitutive Relations σ = E τ = Material Properties (Isotropic) ν = - lat long G = E 2(1 + ν ) Thermal Expansion th = α ΔT δ th = αL 0 ΔT Axial Loading δ = FL 0 EA σ = F A Torsion φ = TL 0 GJ τ = J γ = φρ L 0 Stiffness and Flexibility k axial = EA L 0 = 1 f axial k torsion = GJ L 0 = 1 f torsion Bending σ = Mc I Thin-Walled Pressure Vessels σ h = pr t σ a = pr 2 t Transverse Shear τ = VQ It q = VQ I Miscellaneous Distributed Loads, Shear, & Bending Moments dV dx = -w dM dx = V Inclined Plane: Normal Stress σ n = σ x cos 2 θ +2 τ xy sin θ cos θ + σ y sin 2 θ Inclined Plane: Shear Stress τ n,s =(σ y - σ x ) sin θ cos θ + τ xy ( cos 2 θ - sin 2 θ ) Tresca Criterion |σ 1 | = σ yield , |σ 2 | = σ yield when σ 1 2 have the same sign |σ 1 - σ 2 | = σ yield when σ 1 2 have the opposite sign Von-Mises Criterion σ 2 1 - σ 1 σ 2 + σ 2 2 = σ 2 yield TAM 251 Equation Sheet Page 1 Apr. 2019 TAM 251 Equation Sheet Page 1 Apr. 2019 TAM 251 Equation Sheet Page 1 Apr. 2019

Upload: others

Post on 22-Jan-2021

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TAM 251 EQUATION SHEETmechref.engr.illinois.edu/sol/FormulaSheet.pdfTAM 251 Equation Sheet Page 2 Apr. 2019. Beam Deflection Diagram Max. Deflection Slope at End Elastic Curve ymax

TAM 251 EQUATION SHEET

Main Equations

Stress σavg =F

Aτavg =

V

A

Strain εeng =δ

L0εtrue = ln

Lf

L0γ =

δxLy

+δyLx

Constitutive Relations σ = Eε τ = Gγ

Material Properties (Isotropic) ν = − εlatεlong

G =E

2(1 + ν)

Thermal Expansion εth = α∆T δth = αL0∆T

Axial Loading δ =F L0

EAσ =

F

A

Torsion φ =T L0

GJτ =

T ρ

Jγ =

φρ

L0

Stiffness and Flexibility kaxial =EA

L0=

1

faxialktorsion =

GJ

L0=

1

ftorsion

Bending σ =Mc

I

Thin-Walled Pressure Vessels σh =pr

tσa =

pr

2t

Transverse Shear τ =V Q

I tq =

V Q

I

Miscellaneous

Distributed Loads, Shear,& Bending Moments

dV

dx= −w dM

dx= V

Inclined Plane: Normal Stress σn = σx cos2 θ + 2τxy sin θ cos θ + σy sin2 θ

Inclined Plane: Shear Stress τn,s = (σy − σx) sin θ cos θ + τxy(cos2 θ − sin2 θ

)

Tresca Criterion

|σ1| = σyield, |σ2| = σyieldwhen σ1, σ2 have thesame sign

|σ1 − σ2| = σyieldwhen σ1, σ2 have theopposite sign

Von-Mises Criterion σ21 − σ1σ2 + σ2

2 = σ2yield

TAM 251 Equation Sheet Page 1 Apr. 2019TAM 251 Equation Sheet Page 1 Apr. 2019TAM 251 Equation Sheet Page 1 Apr. 2019

Page 2: TAM 251 EQUATION SHEETmechref.engr.illinois.edu/sol/FormulaSheet.pdfTAM 251 Equation Sheet Page 2 Apr. 2019. Beam Deflection Diagram Max. Deflection Slope at End Elastic Curve ymax

Stress Transformations

Plane Stress

σx′ =σx + σy

2+σx − σy

2cos(2θ) + τxy sin(2θ)

σy′ =σx + σy

2− σx − σy

2cos(2θ) − τxy sin(2θ)

τx′y′ = −σx − σy2

sin(2θ) + τxy cos(2θ)

Mohr’s Circle σavg =σx + σy

2R =

√(σx − σy

2

)2

+ τ 2xy

Principal Stresses σ1 = σavg + R σ2 = σavg − R τmax = R

Plane Orientations tan 2θp =2τxy

σx − σytan 2θs = −σx − σy

2τxy

Moments and Geometric Centroids

Q = yA Ix =

∫A

y2 dA Jo =

∫A

ρ2dA y =1

A

∫A

ydA

Rectangle x

y

b

h Ix =1

12bh3

Circle

ry

x Ix =π

4r4 Jz =

π

2r4

Semicircle x

y

x`

ryIx =

π

8r4 Ix′ =

8− 8

)r4 y =

4r

Parallel Axis Theorem Ic = Ic′ + Ad2cc′

Buckling

Critical Load Pcr =π2EI

(Le)2

pinned-pinned Le = L

pinned-fixed Le = 0.7L

fixed-fixed Le = 0.5L

fixed-free Le = 2L

TAM 251 Equation Sheet Page 2 Apr. 2019TAM 251 Equation Sheet Page 2 Apr. 2019TAM 251 Equation Sheet Page 2 Apr. 2019

Page 3: TAM 251 EQUATION SHEETmechref.engr.illinois.edu/sol/FormulaSheet.pdfTAM 251 Equation Sheet Page 2 Apr. 2019. Beam Deflection Diagram Max. Deflection Slope at End Elastic Curve ymax

Beam Deflection

DiagramMax. Deflection Slope at End Elastic Curve

ymax θ y(x)

y P

xymax

L

−P L3

3EI−P L

2

2EIy(x) =

P

6EI

(x3 − 3Lx2

)

y

x

w

ymaxL

−wL4

8EI−wL

3

6EIy(x) = − w

24EI

(x4 − 4Lx3 + 6L2x2

)

y

ymax

x

L

M

−ML2

2EI−ML

EIy(x) = − M

2EIx2

yw

ymax

x

L

− 5wL4

384EI± wL3

24EIy(x) = − w

24EI

(x4 − 2Lx3 + L3x

)

yL2

PL2

ymax

x − P L3

48EI± P L2

16EI

For 0 ≤ x ≤ L2

y(x) =P

48EI

(4x3 − 3L2x

)

by

x

P

ymax

a

A B

Lxm

For a > b

−P b(L2 − b2

)3/29√

3EIL

at xm =

√L2 − b2

3

θA = −P b(L2 − b2

)6EIL

θB = +P a

(L2 − a2

)6EIL

For x < a :

y(x) =P b

6EIL

[x3 − x

(L2 − b2

)]For x = a :

y = −P a2 b2

3EIL

yM

ymax

A B

Lxm

x

− ML2

9√

3EI

at xm =L√3

θA = −ML

6EI

θB = +ML

3EI

y(x) =M

6EIL

(x3 − L2x

)

TAM 251 Equation Sheet Page 3 Apr. 2019TAM 251 Equation Sheet Page 3 Apr. 2019TAM 251 Equation Sheet Page 3 Apr. 2019