tema 2 siselec en

Upload: enric-camarero

Post on 04-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 Tema 2 Siselec En

    1/80

    Chapter 2AC Circuits

    1

    2.1 - The sinusoidal function2.2 - The capacitor and the inductance2.3 - Phasors2.4 - Impedance and admitance2.5 - Mutual inductance2.6 - Instantaneous power in AC systems.

    2.7 - Characteristic powers P, Q y S.2.8 - Power factor correction.

    TEMA 2. AC CIRCUITS

  • 8/14/2019 Tema 2 Siselec En

    2/80

    Chapter 2AC Circuits

    2

    Lecture 3

  • 8/14/2019 Tema 2 Siselec En

    3/80

    Chapter 2AC Circuits

    3

    2.1. The sinusoidal function

  • 8/14/2019 Tema 2 Siselec En

    4/80

    Chapter 2AC Circuits

    4

    The sinusoidal functionSinusoidal waveform: )()( tsenXtx

    M

    Parameters:

    -XM= amplitude o maximum value (peak value)

    - T =period [s]

    - = angular frequency [rad/s]:

    -f= frequency [Hz]:

    -t= phase angle [rad]

    - = initial phase lag [rad] (usually written in )

    Periodic function: )()( txTtx

    fT

    22

    Tf

    1

  • 8/14/2019 Tema 2 Siselec En

    5/80

    Chapter 2AC Circuits

    5

    Leading/lagging the phase

    To compare a sinusoidal function withanother of the same frequency todetermine the phase difference should

    be expressed:

    - With positive amplitudes.- In sinus and cosinus functions

    Considering 2 sinusoidal functions:

    )()(

    )()(

    22

    11

    tsenXtx

    tsenXtx

    M

    M

    It is said thatx1(t) leadsx2(t) rads, oralso thatx2(t) lagsx1(t) rads.

    If both functions are in phase

  • 8/14/2019 Tema 2 Siselec En

    6/80

    Chapter 2AC Circuits

    6

    2.2. The capacitor and the inductance

  • 8/14/2019 Tema 2 Siselec En

    7/80

    Chapter 2AC Circuits

    7

    Capacitor

    A capacitor consists of two conductingsurfaces separated by a dielectric material andstores energy as electric charge.

    The capacity Cis measured in

    Farads [F]q

    CV

  • 8/14/2019 Tema 2 Siselec En

    8/80

    Chapter 2AC Circuits

    8

    Voltage [V]:

    Current [A]:

    Power [W]:

    Energy [J]:

    Capacitor Equations

    t

    dxxiC

    tv )(1)(

    dt

    tdvtCvtitvtp

    )()()()()(

    The capacitor stores energy as electric charge

    21( ) ( ) ( )2

    t

    Cw t p t C v t

    ( )dv

    i t Cdt

  • 8/14/2019 Tema 2 Siselec En

    9/80

    Chapter 2AC Circuits

    9

    The capacitor leads 90 the sinusoidal waveform of

    the current with respect to the voltage waveform.In DC current the capacitor behaves as an opencircuit.

    Current in a Capacitor

    ( ) sin ; ( )

    ( ) cos sin 2

    dvv t V t i t C

    dt

    i t V C t V C t

  • 8/14/2019 Tema 2 Siselec En

    10/80

    Chapter 2AC Circuits

    10

    Combination of capacitors

    C1

    v1+ -

    C2

    v2+ -

    Cn

    vn+ -

    i(t)

    v(t)+ -

    Other parts of the circuit

    n

    n

    i iS CCCCC11111

    211

    n

    n

    i

    iP CCCCC

    211

  • 8/14/2019 Tema 2 Siselec En

    11/80

    Chapter 2AC Circuits

    11

    InductorsAn inductor is a coiled conductor (usually

    around a ferromagnetic core) and has theability to store energy in the form ofmagnetic

    flux.

    The inductanceL is measured in

    Henrys [H]

    LI

  • 8/14/2019 Tema 2 Siselec En

    12/80

  • 8/14/2019 Tema 2 Siselec En

    13/80

    Chapter 2AC Circuits

    13

    The inductor lags 90 the sinusoidal waveform of the

    current with respect to the voltage waveform.In DC current the inductor behaves as a short circuit

    Current in an Inductor

    1( ) sin ; ( )

    ( ) cos sin 2

    v t V t i t v dt L

    V V

    i t t t L L

  • 8/14/2019 Tema 2 Siselec En

    14/80

    Chapter 2AC Circuits

    14

    Combination of inductors

    L1

    v1+ -

    L2

    v2+ -

    Ln

    vn+ -

    i(t)

    v(t)+ -

    Other parts of the circuit

    n

    n

    i

    iS LLLLL

    211 n

    n

    i iP LLLLL11111

    211

  • 8/14/2019 Tema 2 Siselec En

    15/80

    Chapter 2AC Circuits

    15

    Capacitor-Inductor dualityCapacitor Inductor

    dttditLitp )()()(

    dt

    tdiLtv

    )()(

    2)(

    2

    1)( tiLtwL

    Cvq

    t

    dxxiC

    tv )(1

    )(

    dttdvtCvtp )()()(

    2)(

    2

    1)( tvCtwC

    dt

    tdvCti

    )()(

    t

    dxxvL

    ti )(1

    )(

  • 8/14/2019 Tema 2 Siselec En

    16/80

    Chapter 2AC Circuits

    16

    2.3. Phasors

  • 8/14/2019 Tema 2 Siselec En

    17/80

    Chapter 2AC Circuits

    17

    Phasors

    Time domain (sinusoidal

    functions)

    Frequency domain

    (phasors)

    tAcos A A

    tAsen 90A A

  • 8/14/2019 Tema 2 Siselec En

    18/80

    Chapter 2AC Circuits

    18

    Phasor for a resistor

    Voltage and current in phase

  • 8/14/2019 Tema 2 Siselec En

    19/80

    Chapter 2AC Circuits

    19

    Phasors for an inductor

    Voltage leads 90 the current

  • 8/14/2019 Tema 2 Siselec En

    20/80

    Chapter 2AC Circuits

    20

    Phasors for a capacitor

    Current leads 90 the voltage

  • 8/14/2019 Tema 2 Siselec En

    21/80

    Chapter 2AC Circuits

    21

    Summary of phasors for R, L y C

    Element RatioV/I

    PhasorRatio

    Phase

    Capacitor dt

    tdvCti

    )()(

    90

    vVC

    Cj

    VIIleads 90

    V

    Inductordt

    tdiLtv

    )()(

    90

    iIL

    Lj

    IV

    Vleads 90 I

    Resistor )()( tRitv 0

    IR

    RIV

    Vand I

    are in phase

  • 8/14/2019 Tema 2 Siselec En

    22/80

    Chapter 2AC Circuits

    22

    Example

    E7.6 The current in a 0.05 H inductor is equal toI = 4

  • 8/14/2019 Tema 2 Siselec En

    23/80

    Chapter 2AC Circuits

    23

    Ejemplo

    E7.7 The current in a 150 F capacitor is I = 3.6

  • 8/14/2019 Tema 2 Siselec En

    24/80

    Chapter 2AC Circuits

    24

    2.4. Impedance and admitance

  • 8/14/2019 Tema 2 Siselec En

    25/80

    Chapter 2AC Circuits

    25

    Impedance It can be understood as the relationship

    (magnitude and phase) between the voltage andcurrent phasor in an electrical circuit.

    Ohm, [], is the magnitude of the impedance

    The impedance value is, normally, a complex

    number but not a phasor.

    Ziv

    M

    M

    iM

    vM ZI

    V

    I

    V

    I

    VZ

  • 8/14/2019 Tema 2 Siselec En

    26/80

    Chapter 2AC Circuits

    26

    Impedance In rectangular notation:

    R= Real part (resistor):

    X = Imaginary (reactance):

    jXR Z

    ZZR cos

    ZZX sen

    2 2

    1

    :

    : tanZ

    agnitude Z R X

    XPhase

    R

    X > 0: Inductive reactance

    X < 0: Capacitive reactance

  • 8/14/2019 Tema 2 Siselec En

    27/80

    Chapter 2AC Circuits

    27

    Impedance of the elements of a circuit

    Element Impedance

    CapacitorC

    j

    C

    jX

    CjC

    90

    11cZ

    Inductor LjLjXLj L 90LZ

    Resistor 0 RRRZ

  • 8/14/2019 Tema 2 Siselec En

    28/80

    Chapter 2AC Circuits

    28

    Series Impedance

    ZS

    Z1

    Zn

    Z2

    n21iS ZZZZZ

    n

    i 1

  • 8/14/2019 Tema 2 Siselec En

    29/80

    Chapter 2AC Circuits

    29

    Paralel impedance

    n21iP ZZZZZ

    11111

    1

    n

    i

    ZPZ1 ZnZ2

  • 8/14/2019 Tema 2 Siselec En

    30/80

    Chapter 2AC Circuits

    30

    Admitance In the inverse value of the impedance, hence:

    The admitance is measured in Siemens, [S].

    As the impedance is a complex number (not a

    phasor), the same can be said for the admitance.

    Yvi

    M

    M

    vM

    iM YV

    I

    V

    I

    V

    I

    ZY

    1

  • 8/14/2019 Tema 2 Siselec En

    31/80

    Chapter 2AC Circuits

    31

    Admitance In rectangular notation:

    G = Real Part (conductance):

    B = Imaginary Part (susceptance):

    jBG Y

    YYG cosG

    BFase

    BGYMdulo

    Y

    1

    22

    tan:

    :

    YYB sen

  • 8/14/2019 Tema 2 Siselec En

    32/80

    Chapter 2AC Circuits

    32

    Admitance

    22 XR

    XB

    Important: The conductance is NOT the inverse value of the resistance:

    G 1/R The susceptance is NOT the inverse value of the reactance:

    B 1/X

    For finding the inverse value multiply and divide for theconjugated value

    22

    XR

    RG

    jXRjBG

    1

    jXR

    jXR

    jXRjXR

    111

    Z

    22

    XR

    jXR

    Y

  • 8/14/2019 Tema 2 Siselec En

    33/80

    Chapter 2AC Circuits

    33

    Admitance of the elements

    Element Admitance

    Capacitor90

    1

    1 CCj

    Cj

    cY

    InductorL

    j

    LLj

    90

    11LY

    Resistor1

    (only in a resistive case)GR

    RY

  • 8/14/2019 Tema 2 Siselec En

    34/80

    Chapter 2AC Circuits

    34

    Series admitance

    YS

    Y1

    Yn

    Y2

    n21iS YYYYY

    11111

    1

    n

    i

  • 8/14/2019 Tema 2 Siselec En

    35/80

    Chapter 2AC Circuits

    35

    Paralel admitance

    YPY1 YnY2

    n21iP YYYYY

    n

    i 1

  • 8/14/2019 Tema 2 Siselec En

    36/80

    AC Ci it

  • 8/14/2019 Tema 2 Siselec En

    37/80

    Chapter 2AC Circuits

    37

    ExampleE7.11 Draw the diagram of the phasors that show all the

    currents and voltages involved in this circuit:

    Solucin:

    AC Ci it

  • 8/14/2019 Tema 2 Siselec En

    38/80

    Chapter 2AC Circuits

    38

    ExampleSolved exercice 7.16 Find Vo in the following circuits,

    using: nodes analysis, mesh analysis, the Thvenintheorem and the Norton theorem.

    Solution:

    Vo = 4

  • 8/14/2019 Tema 2 Siselec En

    39/80

    Chapter 2AC Circuits

    39

    2.5. Mutual inductance

    Ch t 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    40/80

    Chapter 2AC Circuits

    Mutual inductance The mutual inductance appears when 2 or more inductors

    a so close that they share a common magnatic flux.

    Considering two inductors:

    dt

    idL

    dt

    idMtv

    dt

    idM

    dt

    idLtv

    22

    12

    2111

    )(

    )(

    Inductancia mutua

    Ch t 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    41/80

    Chapter 2AC Circuits

    2212

    2111

    IIV

    IIV

    LjMj

    MjLj

    41

    dt

    idL

    dt

    idMtv

    dt

    idM

    dt

    idLtv

    22

    12

    2111

    )(

    )(

    i1(t)+

    v1(t) L1

    i2(t)+

    v2(t)L2

    M

    Mutual impedance

    Time Domain Frequency Domain

    Ch t 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    42/80

    Chapter 2AC Circuits

    42

    Calculus method

    Step 1. A dependent voltage source is connected in serieswith the inductor. Its value should be :jMIj

    Step 2. The signs + and are assigned to the terminals ofthe dependent source considering the sense of the currentwith respect the point, that is showing the inductive

    coupling at the inductorj

    Step 3. Make the culculus considering the circuit found at

    the second step.

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    43/80

    Chapter 2AC Circuits

    43

    Step 2. Dependent voltage source

    i1(t)

    ?

    v1(t)

    L1

    i2(t)+

    v2(t)

    L2

    jMI2 jMI1?

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    44/80

    Chapter 2AC Circuits

    44

    Calculus method

    Step 1. A dependent voltage source is connected in serieswith the inductor. Its value should be :jMIj

    Step 2. The signs + and are assigned to the terminals ofthe dependent source considering the sense of the currentwith respect the point, that is showing the inductive

    coupling at the inductorj

    Step 3. Make the culculus considering the circuit found at

    the second step.

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    45/80

    Chapter 2AC Circuits

    45

    Step 2. Sense of the dependent voltagesource

    Convention:

    A current entering to the point is a positive current.

    Hence, it is analyzed ifij is getting in or out of the inductorsLjpoint:

    - Ifij gets in the point, a positive sign + should be assigned at thedependent sources (in series with the inductor i) corresponding

    with the point of the inductori.- Ifij gets out the point, a positive sign - should be assigned at thedependent sources (in series with the inductor i) correspondingwith the point of the inductor i.

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    46/80

    Chapter 2AC Circuits

    46

    Step 2. Sense of the dependent voltagesource

    i1(t)

    +

    -

    v1(t)L1

    i2(t)

    +

    v2(t)L2

    +

    -jMI

    2 jMI1

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    47/80

    Chapter 2AC Circuits

    47

    Step 2. Examples

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    48/80

    Chapter 2AC Circuits

    48

    Step 2. Examples

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    49/80

    Chapter 2

    49

    Calculus method

    Step 1. A dependent voltage source is connected in serieswith the inductor. Its value should be :jMIj

    Step 2. The signs + and are assigned to the terminals ofthe dependent source considering the sense of the currentwith respect the point, that is showing the inductive

    coupling at the inductorj

    Step 3. Make the culculus considering the circuit found at

    the second step.

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    50/80

    p

    50

    Step 3. Solve the circuit

    The circuite resulting from step 2 (with the dependantsources) is solved by any of the methods presented in thecourse.

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    51/80

    p

    51

    ExampleE8.2 Find the currents I1 e I2 and the voltage Vo in the

    following circuit:

    Solution:

    I1 = 4.29

  • 8/14/2019 Tema 2 Siselec En

    52/80

    52

    Lecture 4

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    53/80

    53

    2.6. AC Instantaneous power

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    54/80

    54

    Instantaneous power

    AC voltage and currents waveforms:v(t) = VMcos(t+v)

    i(t) =IMcos(t+i)

    The instantaenous power are defined as:

    p(t) = v(t) i(t) = VMIMcos(t+v) cos(t+i)

    p(t) = VMIM[cos(v-i) + cos(2t+v +i)]

    Constant Double frequency sinusoidalterm

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    55/80

    55

    Purely resistive circuit

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    56/80

    56

    Purely inductive circuit

    VI=LI2

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    57/80

    57

    Inductive circuit (45)

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    58/80

    58

    Average PowerThe average power results from integrating the

    instantaneous power over one period and dividing thisvalue by the period:

    ivMM

    iMvM

    Tt

    t

    Tt

    t

    -IV=

    dt+tItVT

    =dtp(t)T

    =P

    cos2

    1

    coscos110

    0

    0

    0

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    59/80

    59

    RMS valuesThe RMS value of the voltage or the current in AC is

    a constant value (DC) that would provide the sameaverage power in a resistor R during a period T.

    21 ( )o

    o

    t T

    rms

    t

    I i t dtT

    RMSmeans root-mean-square

    2 2( )

    ( )

    1 ( )o

    o

    t T

    rms AC DC t

    RI R i t dtT

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    60/80

    60

    RMS valuesRMS values of a sinusoidal waveform:

    2

    ( ) cos( )

    1( ) ... 2

    o

    o

    M i

    t T

    rms

    t

    i t I t

    I i t dtT

    Using the RMS values the expression for the average

    power can be rewritten as:1

    cos( ) ... cos( )2 M v i rms rms v i

    P V I V I

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    61/80

    61

    2.7. Characteristic powers P, Q y S

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    62/80

    62

    Active Power P

    Purely resistive circuit :

    Purely reactive circuit : cos 0 ; 90rms rms v i v iP = V I - -

    The active power, P, is the average value of the

    instantaneous power and it is measured in [W]

    2

    cos ; 0rmsrms rms v i rms rms rms v iV

    P = V I - V I RI -R

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    63/80

    63

    Reactive Power Q

    Purely resistive circuit :

    Purely reactive circuit :

    sin 0 ; 0rms rms v i v iQ = V I - -

    The reactive power, Q, represents the maximum

    energy storage speed of a reactive element, The activepower is measured in [var]

    2

    sin ; 90rmsrms rms v i rms rms rms v iV

    Q = V I - V I XI -X

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    64/80

    64

    Aparent Power S

    Generic circuit :

    rms rmsS = V I

    The aparent power, S, represents the maximum

    active power that could be consumed by animpedance Z=RjX or developed by an AC soure.The units are [VA]

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    65/80

    65

    Complex PowerThe complex power is a mathematical tool that is

    defined as the product of the voltage phasor by theconjugated value of the current phasor:

    *

    rms rmsS IV

    *rms rms rms rms rms

    rms rms rms rms

    V I V I

    V I cos V I sin

    rms v i v i

    v i v ij

    P j Q

    S V I

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    66/80

    66

    Complex Power (S)

    rms rms

    rms rms

    rms rms

    V I [VA]

    ngulo entre e[W]Re( ) V I cos

    Im( ) V I sin [var]

    Lv i Z

    v i

    v i

    S

    P

    Q

    S

    S V I

    S

    S

    cosrms rms v iP V I

    sinrms rms v iQ V I

    rms rmsS V I S

    v i

    tan v iQ

    P

    22 QPS

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    67/80

    67

    2.8. Power factor correction

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    68/80

    68

    Power factor

    We defined:Activepower: [W]

    Aparentpower : [VA]

    Thepower factor is a relationship between P and S:

    cos( )rms rms v iP V I

    rms rmsS V I

    pf ... cos( )v iP

    S

    The phase angle of the previous expresion is the sameangle of the load impedance

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    69/80

    69

    PF correction Among the total power delivered by the electrical

    companies only the active power is consumed, so that itis "interesting" having a unitary power factor at the loadPF = P/S = P/P = 1

    But almost all loads have an inductive behaviour andtherefore placing in parallel a capacitor bank is necessaryin order to compensate the reactive power and obtain a pfclose to one.

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    70/80

    70

    PF compensation

    2cQC

    V

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    71/80

    71

    ExampleE9.13 Calculate the value of the capacitor bank needed to

    change to 0.95 inductive power factor in the followingsystem:

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    72/80

    72

    Steps for the correction of the pf

    Step 1. Find QorigconsideringPL y origor fporig

    Step 2. Fing Qnue considering the desired pfnue (known)

    Step 3. Find the reactive power of the capacitor bank

    Step 4. Determine the value of the capacitors at the bank

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    73/80

    73

    Step 1. Find Qorig

    Original phase between the voltage and the current:

    arccos(fdp ) arccos(0,7) 45

    Original reactive potencia :

    tan(45 ) 102.020,4 var

    orig orig

    orig orig Q P

  • 8/14/2019 Tema 2 Siselec En

    74/80

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    75/80

    75

    Step 2. Find Qnue

    nue

    The active power keeps equal:

    New phase between voltage and current:arccos(fdp ) arccos(0,95) 18,19

    New reactive power:tan(18,19 ) 32.865,4 var

    nue orig

    nue

    nue nue

    P P

    Q P

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    76/80

    76

    Steps for the correction of the pf

    Step 1. Find QorigconsideringPL y origor fporig

    Step 2. Fing Qnue considering the desired pfnue (known)

    Step 3. Find the reactive power of the capacitor bank

    Step 4. Determine the value of the capacitors at the bank

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    77/80

    77

    Paso 3. Find Qcap

    Power at the capacitor bank:

    62.152 varcap nue orig Q Q Q

  • 8/14/2019 Tema 2 Siselec En

    78/80

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    79/80

    79

    Paso 4. Find C

    2

    22

    1 VCCj

    V

    Z

    V

    Q ccap

    Capacity of the capacitor bank to be placed in paralel with theload:

    2

    cQ

    C V

    Hence:

    42

    6.2157,96 10 796

    2 60480capQ F F

    f 2

    V = Voltage at thecapacitor bank

    Chapter 2AC Circuits

  • 8/14/2019 Tema 2 Siselec En

    80/80

    80

    ExampleE9.10 (modified)

    An industrial load consumes 100 kW with a pf of 0.707inductive (lagging). The line voltage at the load is 480