temperature drop of steam flowing through control valves

9
Vol.9,No.9,61/69 (2010) - 61- おる おる おる おる について について について について *** Temperature Drop of Steam Flowing Through Control Valves Masahiro URATA, Toshiharu KAGAWA Abstract: The steam temperature and pressure are important operating factors in many chemical processes that use thermal energy of the steam. Solvent desorption processes require precise estimate of temperature drop of steam at a control valve through which the steam is supplied to the processes. This paper proposes a procedure for estimate of the temperature drop in steam flow through a control valve. Theoretical estimate was made assuming a one-dimensional compressible fluid flowing through a throttle. In control valves in practice, heat radiation and flow irregularities induced by wall geometry cause condensation and re-evaporation, which are not included in the theory. Experiments were carried out for steam of about 0.53 MPa (abs) pressure with about 430 K temperature. While the theoretically estimated temperature drop by a pressure drop from 0.5 MPa (abs) to 0.1 MPa (abs) is about 15 K, deviation of experimental values from the theoretical values was within 1 K when the flow rate is not very small. The result of the paper can be effectively used for planing of plants that use steam as the medium for heating and solvent desorption. Key words: Control valve, Steam flow, Temperature drop, Joule-Thomson’s effect, Heat transfer 1  して ,また一 して われる圧 ある. いて (以 する) する ,す わち圧 され る.これに して いろいろ ,多く われてきたが,圧 い. ころが また, する ある 1) 学プラントにおいて いる して する けて する がある. して する されるため, い.これに対し, けて する らさ いこ するプロセス が大き * フィルム株 センター ** 大学 *Production Engng. Center, Fuji Film Co. ltd. **Precision and Intelligence Laboratory, Tokyo Institute of Technology (Received November 24, 2009) TRIA009/10/0909 (C) 2009SICE る.こ 確に るこ が, エネ運 って ある. けて するプロセス して,活 ける活 プロセ スがある. している多く 学プラ ント ,活 プロセスがある.こ よう プロセス よるが,一 トン される.こ 確に するこ によって 1020% するこ ある.プロセス により による する めて多く プラントにおいて ある. めて一 において圧 がる Joule-Thomson により する 2)4) .一 りを する 体において ,エネルギー から して,エンタル ピーが される.これ が変わら いう たらす.しかし らず,圧 に対して, ったり, きに がったりする がある.こ により異 り,また するパラメータ ける. りを する れにおけるエンタルピー められている.しかし, われている がある

Upload: retrogrades

Post on 07-Sep-2015

7 views

Category:

Documents


3 download

DESCRIPTION

Temperature Drop

TRANSCRIPT

  • Vol.9,No.9,61/69 (2010)

    - 61-

    ***

    Temperature Drop of Steam Flowing Through Control ValvesMasahiro URATA, Toshiharu KAGAWA

    Abstract: The steam temperature and pressure are important operating factors in many chemical processes that use thermalenergy of the steam. Solvent desorption processes require precise estimate of temperature drop of steam at a control valvethrough which the steam is supplied to the processes. This paper proposes a procedure for estimate of the temperature drop insteam flow through a control valve. Theoretical estimate was made assuming a one-dimensional compressible fluid flowingthrough a throttle. In control valves in practice, heat radiation and flow irregularities induced by wall geometry causecondensation and re-evaporation, which are not included in the theory. Experiments were carried out for steam of about 0.53MPa (abs) pressure with about 430 K temperature. While the theoretically estimated temperature drop by a pressure dropfrom 0.5 MPa (abs) to 0.1 MPa (abs) is about 15 K, deviation of experimental values from the theoretical values was within 1K when the flow rate is not very small. The result of the paper can be effectively used for planing of plants that use steam asthe medium for heating and solvent desorption.

    Key words: Control valve, Steam flow, Temperature drop, Joule-Thomsons effect, Heat transfer

    1)

    ****Production Engng. Center, Fuji Film Co. ltd.**Precision and Intelligence Laboratory, TokyoInstitute of Technology(Received November 24, 2009)TRIA009/10/0909 (C) 2009SICE

    1020%Joule-Thomson 2) 4)

  • - 62-

    Joule-Thomson

    160 0.6 MPa 5k

    0.6 MPa 1600.6 MPa-0.1 MPa 160-100

    A [m2]cp [J/kg/K]Da [m]Db [m]Dc [m]E [J]e [J/kg]GrGrashof [-]g [m]h [J/kg]L [m]m [kg/s]NuNuselt [-]PrPrandtl [-]p [Pa]Q [W]

    R 1, ~4, H [W/K]ReReynoldsRH [W/K]S [m2]T [K, ]T [K, ]T0 [K, ]TM [K, ]TV [K, ]u [J/kg]v [m3/kg]w [m/s] [W/m2/K] [K-1] [W/m/K]a [W/m/K]s [W/m/K] [Pa.s] [m2/s] [kg/m3]12M

    2.1 Fig. 1Fig. 1Fig. 1Fig. 1

    Fig. 1 Flow through a throttle

    Fig. 1 4),5)

    T1p1w1

    T2p2w2

    S1 S2

    Q

    Throat

  • - 63-

    w wh q h1

    2

    2

    2

    1 220

    + + = (1)

    q Q m= / (2)

    v = 1 / (3)

    h u pv= + (4)

    10 m/s 5102 m2/s20.5 kJ/kg 1500.5MPa(abs) 2753kJ/kg

    h q h1 2 0+ (5)

    h h2 1

    h h w w2 1 22

    1

    2 2 >> / (6)

    (4)

    h h1 2= (7)

    h c Tp= (8)

    cp

    T T1 2= (9)

    Joule-Thomson Joule-Thomson

    2.2 Joule-Thomson

    Joule-Thomson h p T 6), 7)

    dh hT

    dT hp

    dpp T

    =

    FHGIKJ +

    FHGIKJ (10)

    ch

    Tp p=

    FHIK (11)

    dh=0 (10), (11)

    FHGIKJ =

    FHGIKJ =

    FHGIKJ +

    FHGIKJ

    LNMM

    OQPP

    Tp c

    hp c

    up

    pvp

    T p T p T T

    1 1 b g

    (12)(12) 0 0 Joule-Thomson 1 MPa 200(p1, T1)

    (p2, T2)

    ( , ) ( , ) ( , )p T p T p T1 1 1 2 2 2 (13)

    (11)(10)

    h h c T p dT v Tv

    pdppT

    T

    Tp

    p

    2 1 1 21

    2

    2

    1

    2

    = + z z FHG IKJ

    LNM

    OQP

    ( , )

    (14)

    v v T p= ( , )2 (15)

    (14) 2

  • 1p1, p2, T1,T2p1, p2, T1 T2p=f(v, T)Van derWaals cph p T 4) 5), 6) 7)

    F

    p=250 kPa 2716.8 kJ/kg 127.4 (101.3 kPa) h=cpT cp1T Joule-ThomsonJoule-Thomson p1=250 kPa, h1=2740 kJ/kg- 64-

    xFig. 2Fig. 2Fig. 2Fig. 2

    ig. 2 h-T-p diagram for steam

    ()

    k2

    F

    100

    110

    120

    130

    140

    150

    160

    2680 2700 2720 2740 2760h [kJ/kg]

    p=600 kPap=550 kPa

    p=500 kPap=450 kPa

    p=400 kPap=350 kPap=300 kPap=250 kPa

    p=200 kPa

    p=150 kPa

    p=101.3 kPa Saturation limit

    Superheated steam

    Wet steam

    T []T1=138.2 p2=p=101.3

    Pa 131.7 7.1 Joule-Thomson

    .3 8) Fig. 3Fig. 3Fig. 3Fig. 3

    ig.3 Piping model

    DaDbDc

    InsulatorPipe

    L1 L2

    TM,pM

    T

    T1,p1

    T2,p2

    TV

    Insulator

    8

  • - 65-

    Fig.1Fig.1

    Q Q Qt = +1 2 (16)

    Q1, Q2Q 1, 2Fig.3 (1) R1(2) R2(3) R3(4) R4 RH

    R R R R RH = + + +1 2 3 4 (17)

    9, 10)

    Q T T RV H= a f / (18) R1~R4

    (1) R1R1=0

    Q A T Ti V a= ( ) (19)

    R A D Li A a1 1= =/ ( ),

    i [W/m2/K]

    Nu Di a= / (20)

    Nu Re Pr= 0 023 0 8 0 4. . . (21)

    10) 13)(21) 10), 11)

    R1 R1(21)

    Pr a a cp= = / , / ( ) (22)

    Fig. 4Fig. 4Fig. 4Fig. 4 0.4 1.04 0.99

    Fig. 4 Prandtl number of steam

    mw=mv/S

    RewD wD mD S m

    Da a a

    a

    = = = =

    / 4(23)

    R1=0 RH1%(2) R2R3 9), 10)

    RDb

    2

    1= log (24)

    (3

    P

    0.96

    0.98

    1

    1.02

    1.04

    1.06

    1.08

    1.1

    1.12

    100 110 120 130 140 150 160

    Pr

    T []

    Superheated steam

    Water

    Saturation limit

    p=100 kPa

    p=200 kPa

    p=300 kPa

    p=400 kPap=500 kPa

    p=600 kPaL Ds a2

    RL

    D

    Dc

    b

    3

    1

    2=

    log (25)

    ) R4 Nu Gr

    r

  • - 66-

    10)13)

    Nu GrPr= ( )0 13 1 3. / GrPr=108~1012 (26)

    Nu GrPr= ( )0 56 1 4. / GrPr=104~108 (27) NuGr Pr Pr=0.71

    Grg D Tc

    =

    3

    2

    (28)

    T

    T T T= 0

    =

    FHIK

    1

    T p (29)

    =

    =

    =

    =

    FHIKFHIK

    FH

    IK

    1 1

    1 1

    Tv

    v

    T

    RT

    p

    p

    R

    T

    T T

    p p

    p

    ( / )

    ( / )(30)

    T0Gr (4) R1, R2, R3

    Q A T T T T R= =

    0 0 0 0 4( ) ( ) / (31)

    RA

    D

    N Ac

    u a

    4

    0 0 0

    1= =

    (32)

    T T0

    R417

    T T Q R R RV = + +0 1 2 3( ) (33)

    T T Q R R R RV = + + + ( )1 2 3 4 (34)

    (17),(18),(27),(28),(31)

    T TR

    R R R RT T

    RA

    D

    Nu A

    Nu GrPr

    Grg D T T

    v

    c

    a

    c

    04

    1 2 3 4

    4

    0 0 0

    1 4

    3

    0

    2

    1

    0 56

    =

    + + +

    = =

    =

    =

    ( )

    U

    V

    ||||

    W

    ||||

    a f

    .

    ( )

    /

    (35)

    (35)

    [ , , , ]T R Nu Gr0 4

    4 (18) Q Qt(16)(2) q

    3333

    3.1 Fig.5Fig.5Fig.5Fig.5 PC PC

    Fig. 5Experimental setup

    QFS

    D/A converter Signal processor

    PC

    p2p1

    T1 T2

    Control valve

    Steam main line

    Weighing balance

    Variable throttle

  • Table 1

    Table 1 Specifications of the test rig

    Table 2 3.2

    Table 3Table 3Table 3Table 3

    = =q h c Tt p (36)

    Table 2 Test parameters

    0.2 KTable 3

    Table 3 Enthalpy comparison

    Table 3 1200 kg/h 0.8 K2400 kg/h 0.1 K 4Table 4

    Table 4 Temperature drop by Joule-Thomsons effect

    Unit Steel Glass wool [W/m] 46 0.0450

    D a [m] 0.2D b [m] 0.22 0.22D c [m] 0.36L 1 [m] 0.9 0.9L 2 [m] 0.9 0.9

    1/ /A [K/W] 0.00147 1.94 m [kg/h] 1200 2400p 1 [kPa] 530 530T 1 [C] 158.4 162

    h 1 2761.2 2769.6p 2 [kPa] 113 124T 2 [C] 143.6 147.5

    h 2 2762.8 2769.8 h

    [kJ/kg] -1.6 -0.2

    m [kg/h] 1200 2400p 1 kPa] 530 530T [C] 158.4 162

    h 1 [kJ/kg] 2761.2 2769.6p 2 [kPa] 113 124T 2 [C],Theory 142.8 147.4T 2 [C],

    Experiment 143.6 147.5

    m (kg/h) 1200 2400T 1 [C] 158 162

    p 1 [kPa] 530 530Pr [-] 1.079 1.079

    [Pa.s] 1.43E-05 1.43E-05 [J/m/K] 0.0315 0.0315

    Re 1.49E+05 2.97E+05Nu [-] 325 566

    [W/m2/K] 52.4 91.21/ /A [K/W] 0.0337 0.0194

    m (kg/h) 1200 2400T 2 [C] 144 147.5

    p 2 [kPa] 113 123Pr [-] 0.985 0.985

    [Pa.s] 1.39E-05 1.41E-05- 67-

    [J/m/K] 0.0283 0.0287Re 1.53E+05 3.01E+05

    Nu [-] 321 552 [W/m2/K] 45.2 78.91/ /A [K/W] 0.0391 0.0224 [1 1200 kg/h 0.8 K2400 kg/h 0.1 K(15.6 K 14.6 K)

  • - 68-

    Joule-Thomson Joule-Thomson 1)

    4444

    Joule-Thomson Joule-Thomson 9Da

    1 25, pp.161/170( 20101)

    2 H. B. Callen Thermodynamics, John Wiley & Sons,(1960)

    3 P. W. Atkins, Physical Chemistry (6th Edition), OxfordUniversity Press(1998)

    4 (1982)5 (1964)6 (1964)7 (2000)8 M. Urata, L. Xi, K. Kawashima and T. Kagawa

    Simulation Model for Compressible Fluid PassingThrough a Pressure Control Valve, CD-ROM Proc. of2008 Asia Simulation Conference, pp.547-550, IEEECatalog N: CP0858D-CDR, Beijing: 10-12 October(2008)

    9 J. P. Holman(1983)

    10 3(1975)11 4(1964)12 (1966)13 E. R. G. Eckert and R. M. Drake, Jr.Heat and Mass

    Transfer, MacGraw-Hill(1959)

  • 2002

    ()19741976,()- 69-