tensor properties and transverse spin structures of the pion and … · 2015. 3. 25. · the pion...

46
Hyun-Chul Kim Department of Physics Inha University Collaborators: Tim Ledwig (Mainz), S.i. Nam (KIAS) Tensor properties and transverse Spin Structures of the pion and Nucleon Nucleon pion & kaon 11년 11월 2일 수요일

Upload: others

Post on 08-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Hyun-Chul Kim

    Department of Physics Inha University

    Collaborators: Tim Ledwig (Mainz), S.i. Nam (KIAS)

    Tensor properties and transverse Spin Structures

    of the pion and Nucleon

    Nucleon pion & kaon

    11년 11월 2일 수요일

  • Beihang Univ., 01-03 November, 2011 2

    Tensor form factors and the spin structure

    of

    the Pion

    S.i. Nam & HChK, Phys. Lett. B 700, 305 (2011)

    11년 11월 2일 수요일

  • Beihang Univ., 01-03 November, 2011 3

    The spin structure of the Pion

    x

    y

    zb�

    Vector & Tensor Form factors of the pion

    u

    �P

    Pion: Spin S=0

    What is the spin distribution of the quark inside the nucleon?

    Transversity of the pion

    11년 11월 2일 수요일

  • Beihang Univ., 01-03 November, 2011 4

    The spin distribution of the quark

    Spin probability density function in impact parameter spaceAn0: Vector form factor of the pion, Bn0: Tensor form factor of the pion

    �⇥(pf )|⇤†�µQ̂|⇥(pi)⇥ = (pi + pf )A10(q2)

    Vector and Tensor form factors of the pion

    11년 11월 2일 수요일

  • Se� [m,�] = �Spln�i/⇤ + im+ i

    ⇤M(i⇤)U�5(�)

    ⇤M(i⇤) + ⇥ · T

    µ � 600MeV

    � � 0.3 fm, R � 1 fm

    Nonlocal chiral quark model

    HChK et al. Prog. Part. Nucl. Phys. Vol.37, 91 (1996)

    The chiral quark model from the instanton vacuum

    •Fully relativistically field theoretic model.•Related to QCD via the Instanton vacuum.•Renormalization scale is naturally given.•No free parameter

    Effective Chiral Action for the tensor current

    Beihang Univ., 01-03 November, 2011

    11년 11월 2일 수요일

  • Beihang Univ., 01-03 November, 2011 6

    Tensor form factor of the pion

    11년 11월 2일 수요일

  • Beihang Univ., 01-03 November, 2011 7

    EM Form factor of the pion

    EM form factor (A10 ) has been already studied.

    S.i. Nam & HChK, Phys. Rev. D77 (2008) 094014

    ��r2⇥ = 0.675 fm

    ��r2⇥ = 0.672± 0.008 fm (Exp)

    M(Phen.): 0.714 GeV

    M(Lattice): 0.727 GeV

    M(This work): 0.738 GeV

    11년 11월 2일 수요일

  • Bn0(Q2, µ) = Bn0(Q

    2, µ0)

    ↵(µ)

    ↵(µ0)

    ��n/(2�0)

    �1 = 8/3, �2 = 8,

    �0 = 11Nc/3� 2Nf/3Beihang Univ., 01-03 November, 2011 8

    Tensor Form factor of the pion

    RG evolution between lattice and model Brommel et al. PRL101

    S.i. Nam & HChK, Phys. Lett. B 700, 305 (2011)

    11년 11월 2일 수요일

  • Beihang Univ., 01-03 November, 2011 9

    Brommel et al. PRL101

    Lattice fits

    Tensor Form factor of the pion

    11년 11월 2일 수요일

  • Beihang Univ., 01-03 November, 2011 10Transverse Polarization

    Unpolarized Polarized

    Spin density of the quark

    spin

    Transverse polarization

    11년 11월 2일 수요일

  • Beihang Univ., 01-03 November, 2011 11

    Spin density of the quark

    Results are in a good agreement with lattice!!!

    Significant distortion appears for the polarized: a hint for spin structure of the pion!!!

    11년 11월 2일 수요일

  • Beihang Univ., 01-03 November, 2011 12

    Spin density of the quark

    Distorted spin distribution of the quark inside the pion

    11년 11월 2일 수요일

  • Beihang Univ., 01-03 November, 2011 13

    Tensor form factors and spin structure

    of

    the Nucleon

    T. Ledwig & HChK, arXiv:1107.4952

    11년 11월 2일 수요일

  • Beihang Univ., 01-03 November, 2011 14

    The spin structure of the Nucleon

    x

    y

    z

    �(b�)

    b�

    x

    y

    Axial & Tensor Form factors, Axial-vector charges,Tensor charges

    �P

    x

    z

    y

    b�

    f(�)

    Structure functions

    Nucleon Tomography

    Spin Structure

    11년 11월 2일 수요일

  • The Spin of the nucleon

    Beihang Univ., 01-03 November, 2011

    Quark Model QCD

    ?

    The spin of the proton must be ½!

    0.2-0.4 Spin Crisis

    11년 11월 2일 수요일

  • The Spin of the nucleon

    Beihang Univ., 01-03 November, 2011

    Longitudinally polarized quark spin

    Polarized DIS

    11년 11월 2일 수요일

  • The Spin of the nucleon

    ⌦N

    �� ¯ �µ�5�� ��N

    ↵⇠ Axial-vector charges

    Beihang Univ., 01-03 November, 2011

    S.D. Bass, RMP 77, 1257 (2005)

    Singlet Axial vector constant Quark spin content

    11년 11월 2일 수요일

  • Transversity: Tensor Charges

    ⌦N

    �� ¯ �µ⌫�� ��N

    ↵⇠ Tensor charges

    Beihang Univ., 01-03 November, 2011

    • No explicit probe for the tensor charge! Difficult to be measured.• Chiral odd Parton Distribution Function can get accessed via the SSA of SIDIS (HERMES and COMPASS).

    A. Airapetian et al. (HERMES Coll.), PRL 94, 012002 (2005).E.S. Ageev et al. (COMPASS Coll.), NPB 765, 31 (2007).CLAS & CLAS12 Coll. (Talk by H. Avakian)

    ppbar Drell-Yan process (PAX Coll.): Technically too difficult for the moment (polarized antiproton: hep-ex/0505054).

    11년 11월 2일 수요일

  • Transversity: Tensor Charges

    Beihang Univ., 01-03 November, 2011

    �u = 0.60+0.10�0.24 , �d = �0.26+0.1�0.18 at 0.36GeV

    2

    Based on SIDIS (HERMES) data: M. Anselmino et al. Nucl. Phys. B, Proc. Suppl. 191, 98 (2009)

    11년 11월 2일 수요일

  • hNs0(p0)| (0)i�µ⌫�� (0)|Ns(p)i = us0(p0)H�T (Q

    2)i�µ⌫ + E�T (Q2)�µq⌫ � qµ�⌫

    2M

    + H̃�T (Q2)(nµq⌫ � qµn⌫)

    2M2

    �us(p)Z 1

    �1dxH�T (x, ⇠, t) = H

    �T (q

    2),Z 1

    �1dxE�T (x, ⇠, t) = E

    �T (q

    2),Z 1

    �1dx H̃�T (x, ⇠, t) = H̃

    �T (q

    2),

    Tensor form factors

    Beihang Univ., 01-03 November, 2011

    11년 11월 2일 수요일

  • H��T (Q2) =

    2M

    q2

    �d�

    4⇤�N 1

    2(p⇥)|⌅†�kqk⇥�⌅|N 1

    2(p)⇥

    ��T = �H�T (0)�H

    ��T (0)

    Anomalous tensor magnetic form factors

    Together with the anomalous magnetic moment, this will allow us to describe the transverse spin quark densities inside the nucleon.

    Beihang Univ., 01-03 November, 2011

    11년 11월 2일 수요일

  • Tensor form factorsTensor charges and anomalous tensor magnetic moments are scale-dependent.

    �q(µ2) =

    ✓↵S(µ2)

    ↵S(µ2i )

    ◆4/27 1� 337

    486⇡

    �↵S(µ

    2i )� ↵S(µ2)

    ���q(µ2i ) ,

    ↵NLOS (µ2) =

    4⇡

    9 ln(µ2/⇤2QCD)

    "1� 64

    81

    ln ln(µ2/⇤2QCD)

    ln(µ2/⇤2QCD)

    #

    ⇤QCD = 0.248GeV M. Gluck, E. Reya, and A. Vogt, Z.Phys. C 67, 433(1995).

    Beihang Univ., 01-03 November, 2011

    11년 11월 2일 수요일

  • Chiral quark-soliton model

    HChK et al. Prog. Part. Nucl. Phys. Vol.37, 91 (1996)

    Z�QSM =Z

    DU exp(�Se↵)

    Se↵ = �NcTr lnD(U) D(U) = @4 +H(U) + m̂

    H(U) = �i�4�i@i + �4MU�5

    Merits of the chiral quark-soliton model• Fully relativistically field theoretic model.• Related to QCD via the Instanton vacuum.• Renormalization scale is naturally given.• All parameters were fixed already.

    Beihang Univ., 01-03 November, 2011

    11년 11월 2일 수요일

  • Beihang Univ., 01-03 November, 2011

    Chiral quark-soliton model

    Nucleon consisting of Nc quarks

    HChK et al. Prog. Part. Nucl. Phys. Vol.95, (1995) 11년 11월 2일 수요일

  • Beihang Univ., 01-03 November, 2011

    Chiral quark-soliton model

    Classical solitons

    Hedgehog Ansatz:

    HChK et al. Prog. Part. Nucl. Phys. Vol.95, (1995) 11년 11월 2일 수요일

  • Beihang Univ., 01-03 November, 2011

    Chiral quark-soliton model

    Collective quantization

    HChK et al. Prog. Part. Nucl. Phys. Vol.95, (1995) 11년 11월 2일 수요일

  • g�T > g�A

    Results

    T. Ledwig, A. Silva, HChK, Phys. Rev. D 82 (2010) 034022

    HChK, M. Polyakov, K. Goeke, PRD 53, 4715R (1996)11년 11월 2일 수요일

  • Proton This work SU(2) Lattice SIDIS NR|�d/�u| 0.30 0.36 0.25 0.42+0.0003�0.20 0.25

    Results

    T. Ledwig, A. Silva, HChK, Phys. Rev. D 82 (2010) 034022

    [16] M. Anselmino et al. Nucl. Phys. B, Proc. Suppl. 191, 98 (2009)

    [21] M. Goeckeler et al., PLB 627, 113 (2005)

    11년 11월 2일 수요일

  • ResultsUp and down tensor form factorscompared with the axial-vector ones

    T. Ledwig, A. Silva, HChK, Phys. Rev. D 82 (2010) 034022

    11년 11월 2일 수요일

  • ResultsStrange tensor form factorscompared with the axial-vector ones

    T. Ledwig, A. Silva, HChK, Phys. Rev. D 82 (2010) 034022

    11년 11월 2일 수요일

  • Results

    Comparison with the lattice results.M. Goeckeler et al., PLB 627, 113 (2005)

    T. Ledwig, A. Silva, HChK, Phys. Rev. D 82 (2010) 034022

    11년 11월 2일 수요일

  • Results

    Comparison with the lattice results.M. Goeckeler et al., PLB 627, 113 (2005)

    T. Ledwig, A. Silva, HChK, Phys. Rev. D 82 (2010) 034022

    11년 11월 2일 수요일

  • Results

    Isospin relations

    SU(3) relations Effects of SU(3) symmetry breaking are almost negligible!

    T. Ledwig, A. Silva, HChK, Phys. Rev. D 82 (2010) 034022

    11년 11월 2일 수요일

  • ResultsFlavor decomposition of the anomaloustensor magnetic form factors.

    T. Ledwig, A. Silva, HChK, Phys. Rev. D 82 (2010) 054014

    11년 11월 2일 수요일

  • ResultsUp anomalous tensor magnetic form factorscompared with the lattice one.

    T. Ledwig, A. Silva, HChK, Phys. Rev. D 82 (2010) 054014

    M. Goeckeler et al. [QCDSF Coll. and UKQCD Coll.]PRL 98, 222001 (2007)

    11년 11월 2일 수요일

  • ResultsDown anomalous tensor magnetic form factorscompared with the lattice one.

    T. Ledwig, A. Silva, HChK, Phys. Rev. D 82 (2010) 054014

    M. Goeckeler et al. [QCDSF Coll. and UKQCD Coll.]PRL 98, 222001 (2007)

    11년 11월 2일 수요일

  • Present work SU(3) Present work SU(2) Lattice�uT 3.56 3.72 3.00 (3.70)�dT 1.83 1.83 1.90 (2.35)�sT 0.2 ⇥ �0.2

    �uT /�dT 1.95 2.02 1.58

    µ2 = 0.36GeV2

    Results

    T. Ledwig, A. Silva, HChK, Phys. Rev. D 82 (2010) 054014

    The present results are in good agreement with the lattice data!M. Goeckeler et al. [QCDSF Coll. and UKQCD Coll.]PRL 98, 222001 (2007)

    11년 11월 2일 수요일

  • Transverse spin density

    ⌅(b, S, s) =1

    2

    ⇧H(b2)� Si⇥ijbj 1

    MN

    ⇧E(b2)

    ⇧b2� si⇥ijbj 1

    MN

    ⇧⇤T (b2)

    ⇧b2

    + siSi⌃HT (b

    2)� 14M2N

    ⇥2H̃T (b2)⌥

    + si�2bibj � b2�ij

    ⇥Sj

    1

    M2N

    ⇤⇧

    ⇧b2

    ⌅2H̃T (b

    2)

    �,

    F�(b2) =� �

    0

    dQ

    2�QJ0(bQ)F

    �(Q2)

    H(b2) = F1(b2), E(b2) = F2(b

    2)

    Beihang Univ., 01-03 November, 2011

    ]

    [S, s] = [(1, 0), (0, 0)], [S, s] = [(0, 0), (1, 0)]

    11년 11월 2일 수요일

  • 39

    Results6

    FIG. 4. Transverse up and down quark spin densities of the nucleon from the �QSM with the lowest moment. In the upperleft panel, the density of unpolarized quarks in a transversely polarized nucleon ([S, s] = [(1, 0), (0, 0)]) is drawn and in theupper right panel, that of transversely polarized quarks in a unpolarized nucleon ([S, s] = [(0, 0), (1, 0)]). In the lower panel,we plot the down quark densities.

    [S, s] = [(1, 0), (0, 0)], it is shown from Fig. 4 that the down quark density is more distorted in the negative directionof by, compared to the up quark density. The reason can be found in the fact that firstly the down anomalous magneticmoment (�1.80µN ) is negative and its absolute value is larger than the up one (1.35µN ). Secondly, the down Pauliform factor falls o� more slowly than that of the up quark. As for the [S, s] = [(1, 0), (0, 0)], the tensor anomalousmagnetic moments come into play. Since both �uT and �

    dT are positive, the both transverse spin densities are deformed

    in the direction of the positive by. Moreover, the form factor �dT falls o� rather more slowly than �uT as shown in

    Fig. 2, the density for the down quark is more strongly deformed. Note that the Q2 dependence of the form factorsplay a more important role in governing the deformation of the densities. The results for the transverse up and downquark spin densities of the nucleon with the lowest moment are very similar to those from the lattice calculation [17]and as a result we can draw similar conclusions.

    Since both the strange Pauli form factor and tensor anomalous magnetic form factor turn out to be rather small,we can expect that the strength of the strange densities will be rather small. Nevertheless, it is of great interest to seehow much the transverse strange densities are distorted. Figure 5 plots the transverse strange quark spin densitieswith the lowest moment. Note that the magnitudes of the densities are smaller than those of the up and down quarksby an order of magnitude.

    It is interesting to see that the density of unpolarized strange quarks in a polarized nucleon is negatively shifted.It is due to the fact that the strange Pauli form factor F s2 turns negative from Q

    2 ⇥ 0.2GeV2. This negative values

    Up quark transverse spin density inside a nucleon

    the latter correlation is stronger than the one betweentransverse quark and nucleon spin.

    Figure 5 shows the n ! 2 moment of the densities.Obviously, the pattern is very similar to that in Fig. 4,which supports our simple interpretation. The main differ-ence is that the densities for the higher n ! 2 moment aremore peaked around the origin b? ! 0 as already observedin [27] for the vector and axial vector GFFs.

    Conclusions.—We have presented first lattice results forthe lowest two moments of transverse spin densities ofquarks in the nucleon. Because of the large and positive

    contributions from the tensor GFF !BTn0 for up and fordown quarks, we find strongly distorted spin densities fortransversely polarized quarks in an unpolarized nucleon.According to Burkardt [7], this leads to the prediction of asizable negative Boer-Mulders function [4] for up anddown quarks, which may be confirmed in experiments at,e.g., Jefferson Lab and GSI Facility for Antiproton and IonResearch [28,29].

    The numerical calculations have been performed on theHitachi No. SR8000 at LRZ (Munich), the apeNEXT atNIC/DESY (Zeuthen), and the BlueGene/L at NIC/FZJ(Jülich), EPCC (Edinburgh), and KEK (by the Kanazawagroup as part of the DIK research programme). This workwas supported by DFG (Forschergruppe Gitter-Hadronen-Phänomenologie and Emmy-Noether programme), HGF(Contract No. VH-NG-004), and EU I3HP (ContractNo. RII3-CT-2004-506078).

    *Electronic address: [email protected][1] V. Barone, A. Drago, and P. G. Ratcliffe, Phys. Rep. 359, 1

    (2002).[2] R. L. Jaffe and X. D. Ji, Phys. Rev. Lett. 67, 552 (1991).[3] D. W. Sivers, Phys. Rev. D 41, 83 (1990).[4] D. Boer and P. J. Mulders, Phys. Rev. D 57, 5780 (1998).[5] M. Diehl and Ph. Hägler, Eur. Phys. J. C 44, 87 (2005).[6] M. Burkardt, Nucl. Phys. A735, 185 (2004).[7] M. Burkardt, Phys. Rev. D 72, 094020 (2005).[8] M. Diehl, Phys. Rep. 388, 41 (2003).[9] M. Burkardt, Phys. Rev. D 62, 071503 (2000); 66, 119903

    (2002).[10] M. Diehl, Eur. Phys. J. C 19, 485 (2001).[11] Ph. Hägler, Phys. Lett. B 594, 164 (2004); Z. Chen and

    X. Ji, Phys. Rev. D 71, 016003 (2005).[12] J. C. Collins and M. Diehl, Phys. Rev. D 61, 114015

    (2000); D. Y. Ivanov et al., Phys. Lett. B 550, 65 (2002).[13] A. Ali Khan et al., Phys. Rev. D 74, 094508 (2006).[14] C. Aubin et al., Phys. Rev. D 70, 094505 (2004).[15] M. Göckeler et al., Phys. Lett. B 627, 113 (2005).[16] G. Martinelli et al., Nucl. Phys. B445, 81 (1995);

    M. Göckeler et al., Nucl. Phys. B544, 699 (1999).[17] M. Göckeler et al., Phys. Rev. Lett. 92, 042002 (2004).[18] M. Göckeler et al., Nucl. Phys. A755, 537 (2005).[19] Ph. Hägler et al., Phys. Rev. D 68, 034505 (2003).[20] M. Diehl et al., arXiv:hep-ph/0511032.[21] D. Brömmel et al., arXiv:hep-lat/0608021.[22] M. Göckeler et al., arXiv:hep-lat/0610118.[23] A. Ali Khan et al., Nucl. Phys. B689, 175 (2004).[24] S. I. Ando, J. W. Chen, and C. W. Kao, arXiv:hep-ph/

    0602200; M. Diehl, A. Manashov, and A. Schäfer,arXiv:hep-ph/0608113.

    [25] B. Pasquini, M. Pincetti, and S. Boffi, Phys. Rev. D 72,094029 (2005).

    [26] M. Burkardt, arXiv:hep-ph/0611256.[27] Ph. Hägler et al., Phys. Rev. Lett. 93, 112001 (2004).[28] H. Avakian et al., Jefferson Lab Research Proposal

    No. PR12-06-112.[29] See baseline technical report, PANDA Collaboration,

    http://www.gsi.de/fair/reports/btr.html.

    FIG. 5 (color online). Second moment (n ! 2) of transversespin densities. For details, see caption of Fig. 4.

    FIG. 4 (color online). Lowest moment (n ! 1) of the densitiesof unpolarized quarks in a transversely polarized nucleon (left)and transversely polarized quarks in an unpolarized nucleon(right) for up (upper plots) and down (lower plots) quarks. Thequark spins (inner arrows) and nucleon spins (outer arrows) areoriented in the transverse plane as indicated.

    PRL 98, 222001 (2007) P H Y S I C A L R E V I E W L E T T E R Sweek ending1 JUNE 2007

    222001-4

    Lattice results

    M. Goeckeler et al. [QCDSF Coll. and UKQCD Coll.]PRL 98, 222001 (2007)

    11년 11월 2일 수요일

  • 8

    FIG. 6: Transverse up and down quark spin densities with the lowest moment of the nucleon from the �QSM with bx = 0. Inthe upper left panel, the density of unpolarized quarks in a transversely polarized nucleon ([S, s] = [(1, 0), (0, 0)]) is drawn andin the upper right panel, that of transversely polarized quarks in a unpolarized nucleon ([S, s] = [(0, 0), (1, 0)]). In the lowerpanel, we plot the down quark densities.

    [10] M. Anselmino, V. Barone, A. Drago and N.N. Nikolaev, Phys. Lett. B 594 (2004) 97.[11] B. Pasquini, M. Pincetti and S. Bo�, Phys. Rev. D 76 (2007) 034020.[12] K. Abe et al. [Belle Colaboration], Phys. Rev. Lett. 96 (2006) 232002.[13] L. Pappalardo for the HERMES collaboration, Apr 2006. 4pp. Prepared for 14th International Workshop on Deep Inelastic

    Scattering (DIS 2006), Tsukuba, Japan, 20-24 Apr 2006.[14] A. Airapetian et al., [HERMES Collaboration], Phys. Rev. Lett. 94 (2005) 012002.[15] E.S. Ageev et al., [COMPASS Collaboration], Nucl. Phys. B 765 (2007) 31.[16] M. Anselmino et al., Nucl. Phys. Proc. Suppl. 191 (2009) 98.[17] M. Göckeler et al. [QCDSF Collaboration and UKQCD Collaboration], Phys. Rev. Lett. 98 (2007) 222001.[18] M. Diehl and P. .Hägler, Eur. Phys. J. C44 (2005) 87.[19] M. Burkardt, Phys. Rev. D62 (2000) 071503. [hep-ph/0005108].[20] M. Burkardt, Int. J. Mod. Phys. A18 (2003) 173-208. [arXiv:hep-ph/0207047 [hep-ph]].[21] A. Silva, Ph.D. Dissertation, Ruhr-Universität Bochum, (unpublished).[22] A. Silva, H. -Ch. Kim and K. Goeke, Phys. Rev. D65 (2002) 014016.[23] A. Silva, H. -Ch. Kim and K. Goeke, Eur. Phys. J. A22 (2004) 481.[24] K. Goeke, H.-Ch. Kim, A. Silva and D. Urbano, Eur. Phys. J. A32 (2007) 393.[25] T. Ledwig, A. Silva and H.-Ch. Kim, Phys. Rev. D 82 (2010) 034022.[26] T. Ledwig, A. Silva and H.-Ch. Kim, Phys. Rev. D 82 (2010) 054014.[27] C. C. Carlson and M. Vanderhaeghen, Phys. Rev. Lett. 100 (2008) 032004; Eur. Phys. J. A 41 (2009) 41.[28] L. Tiator and M. Vanderhaeghen, Phys. Lett. B 672 (2009) 344.[29] C. Lorce, B. Pasquini, M. Vanderhaeghen, arXiv:1102.4702[30] C. Lorce, B. Pasquini, arXiv:1106.0139

    40

    ResultsUp quark transverse spin density inside a nucleon

    Beihang Univ., 01-03 November, 2011

    11년 11월 2일 수요일

  • 6

    FIG. 4: Transverse up and down quark spin densities with the lowest moment of the nucleon from the �QSM. In the upper leftpanel, the density of unpolarized quarks in a transversely polarized nucleon ([S, s] = [(1, 0), (0, 0)]) is drawn and in the upperright panel, that of transversely polarized quarks in a unpolarized nucleon ([S, s] = [(0, 0), (1, 0)]). In the lower panel, we plotthe down quark densities.

    the width of the profile gets narrower and more peaked. On the contrary, the transverse down quark spin density forthe unpolarized quarks in a polarized nucleon is changed to the negative by direction and shows an obvious distortion.That for the polarized quarks in an unpolarized nucleon is shifted to the positive by direction and distorted again.

    Figure 7 shows the profiles of the transverse strange quark spin densities with bx = 0. Interestingly, the densityfor the unpolarized strange quarks in a polarized nucleon is only slightly modified. In contrast, the polarized strangequarks are strongly redistributed in an unpolarized nucleon. As a result, the peak position is shifted to the positive bydirection and becomes sharper. Moreover, the density becomes even more negative for the negative value of by thanfor the positive by.

    5. We investigated the transverse quark spin densities of the nucleon with the lowest moment, using the results ofthe vector and tensor form factors derived from the SU(3) chiral quark-soliton model. we first recapitulated the flavor-decomposed anomalous vector and tensor magnetic form factors as functions of the momentum transfer. For numericalconvenience, we made parametrizations of the form factors. Having combined these form factors and performed theFourier transformations, we evaluated the transverse quark spin densities of the nucleon with the lowest moment. Weconsidered two di�erent cases, the density of unpolarized quarks in a polarized nucleon and that of polarized quarksin an unpolarized nucleon. The results turned out to be rather similar to the lattice QCD ones. Transversly polarized

    41

    ResultsDown quark transverse spin density inside a nucleon

    the latter correlation is stronger than the one betweentransverse quark and nucleon spin.

    Figure 5 shows the n ! 2 moment of the densities.Obviously, the pattern is very similar to that in Fig. 4,which supports our simple interpretation. The main differ-ence is that the densities for the higher n ! 2 moment aremore peaked around the origin b? ! 0 as already observedin [27] for the vector and axial vector GFFs.

    Conclusions.—We have presented first lattice results forthe lowest two moments of transverse spin densities ofquarks in the nucleon. Because of the large and positive

    contributions from the tensor GFF !BTn0 for up and fordown quarks, we find strongly distorted spin densities fortransversely polarized quarks in an unpolarized nucleon.According to Burkardt [7], this leads to the prediction of asizable negative Boer-Mulders function [4] for up anddown quarks, which may be confirmed in experiments at,e.g., Jefferson Lab and GSI Facility for Antiproton and IonResearch [28,29].

    The numerical calculations have been performed on theHitachi No. SR8000 at LRZ (Munich), the apeNEXT atNIC/DESY (Zeuthen), and the BlueGene/L at NIC/FZJ(Jülich), EPCC (Edinburgh), and KEK (by the Kanazawagroup as part of the DIK research programme). This workwas supported by DFG (Forschergruppe Gitter-Hadronen-Phänomenologie and Emmy-Noether programme), HGF(Contract No. VH-NG-004), and EU I3HP (ContractNo. RII3-CT-2004-506078).

    *Electronic address: [email protected][1] V. Barone, A. Drago, and P. G. Ratcliffe, Phys. Rep. 359, 1

    (2002).[2] R. L. Jaffe and X. D. Ji, Phys. Rev. Lett. 67, 552 (1991).[3] D. W. Sivers, Phys. Rev. D 41, 83 (1990).[4] D. Boer and P. J. Mulders, Phys. Rev. D 57, 5780 (1998).[5] M. Diehl and Ph. Hägler, Eur. Phys. J. C 44, 87 (2005).[6] M. Burkardt, Nucl. Phys. A735, 185 (2004).[7] M. Burkardt, Phys. Rev. D 72, 094020 (2005).[8] M. Diehl, Phys. Rep. 388, 41 (2003).[9] M. Burkardt, Phys. Rev. D 62, 071503 (2000); 66, 119903

    (2002).[10] M. Diehl, Eur. Phys. J. C 19, 485 (2001).[11] Ph. Hägler, Phys. Lett. B 594, 164 (2004); Z. Chen and

    X. Ji, Phys. Rev. D 71, 016003 (2005).[12] J. C. Collins and M. Diehl, Phys. Rev. D 61, 114015

    (2000); D. Y. Ivanov et al., Phys. Lett. B 550, 65 (2002).[13] A. Ali Khan et al., Phys. Rev. D 74, 094508 (2006).[14] C. Aubin et al., Phys. Rev. D 70, 094505 (2004).[15] M. Göckeler et al., Phys. Lett. B 627, 113 (2005).[16] G. Martinelli et al., Nucl. Phys. B445, 81 (1995);

    M. Göckeler et al., Nucl. Phys. B544, 699 (1999).[17] M. Göckeler et al., Phys. Rev. Lett. 92, 042002 (2004).[18] M. Göckeler et al., Nucl. Phys. A755, 537 (2005).[19] Ph. Hägler et al., Phys. Rev. D 68, 034505 (2003).[20] M. Diehl et al., arXiv:hep-ph/0511032.[21] D. Brömmel et al., arXiv:hep-lat/0608021.[22] M. Göckeler et al., arXiv:hep-lat/0610118.[23] A. Ali Khan et al., Nucl. Phys. B689, 175 (2004).[24] S. I. Ando, J. W. Chen, and C. W. Kao, arXiv:hep-ph/

    0602200; M. Diehl, A. Manashov, and A. Schäfer,arXiv:hep-ph/0608113.

    [25] B. Pasquini, M. Pincetti, and S. Boffi, Phys. Rev. D 72,094029 (2005).

    [26] M. Burkardt, arXiv:hep-ph/0611256.[27] Ph. Hägler et al., Phys. Rev. Lett. 93, 112001 (2004).[28] H. Avakian et al., Jefferson Lab Research Proposal

    No. PR12-06-112.[29] See baseline technical report, PANDA Collaboration,

    http://www.gsi.de/fair/reports/btr.html.

    FIG. 5 (color online). Second moment (n ! 2) of transversespin densities. For details, see caption of Fig. 4.

    FIG. 4 (color online). Lowest moment (n ! 1) of the densitiesof unpolarized quarks in a transversely polarized nucleon (left)and transversely polarized quarks in an unpolarized nucleon(right) for up (upper plots) and down (lower plots) quarks. Thequark spins (inner arrows) and nucleon spins (outer arrows) areoriented in the transverse plane as indicated.

    PRL 98, 222001 (2007) P H Y S I C A L R E V I E W L E T T E R Sweek ending1 JUNE 2007

    222001-4

    Lattice resultsM. Goeckeler et al. [QCDSF Coll. and UKQCD Coll.]PRL 98, 222001 (2007)

    11년 11월 2일 수요일

  • 8

    FIG. 6: Transverse up and down quark spin densities with the lowest moment of the nucleon from the �QSM with bx = 0. Inthe upper left panel, the density of unpolarized quarks in a transversely polarized nucleon ([S, s] = [(1, 0), (0, 0)]) is drawn andin the upper right panel, that of transversely polarized quarks in a unpolarized nucleon ([S, s] = [(0, 0), (1, 0)]). In the lowerpanel, we plot the down quark densities.

    [10] M. Anselmino, V. Barone, A. Drago and N.N. Nikolaev, Phys. Lett. B 594 (2004) 97.[11] B. Pasquini, M. Pincetti and S. Bo�, Phys. Rev. D 76 (2007) 034020.[12] K. Abe et al. [Belle Colaboration], Phys. Rev. Lett. 96 (2006) 232002.[13] L. Pappalardo for the HERMES collaboration, Apr 2006. 4pp. Prepared for 14th International Workshop on Deep Inelastic

    Scattering (DIS 2006), Tsukuba, Japan, 20-24 Apr 2006.[14] A. Airapetian et al., [HERMES Collaboration], Phys. Rev. Lett. 94 (2005) 012002.[15] E.S. Ageev et al., [COMPASS Collaboration], Nucl. Phys. B 765 (2007) 31.[16] M. Anselmino et al., Nucl. Phys. Proc. Suppl. 191 (2009) 98.[17] M. Göckeler et al. [QCDSF Collaboration and UKQCD Collaboration], Phys. Rev. Lett. 98 (2007) 222001.[18] M. Diehl and P. .Hägler, Eur. Phys. J. C44 (2005) 87.[19] M. Burkardt, Phys. Rev. D62 (2000) 071503. [hep-ph/0005108].[20] M. Burkardt, Int. J. Mod. Phys. A18 (2003) 173-208. [arXiv:hep-ph/0207047 [hep-ph]].[21] A. Silva, Ph.D. Dissertation, Ruhr-Universität Bochum, (unpublished).[22] A. Silva, H. -Ch. Kim and K. Goeke, Phys. Rev. D65 (2002) 014016.[23] A. Silva, H. -Ch. Kim and K. Goeke, Eur. Phys. J. A22 (2004) 481.[24] K. Goeke, H.-Ch. Kim, A. Silva and D. Urbano, Eur. Phys. J. A32 (2007) 393.[25] T. Ledwig, A. Silva and H.-Ch. Kim, Phys. Rev. D 82 (2010) 034022.[26] T. Ledwig, A. Silva and H.-Ch. Kim, Phys. Rev. D 82 (2010) 054014.[27] C. C. Carlson and M. Vanderhaeghen, Phys. Rev. Lett. 100 (2008) 032004; Eur. Phys. J. A 41 (2009) 41.[28] L. Tiator and M. Vanderhaeghen, Phys. Lett. B 672 (2009) 344.[29] C. Lorce, B. Pasquini, M. Vanderhaeghen, arXiv:1102.4702[30] C. Lorce, B. Pasquini, arXiv:1106.0139

    42

    ResultsDown quark transverse spin density inside a nucleon

    Beihang Univ., 01-03 November, 2011

    11년 11월 2일 수요일

  • 7

    FIG. 5: Transverse strange quark spin densities of the nucleon from the �QSM with the lowest moment. In the left panel,the density of unpolarized strange quarks in a transversely polarized nucleon ([S, s] = [(1, 0), (0, 0)]) is drawn and in the rightpanel, that of transversely polarized strange quarks in an unpolarized nucleon ([S, s] = [(0, 0), (1, 0)]).

    quarks in an unpolarized proton are both shifted to the positive direction of bx. The shift is more prominent thanthe one occuring for unpolarized quarks in a polarized proton, where the density for the u-quark is shifted to positiveand that of the d-quark to the negative by direction.

    We presented in this work the first result of the transverse strange quark spin densities. Since the magnitudes ofstrange Pauli and anomalous tensor magnetic form factors are rather small, the strange densities turn out to be muchsmaller than those for the up and down quarks. However, the density for polarized strange quarks in an unpolarizednucleon is noticeably distorted in the direction of the positive by and becomes more negative for the negative valuesof by.

    In the present work, we considered only the transverse spin densities with the lowest moment. The generalized formfactors with higher moments can be calculated in principle within the framework of the chiral quark-soliton model.However, we need to consider them carefully because of the presence of the derivative operators. The correspondingwork is under progress. So far, we did not consider other cases of the transverse polarizations such as [(1, 0), (1, 0)]for which one requires information on the form factor H̃T and its derivative. However, we found that this form factorshowed a numerically sensitivity. A related work addressing that is under way.

    Acknowledgments

    H.Ch.K is grateful to E. Epelbaum and M.V. Polyakov for hospitalities during his visit to Theoretische PhysikInstitute II in Ruhr-Universität Bochum, where part of the work was carried out. The authors are grateful to A. Metzfor valuable comments and suggestions. The present work was supported by Basic Science Research Program throughthe National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology(grant number: 2010-0016265).

    [1] J. P. Ralston and D. E. Soper, Nucl. Phys. B 172 (1980) 445.[2] R. L. Ja�e and X. D. Ji, Nucl. Phys. B 375 (1992) 527.[3] J. L. Cortes, B. Pire and J. P. Ralston, Z. Phys. C 55 (1992) 409.[4] V. Barone, A. Drago, and P. G. Ratcli�e, Phys. Rept. 359 (2002) 1.[5] S. Bo⇥ and B. Pasquini, Riv. Nuovo Cim. 30 (2007) 387.[6] Ph. Hägler, Phys. Rept. 490 (2010) 49.[7] G. A. Miller, Ann. Rev. Nucl. Part. Sci. 60 (2010) 1 [arXiv:1002.0355 [nucl-th]].[8] A.V. Efremov, K. Goeke and P. Schweitzer, Eur. Phys. J. C 35 (2004) 207.[9] V. Barone, [PAX Collaboration], hep-ex/0505054.

    43

    ResultsStrange quark transverse spin density inside a nucleon

    This is the first result of the strange quark transverse spin density inside a nucleon

    Beihang Univ., 01-03 November, 2011

    11년 11월 2일 수요일

  • 9

    FIG. 7: Transverse strange quark spin densities of the nucleon from the �QSM with the lowest moment with bx = 0. In theleft panel, the density of unpolarized strange quarks in a transversely polarized nucleon ([S, s] = [(1, 0), (0, 0)]) is drawn andin the right panel, that of transversely polarized strange quarks in an unpolarized nucleon ([S, s] = [(0, 0), (1, 0)]).

    [31] Ph. Hägler et al., Phys. Rev. D 68 (2003) 034505.[32] C.V. Christov et al., Prog. Part. Nucl. Phys. 37 (1996) 91.

    44

    ResultsStrange quark transverse spin density inside a nucleon

    Polarized to the negative direction in the b plane.

    Beihang Univ., 01-03 November, 2011

    11년 11월 2일 수요일

  • 45

    Summary•We have reviewed recent investigations on the spin structures of the pion and nucleon, based on the chiral quark-(soliton) model.

    • The results were compared with those of the lattice QCD and turned out to be in good agreement with them.

    •The first strange anomalous tensor magnetic moment was obtained, though it is compatible with zero.

    •The transverse quark spin densities inside the proton were presented.

    •The strange quark transverse spin density was first announced in this work.

    Beihang Univ., 01-03 November, 2011

    11년 11월 2일 수요일

  • Thank you very much!

    Though this be madness,yet there is method in it.

    Hamlet Act 2, Scene 2

    11년 11월 2일 수요일