tesis 'simulación de tsunamis y rompimiento de represas' daniel garrido

194
 UNIVERSIDAD DE LA SERENA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA MECÁNICA SIMULACIÓN COMPUTACIONAL DE FLUJOS BIFÁSICOS EN: LLENADO DE MOLDES, ROMPIMIENTO DE PRESAS Y PREDICCIÓN DE EFECTOS DE TSUNAMI EN EL FARO DE LA SERENA DANIEL ROBERTO GARRIDO CUADRA Profesor Guía: Dr. Nelson Moraga Benavides Trabajo de Titulación presentado en conformidad a los requisitos para obtener el título de Ingeniero Civil Mecánico. La Serena-Chile 2013

Upload: dan-garrido-cuadra

Post on 25-Feb-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 1/194

 

UNIVERSIDAD DE LA SERENA

FACULTAD DE INGENIERÍA

DEPARTAMENTO DE INGENIERÍA MECÁNICA

SIMULACIÓN COMPUTACIONAL DE FLUJOS BIFÁSICOSEN: LLENADO DE MOLDES, ROMPIMIENTO DE PRESASY PREDICCIÓN DE EFECTOS DE TSUNAMI EN EL FARO

DE LA SERENA

DANIEL ROBERTO GARRIDO CUADRA

Profesor Guía: Dr. Nelson Moraga Benavides

Trabajo de Titulación presentado en

conformidad a los requisitos para obtener el título de

Ingeniero Civil Mecánico.

La Serena-Chile

2013

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 2/194

 

DEDICATORIA

A:

Carlos Garrido Soto

Papá, cada una de estas hojas y el esfuerzo con que las plasmé, son para ti, y todas las metasque lograré son gracias al reflejo tuyo presente en mi.

Erica Cuadra ÓrdenesMamá, gracias por acompañarme siempre, cada hoja es la dedicación que me brindaste.

“Una mente que ha sido estirada por nuevas ideas, nunca podrá recobrar su forma original ”.

Albert Einstein

“Voy a preguntar a Dios dos cuestiones: el porqué de la relatividad y el porqué de laturbulencia. Soy optimista en obtener respuesta a la primera cuestión”.

Leonardo Da Vinci

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 3/194

 

AGRADECIMIENTOS

En primer lugar agradezco a quienes integran la Universidad de La Serena, por laformación académica e integral que he recibido, que sin duda será indispensable para mifuturo laboral y mi vida personal. Quisiera agradecer especialmente a mi profesor guía, dequién tuve constante apoyo durante esta investigación, en especial agradezco su preocupación por perfeccionar mi trabajo y por todo el conocimiento que me ha entregado.

Me gustaría también agradecer a quienes tuve por compañeros de carrera y a losestudiantes del curso de taller de titulación, por compartir conmigo largas noches de estudio einnumerables y memorables recuerdos, oportunidades en las que siempre se creó un agradablee ideal ambiente en el cual se transmitía el conocimiento. Queda en mi una gran admiración por ellos, y estoy seguro que todos ellos llegarán lejos realizando lo que de verdad les llena elcorazón. Pablo Pacheco, Alejandro Pacheco, Daniel Navarrete, Alberto Aguilera, entre otros;les deseo lo mejor a cada uno de ustedes, sé que nuestros caminos profesionales se cruzaránnuevamente y podremos compartir nuevos momentos.

A mis hermanos de la vida, mis amigos, que están presentes en cada uno de mis logros,

así como yo también les he acompañado en los suyos. Gracias por compartir tantas risas yrecuerdos juntos, aprecio el apoyo que me han brindado siempre; Bastián Rojas, SergioRivera, José Miguel Bustamante, Adriano Mettifogo y Bayron Cecchi, un abrazo de amistad para toda la vida.

Al equipo ‘‘Antakari’’ del auto solar, conformado por un grupo de grandes personas,con los cuales compartí experiencias inigualables que me llenaron el alma, aprendiendo deellos grandes enseñanzas, como lo es el significado real del esfuerzo y el trabajo en equipo,además de vivir momentos tan enriquecedores, los que sin duda serán de gran utilidad en mifuturo desempeño profesional. A cada uno de ellos le deseo éxito en su vida laboral y personal, en especial a Jaime Muñoz, Leonardo Saguas, Pablo Esquivel, Fernando

Barrionuevo, Sandra González, Abdon Muñoz, Sergio Pérez, Sebastián Olivares y GermánParada, todos ellos grandes personas y amigos, con los cuales sin duda seguiré compartiendo.

A mi equipo de rugby, Seminario Conciliar Rugby Club, que me ha entregado grandesvalores los que me han hecho crecer como persona, valores tan destacables como la disciplinaque se me ha inculcado todos estos años. Gracias a esto, he aprendido que nada se consiguefácil, que si de verdad se anhela algo, se debe luchar y entrenar hasta alcanzar las metasdeseadas. Gracias por cultivar grandes pensamientos que han formado mi carácter y porhacerme sentir que cada una de las personas que integran el club, son mi familia. Un fuerteabrazo para todos, que las ambiciones de superación nunca se alejen de sus pensamientos,estoy seguro que se llegarán a cumplir cada uno de sus objetivos.

Termino estas líneas para agradecer profundamente a mi familia, los pilares de mi vida.A mi padre, ejemplo a seguir, confío plenamente en él, admiro profundamente su sabiduría ytemple. A mi madre, la mujer más maravillosa del mundo, agradezco su constante amor brindado cada día. A mi hermano y amigo, agradecer sus oportunas palabras de alientoofrecidas y quisiera decirle que eres una muy buena persona. Agradezco a Dios por darme unafamilia maravillosa, a la que amo y juntos sé que podremos afrontar cualquier desafío.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 4/194

 

TABLA DE CONTENIDOS

CAPÍTULO I

INTRODUCCIÓN ................................................................................................................ 1

1.1 ANTECEDENTES GENERALES ............................................................................... 1

1.2 PRESENTACIÓN DEL PROBLEMA ......................................................................... 2

1.3 REVISIÓN BIBLIOGRÁFICA .................................................................................... 3 

1.4 OBJETIVOS ................................................................................................................. 4

1.4.1 OBJETIVO GENERAL ......................................................................................... 4

1.4.2 OBJETIVOS ESPECÍFICOS ................................................................................. 4

1.5 METODOLOGÍA ......................................................................................................... 5

1.6 APORTES Y ORIGINALIDAD .................................................................................. 6

CAPÍTULO II

PREDICCIÓN 3D DE LA INTERFASE MÓVIL EN EL LLENADO DE UN MOLDEEN FORMA DE S CON MVF ............................................................................................. 7

2.1 INTRODUCCIÓN ........................................................................................................ 7

2.2 REVISIÓN BIBLIOGRÁFICA .................................................................................... 7

2.3 OBJETIVOS ................................................................................................................. 9

2.3.1 OBJETIVO GENERAL ......................................................................................... 92.3.2 OBJETIVOS ESPECÍFICOS ................................................................................. 9

2.4 MODELO MATEMÁTICO GENERAL ...................................................................... 9

2.4.1 MÉTODO VOF .................................................................................................... 10

2.4.2 PROPIEDADES REOLÓGICAS ........................................................................ 11 

2.5 SITUACIÓN FÍSICA ................................................................................................. 12

2.6 IMPLEMENTACIÓN COMPUTACIONAL ............................................................. 13

2.7 PRESENTACIÓN, ANÁLISIS Y DISCUSIÓN DE RESULTADOS ....................... 15

2.8 CONCLUSIONES PRELIMINARES ........................................................................ 25

CAPÍTULO III

MECÁNICA DE FLUIDOS 3D PARA FLUJO TURBULENTO DE METAL FUNDIDOEN LLENADO DE MOLDE CON MVF Y VOF………………………….26 

3.1 INTRODUCCIÓN ...................................................................................................... 26

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 5/194

 

3.2 REVISIÓN BIBLIOGRÁFICA .................................................................................. 27

3.3 OBJETIVOS ............................................................................................................... 29

3.3.1 OBJETIVO GENERAL ....................................................................................... 29

3.3.2 OBJETIVOS ESPECÍFICOS ............................................................................... 29

3.4 MODELO MATEMÁTICO GENERAL .................................................................... 30

3.4.1 MÉTODO VOF .................................................................................................... 31

3.4.2 PROPIEDADES REOLÓGICAS ........................................................................ 32

3.5 SITUACIÓN FÍSICA ................................................................................................. 33

3.5.1 DISEÑO DE MOLDE .......................................................................................... 34

3.6 IMPLEMENTACIÓN COMPUTACIONAL ............................................................. 35

3.7 PRESENTACIÓN, ANÁLISIS Y DISCUSIÓN DE RESULTADOS ....................... 37

3.7.1 VALIDACIÓN PARCIAL DE RESULTADOS ................................................. 383.8 CONCLUSIONES PRELIMINARES ........................................................................ 43

CAPÍTULO IV

ESTUDIO DE LA INTERACCIÓN FLUIDO-ESTRUCTURA DEL COLAPSO DEUNA COLUMNA DE AGUA EN ANSYS/FLUENT Y OPENFOAM………………..45 

4.1 INTRODUCCIÓN ...................................................................................................... 45

4.2 REVISIÓN BIBLIOGRÁFICA .................................................................................. 45

4.3 OBJETIVOS ............................................................................................................... 484.3.1 OBJETIVO GENERAL ....................................................................................... 48

4.3.2 OBJETIVOS ESPECÍFICOS ............................................................................... 48

4.4 MODELO MATEMÁTICO GENERAL .................................................................... 49

4.4.1 MÉTODO VOF .................................................................................................... 50

4.4.2 PROPIEDADES REOLÓGICAS ........................................................................ 51

4.5 COLAPSO DE COLUMNA DE AGUA EN 2D PARA FLUJO LAMINAR CONANSYS/FLUENT Y OPENFOAM .................................................................................. 52

4.5.1 SITUACIÓN FÍSICA ........................................................................................... 52

4.5.2 IMPLEMENTACIÓN COMPUTACIONAL ...................................................... 53

4.5.3 PRESENTACIÓN, ANÁLISIS Y DISCUSIÓN DE RESULTADOS ................ 55

4.6 COLAPSO DE COLUMNA DE AGUA EN 3D PARA FLUJO TURBULENTOAPLICADO EN LA ROTURA DE UNA REPRESA ...................................................... 65

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 6/194

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 7/194

 

CAPÍTULO VI

CONCLUSIONES GENERALES……………………………………………………...151  

6.1 MODELO MATEMÁTICO ..................................................................................... 151

6.2 IMPLEMENTACIÓN COMPUTACIONAL ........................................................... 152 

6.3 FÍSICA DE LOS PROBLEMAS .............................................................................. 153

6.4 IMPORTANCIA EN INGENIERÍA ........................................................................ 154 

REFERENCIAS ............................................................................................................... 157

ANEXOS

ANEXO A

FUNDAMENTOS MATEMÁTICOS Y NUMÉRICOS………….………………...…160 

A.1 INTRODUCCIÓN ................................................................................................... 160

A.2 ECUACIONES GOBERNANTES .......................................................................... 163

A.3 VOF .......................................................................................................................... 165

A.4 MODELOS DE TURBULENCIA ........................................................................... 169

ANEXO B

MECÁNICA DE FLUIDOS COMPUTACIONAL…………………………….....…..173

B.1 INTRODUCCIÓN ................................................................................................... 173

B.2 DISCRETIZACIÓN DE UNA VARIABLE ........................................................... 174B.3 ETAPAS EN UN ANÁLISIS DE CFD ................................................................... 174

B.4 DISCRETIZACIÓN ESPACIAL ............................................................................. 175

B.5 DISCRETIZACIÓN TEMPORAL .......................................................................... 177

B.6 CONDICIONES DE CONTORNO E INICIALES ................................................. 178

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 8/194

 

ÍNDICE DE TABLAS

Tabla 2.1.  Propiedades térmicas empleadas en el llenado de un molde con forma de

S……………………………………………………………………………..11 Tabla 3.1.  Propiedades térmicas empleadas en la simulación de llenado de molde en

3D…………………………………………………………………………...32 

Tabla 4.1.  Propiedades térmicas empleadas en el estudio de la interacción fluido-

estructura del colapso de una columna de agua aplicado en ruptura de

represa………………………………………………………………………51 

Tabla 5.1.  Propiedades térmicas empleadas en la simulación para predicción de

tsunami……………………………………………………………………...84 

ÍNDICE DE FIGURAS

Figura 2.1.  Máquina de moldeo por inyección…………………………………………...8 

Figura 2.2. Dimensiones del molde en forma de S, en el plano central………………...12 

Figura 2.3.  Maquetas 3D en el llenado de molde con forma de S, para los cinco moldes

investigados…………………………………………………………………13 Figura 2.4.  Vista general de mallas empleadas para simulaciones en 2D y 3D en el

llenado de molde con forma de S…………………………………………...14 

Figura 2.5.  Tiempo de Cálculo según Malla, para el llenado de molde en 2D con forma

de S………………………………………………………………………….15 

Figura 2.6.  Tiempo de Cálculo según número de elementos para el llenado de molde con

forma de S en 2D y distintas profundidades en 3D…………………………17 

Figura 2.7.  Posición de la interfaz caso 2D para diferentes instantes de tiempo.

Obtenidas con a) ETILT [4], b) MLIT [4], c) Standard technique [4] y d)

MVF ANSYS/FLUENT…………………………………………………….18 

Figura 2.8.  Resultados del llenado de molde 2D con forma de S. a) Contorno de

velocidades, b) Líneas de corriente, c) Presión dinámica y d) Presión

estática………………………………………………………………………19 

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 9/194

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 10/194

 

Figura 3.9.  Evolución en el tiempo del frente de llenado y contorno de velocidades, en

llenado superior del molde………………………………………………….42  

Figura 4.1.  Presa de arco Malpasset, Francia…………………………………………...46 

Figura 4.2. Sistema operativo utilizado en el top-500 de supercomputadoras………….47 

Figura 4.3.  Situación física para caso colapso de columna de agua 2D en flujo

laminar ………………………………………………………………………52  

Figura 4.4.  Malla caso colapso de columna de agua 2D para flujo laminar …………….53 

Figura 4.5.  Mapa de contorno de variables Ansys/Fluent en colapso de columna de agua

2D con flujo laminar………………………………………………………..56 

Figura 4.6.  Mapa de contorno de variables OpenFoam en colapso de columna de agua

2D con flujo laminar………………………………………………………..57 

Figura 4.7.  Tiempos de CPU para colapso de agua, 2D, laminar. Fluent vsOpenFoam…………………………………………………………………..57 

Figura 4.8.  Colapso de columna de agua, 2D, laminar en ANSYS/Fluent. 0.1s a

0.5s………………………………………………………………………….59  

Figura 4.9.  Colapso de columna de agua, 2D, laminar en ANSYS/Fluent. 0.6s a

1s……………………………………………………………………………60  

Figura 4.10.  Colapso de columna de agua, 2D, laminar en ANSYS/Fluent. 1.5s a

5.0s………………………………………………………………………….61  

Figura 4.11.  Colapso de columna de agua, 2D, laminar en OpenFoam. 0.1s a

0.5s………………………………………………………………………….62  

Figura 4.12. Colapso de columna de agua, 2D, laminar en OpenFoam. 0.6s a 1s……….63 

Figura 4.13.  Colapso de columna de agua, 2D, laminar en OpenFoam. 1.5s a 5s……….64 

Figura 4.14.  Situación física en rotura de represa………………………………………..65 

Figura 4.15.  Disposición viviendas en caso rotura de represa……………………………66 

Figura 4.16.  Dimensiones de colapso de columna de agua en rotura de represa………...66 

Figura 4.17.  Condiciones de borde en el estudio de la rotura de una represa……………68  

Figura 4.18.  Malla utilizada en el estudio de la rotura de una represa…………………...69 

Figura 4.19.  Fuerza sobre las viviendas 1,2 y 3 debido al impacto del agua desprendida

 por la rotura de represa……………………………………………………...72 

Figura 4.20.  Fuerza sobre las viviendas 4,5 y 6 debido al impacto del agua desprendida

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 11/194

 

 por la rotura de represa……………………………………………………...72 

Figura 4.21.  Fuerza sobre las viviendas 7,8 y 9 debido al impacto del agua desprendida

 por la rotura de represa……………………………………………………...72 

Figura 4.22.  Resultados del colapso de columna de agua en 3D aplicado en la rotura de

una represa. Interfase móvil (izquierda) y Contorno de velocidades (derecha).

1.0s a 5.0s…………………………………………………………………...73 

Figura 4.23.  Resultados del colapso de columna de agua en 3D aplicado en la rotura de

una represa. Interfase móvil (izquierda) y Contorno de velocidades (derecha).

6.0s a 10.0s………………………………………………………………….74 

Figura 5.1.  a) Faro Monumental de La Serena, Chile. (Situación actual). b) Zona

geográfica de estudio………………………………………………………..78 

Figura 5.2. a) Experimentos físicos de efectos de tsunami. b) Instalaciones de HinsdaleWave Research Laboratory (HWRL), Oregón, EE.UU…………………….79 

Figura 5.3.  Escombros de la costa de las islas Okushiri, Japón, ocasionados por un

tsunami en el año 1993……………………………………………………...80 

Figura 5.4.  Situación física. Caso de validación predicción de tsunami………………..85 

Figura 5.5.  Fuerza sobre la estructura debido a la ola para caso de validación…………88  

Figura 5.6.  Resultados de interfase móvil en el caso de validación tsunami. Intervalo 0s

< t < 0.841s………………………………………………………………….89 

Figura 5.7.  Resultados de interfase móvil en el caso de validación tsunami. Intervalo

1.051s < t < 1.892s………………………………………………………….90 

Figura 5.8.  Diagrama de refracción del oleaje y Batimetría, Bahía de Coquimbo……...91 

Figura 5.9.  Situación actual de El Faro Monumental. b) Situación mejorada, proyecto de

reconstrucción El Faro……………………………………………………...92 

Figura 5.10.  Situación física predicción de efectos de tsunami. a) Fato actual, ola frontal.

 b) Faro actual, ola angular. c) Faro mejorado, ola frontal…………………..93 

Figura 5.11.  Maquetas 3D predicción de tsunami. a) Faro actual. b) Faro mejorado con

muros de contención………………………………………………………..95 

Figura 5.12. Malla predicción efectos de tsunami. Faro actual con ola frontal…………..96 

Figura 5.13.  Malla predicción efectos de tsunami. Faro actual con ola angular…………96 

Figura 5.14.  Malla predicción efectos de tsunami. Faro mejorado con ola frontal………97  

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 12/194

 

Figura 5.15.  Dominio computacional caso Faro actual con ola frontal…………………..98 

Figura 5.16.  Dominio computacional caso Faro actual con ola angular…………………98 

Figura 5.17.  Dominio computacional caso Faro mejorado con ola frontal………………99 

Figura 5.18.  Mapa de contorno de variables en la predicción de efectos de tsunami en El

Faro Monumental situación actual y mejorada……………………………100 

Figura 5.19.  Fuerza del viento sobre El Faro de La Serena en su situación actual debido a

una ola frontal de 15m de altura…………………………………………...101 

Figura 5.20.  Fuerza sobre El Faro de La Serena en su situación actual debido a un tsunami

con ola frontal de 15m de altura…………………………………………...102 

Figura 5.21.  Resultados de predicción de tsunami en Faro actual con ola angular. Frente

móvil de la ola (izquierda) y Relación de altura ola (derecha). Intervalo 1.0s

< t < 5.0s…………………………………………………………………...104 Figura 5.22. Resultados de predicción de tsunami en Faro actual con ola angular. Frente

móvil de la ola (izquierda) y Relación de altura ola (derecha). Intervalo 6.0s

< t < 10.0s………………………………………………………………….105 

Figura 5.23.  Resultados de predicción de tsunami en Faro actual con ola frontal. Frente

móvil de la ola (izquierda) y Relación de altura ola (derecha). Intervalo 12.0s

< t < 20.0s……………………………………………………………….…106 

Figura 5.24.  Resultados de predicción de tsunami en Faro actual con ola frontal. Contorno

de velocidades (izquierda) y Presión dinámica (derecha). Intervalo 1.0s < t <

5.0s………………………………………………………………………...107 

Figura 5.25.  Resultados de predicción de tsunami en Faro actual con ola frontal. Contorno

de velocidades (izquierda) y Presión dinámica (derecha). Intervalo 6.0s < t <

10.0s……………………………………………………………………….108 

Figura 5.26.  Resultados de predicción de tsunami en Faro actual con ola frontal. Contorno

de velocidades (izquierda) y Presión dinámica (derecha). Intervalo 12.0s < t

< 20.0s……………………………………………………………………..109 

Figura 5.27.  Fuerza del viento sobre El Faro de La Serena en su situación actual debido a

una ola angular de 15m de altura………………………………………….110 

Figura 5.28.  Fuerza sobre El Faro de La Serena en su situación actual debido a un tsunami

con ola angular de 15m de altura………………………………………….111 

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 13/194

 

Figura 5.29.  Resultados de predicción de tsunami en Faro actual con ola angular. Frente

móvil de la ola (izquierda) y Relación de altura ola (derecha). Intervalo 1.0s

< t < 5.0s…………………………………………………………………...113 

Figura 5.30.  Resultados de predicción de tsunami en Faro actual con ola angular. Frente

móvil de la ola (izquierda) y Relación de altura ola (derecha). Intervalo 6.0s

< t < 10.0s………………………………………………………………….114 

Figura 5.31.  Resultados de predicción de tsunami en Faro actual con ola angular. Frente

móvil de la ola (izquierda) y Relación de altura ola (derecha). Intervalo 12.0s

< t < 20.0s………………………………………………………………….115 

Figura 5.32. Resultados de predicción de tsunami en Faro actual con ola angular.

Contorno de velocidades (izquierda) y Presión dinámica (derecha). Intervalo

1.0s < t < 5.0s……………………………………………………………...116 Figura 5.33.  Resultados de predicción de tsunami en Faro actual con ola angular.

Contorno de velocidades (izquierda) y Presión dinámica (derecha). Intervalo

6.0s < t < 10.0s…………………………………………………………….117 

Figura 5.34.  Resultados de predicción de tsunami en Faro actual con ola angular.

Contorno de velocidades (izquierda) y Presión dinámica (derecha). Intervalo

12.0s < t < 20.0s…………………………………………………………...118 

Figura 5.35.  Fuerza sobre El Faro de La Serena en su situación actual debido a un tsunami

con ola frontal v/s un tsunami con ola angular……………………………119 

Figura 5.36.  Fuerza sobre El Faro de La Serena en su situación mejorada debido a un

tsunami con ola frontal de 15m de altura………………………………….120 

Figura 5.37.  Resultados de predicción de tsunami en Faro mejorado con ola frontal.

Frente móvil de la ola (izquierda) y Relación de altura ola (derecha).

Intervalo 1.0s < t < 5.0s……………………………………………………122 

Figura 5.38.  Resultados de predicción de tsunami en Faro mejorado con ola frontal.

Frente móvil de la ola (izquierda) y Relación de altura ola (derecha).

Intervalo 6.0s < t < 10.0s…………………………………………………..123 

Figura 5.39.  Resultados de predicción de tsunami en Faro mejorado con ola frontal.

Frente móvil de la ola (izquierda) y Relación de altura ola (derecha).

Intervalo 12.0s < t < 20.0s…………………………………………………124 

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 14/194

 

Figura 5.40.  Resultados de predicción de tsunami en Faro mejorado con ola frontal.

Contorno de velocidades (izquierda) y Presión dinámica (derecha). Intervalo

1.0s < t < 5.0s……………………………………………………………...125 

Figura 5.41. Resultados de predicción de tsunami en Faro mejorado con ola frontal.

Contorno de velocidades (izquierda) y Presión dinámica (derecha). Intervalo

6.0s < t < 10.0s…………………………………………………………….126 

Figura 5.42.  Resultados de predicción de tsunami en Faro mejorado con ola frontal.

Contorno de velocidades (izquierda) y Presión dinámica (derecha). Intervalo

12.0s < t < 20.0s…………………………………………………………...127 

Figura 5.43.  Fuerza sobre El Faro de La Serena en su situación actual v/s situación

mejorada, debido a un tsunami con ola frontal... …………………………128

Figura 5.44.  Formación de un tsunami incorporando la batimetría……………………..129 Figura 5.45.  Perfil de la playa (Beachface) en la bahía de Coquimbo, sector El Faro….130 

Figura 5.46.  Alteraciones en los perfiles de la bahía de Coquimbo…………………….131 

Figura 5.47.  Situación física estudio del viaje de una ola al interior del océano……….132 

Figura 5.48.  Dominio computacional en el estudio del viaje de una ola al interior del

océano……………………………………………………………………..133 

Figura 5.49.  Condiciones de borde en el estudio del viaje de una ola al interior del

océano……………………………………………………………………..134 

Figura 5.50.  Malla utilizada en el estudio del viaje de una ola al interior del

océano……………………………………………………………………..135 

Figura 5.51. Mapa de contorno de variables en la predicción de efectos de tsunami en El

Faro Monumental con batimetría y perfil de playa………………………..136 

Figura 5.52.  Fuerza del viento sobre El Faro de La Serena en su situación actual, con

 batimetría y perfil de la playa, debido a una ola frontal de 15m de

altura……………………………………………………………………….137 

Figura 5.53.  Fuerza sobre El Faro de La Serena en su situación actual, con batimetría y

 perfil de la playa, debido a un tsunami con ola frontal de 15m de

altura……………………………………………………………………….138 

Figura 5.54.  Resultados de viaje de ola al interior del océano en Faro actual. Frente de ola

móvil. Intervalo 4s < t < 20s………………………………………………139 

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 15/194

 

Figura 5.55.  Resultados de viaje de ola al interior del océano en Faro actual. Frente de ola

móvil. Intervalo 21s < t < 25s……………………………………………..140 

Figura 5.56.  Resultados de viaje de ola al interior del océano en Faro actual. Frente de ola

móvil. Intervalo 26s < t < 30s……………………………………………..141 

Figura 5.57.  Resultados de viaje de ola al interior del océano en Faro actual. Contorno de

velocidad en superficie libre. Intervalo 4s < t < 20s………………………142 

Figura 5.58.  Resultados de viaje de ola al interior del océano en Faro actual. Contorno de

velocidad en superficie libre. Intervalo 21s < t < 25s……………………..143 

Figura 5.59.  Resultados de viaje de ola al interior del océano en Faro actual. Contorno de

velocidad en superficie libre. Intervalo 26s < t < 30s……………………..144 

Figura 5.60.  Resultados de viaje de ola al interior del océano en Faro actual. Contorno de

 presión dinámica en superficie libre. Intervalo 4s < t < 20s………………145 Figura 5.61.  Resultados de viaje de ola al interior del océano en Faro actual. Contorno de

 presión dinámica en superficie libre. Intervalo 21s < t < 25s……………..146 

Figura 5.62.  Resultados de viaje de ola al interior del océano en Faro actual. Contorno de

 presión dinámica en superficie libre. Intervalo 26s < t < 30s……………..147 

Figura A.1.  Métodos de estudio para fluidos bifásicos. Malla móvil (izquierda) y malla

fija (derecha)…………………………………………………………...…..162 

Figura A.2.  Ilustración de la simulación de la interacción de fluidos usando el método

VOF.…………………………………………………………………...…..165

Figura A.3.  Descripción fracción volumétrica en celdas de control…..…………...…..166

Figura A.4.  Esquemas de discretización para la interfase. a) Forma real de la interfase, b)

Esquema Donante-aceptor, y c) Esquema Reconstrucción geométrica.......167

Figura A.5.  Caracterización de flujo laminar y turbulento.…..………….................…..169

Figura B.1.  Discretización de una variable……………....…..………….................…..174

Figura B.2.  Malla con nodos centrados y malla con nodos ubicados en los vértices….176

Figura B.3.  Condiciones de contorno del flujo sobre la superficie. No deslizamiento

(izquierda) y de tangencia (derecha)…………………………………...….178

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 16/194

 

RESUMEN

En el presente trabajo se realiza el estudio de la mecánica de los fluidos por medio de

modelación matemática y de simulación computacional, para cuatro casos de aplicaciones

industriales. La metodología empleada se basa en el uso del método de volúmenes finitos,

implementado en el programa Ansys/Fluent v.14.0. La primera investigación permite la

descripción de la fluidodinámica en el llenado de un molde con forma de S. Este estudio

 permitió determinar que cuando la profundidad del molde es 16 veces su altura, el análisis 2D

es suficiente para comprender los fenómenos que ocurren desde que el material ingresa al

interior del molde y su posterior llenado, evitando así el excesivo costo computacional que

requiere el análisis 3D. La segunda investigación permite determinar el tiempo de llenado para

tres distintas configuraciones de ingreso del material a un molde. Los resultados obtenidos con

Fluent se comparan con fórmulas empíricas de la literatura, evaluando así el efecto de la

ubicación del sistema de llenado por la zona inferior, media y superior. La modelación

determinó que en el ingreso por la zona superior el llenado se completa a los 20s, siendo más

veloz que las otras configuraciones. Sin embargo el ingreso de material por la zona media e

inferior permiten un llenado de molde con una superficie libre más uniforme, completando el

llenado a los 25s y 21s, respectivamente. Se concluye que el ingreso por la zona media es la

más efectiva para el logro de una pieza final libre de defectos, sin bolsas de aire atrapadas, que

 podría generar una pieza defectuosa. La tercera investigación corresponde al estudio de unacolumna de agua al interior de un recipiente. Este caso se resuelve a través de dos programas

computacionales: Ansys/Fluent y Open Foam. El estudio determina el tiempo computacional

empleado, observando que el programa OpenFoam es 5 veces más rápido en resolver las

ecuaciones gobernantes. Luego se realiza una aplicación industrial a éste problema, en donde,

se evalúa el efecto que produce un eventual quiebre de represa y su posterior impacto en

viviendas, estimando la fuerza debido a la masa de agua en cada estructura. Por último, la

cuarta investigación predice los efectos de un tsunami en estructuras ubicadas en el borde

costero de La Serena, ante el eventual impacto de una única ola. El estudio comprende el Faro

Monumental de La Serena, analizando su situación actual y una situación mejorada, con

muros de contención para evitar efectos negativos ante olas de gran tamaño, logrando una

disminución en la fuerza sobre la estructura.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 17/194

 

ABSTRACT

In the present work the study of fluid mechanics using mathematical modeling and

computer simulation for four cases of industrial applications. The methodology is based on

using the finite volume method, implemented in the program Ansys / Fluent v.14.0. The firstresearch allows the description of fluid dynamics in filling a mold shaped S. This study

allowed us to determine that when the depth of the mold is 16 times its height, the 2D analysis

is sufficient to understand the phenomena occurring since the material enters into the mold and

subsequent filling, thus avoiding excessive computational cost required 3D analysis. The

second investigation to determine the filling time for three different configurations of entry of

material into a mold. The results obtained are compared with Fluent literature empirical

formulas, thus evaluating the effect of the location of the filling system for the lower, middle

and higher. The modeling found that in the upper income completes filling the 20s, being

faster than the other configurations. However the material entering the middle and lower mold

filling allow a more uniform free surface, completing the filling of the 25s and 21s,

respectively. We conclude that the middle income is the most effective for achieving a defect-

free final piece without trapped air pockets, which could lead to a defective part. The third

research study corresponds to a column of water into a container. This case is resolved through

two computer programs: Ansys/Fluent and OpenFoam. The study determines the

computational time employee, noting that the program OpenFOAM is 5 times faster in solvingthe governing equations. Then performed an industrial application of this problem, where, we

evaluate the effect of a possible dam break and the subsequent impact on housing, estimating

the force due to the mass of water in each structure. Finally, the fourth research predicts the

effects of a tsunami on structures located on the coast of La Serena, before the eventual impact

of a single wave. The study includes the Faro Monumental located in La Serena, analyzing

their current situation and the situation improved, with retaining walls to prevent negative

effects to large waves, achieving a reduction in the strength of the structure.  

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 18/194

 

CAPÍTULO I

INTRODUCCIÓN

1.1  ANTECEDENTES GENERALES

La predicción de interfases móviles y superficies libres ha sido un tema de interés para

investigadores de todo el mundo, donde modelaciones matemáticas se validan con

simulaciones experimentales en una gran cantidad de problemas ingenieriles, tales como:

transporte de pulpas, inyección de polímeros, llenado de moldes, rompimiento de represas,

movimiento de grandes cantidades de burbujas, modelación de turbinas, efectos de tsunami,

avalanchas de nieve y flujos de lava y escombros.

En la actualidad la simulación computacional en conjunto con la modelación

matemática de los fluidos (CFD), son una herramienta muy poderosa para determinar y

caracterizar fenómenos físicos asociados a leyes naturales, con aplicación a una infinidad de

 procesos, entre una de ellas, predecir la interfase móvil generada en la interacción de fluidos

con superficies sólidas. La correcta predicción, dependerá de un buen conocimiento de los

diferentes parámetros en cada caso de estudio, supuestos del tipo de fluido, Newtoniano o no

 Newtoniano, la consideración de flujo laminar o turbulento, la inmiscibilidad del fluido bifásico y la tensión superficial, aspectos que deben ser analizados minuciosamente.

Experimentos físicos van de la mano a las simulaciones computacionales, existiendo

una validación más precisa de la metodología empleada y una mayor comprensión de los

fenómenos que ocurren. En los últimos años la técnica de VOF ha sido aplicada para estimar

la fracción de volumen para todo el dominio y así encontrar la evolución espacio-temporal de

la interfase móvil, presentando muy buenos resultados. Esta técnica para el rastreo de

superficies libres, se realiza por medio de una malla fija, que utiliza una modelación Euleriana,

diseñada para dos o más fluidos inmiscibles, resolviendo una ecuación extra en la modelación

matemática.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 19/194

 

1.2  PRESENTACIÓN DEL PROBLEMA

En el presente trabajo se estudia la mecánica de fluidos bifásicos a través de

simulaciones computacionales y la modelación matemática, comparándolos con resultados

obtenidos de experimentos físicos y formulas empíricas encontradas en la literatura.

Los casos investigados pretenden ampliar la técnica de la modelación computacional,

mejorando resultados encontrados en la actualidad para el cálculo de la interacción de flujos

 bifásicos con sólidos.

El primer caso en estudio resuelve el llenado de molde con forma de S en 2D, para una

 primera instancia, comparando los resultados obtenidos con resultados encontrados en la

literatura, luego se resuelve una situación en 3D, variando la profundidad del molde para la

situación en 3D. El fluido A ingresa al molde en forma de S con una velocidad impuesta,

donde el molde previamente está ocupado por el fluido B. Ambos fluidos presentan una

relación de su densidad de 1000, y una relación de la viscosidad dinámica de 10. El proceso es

transiente e isotérmico, y el molde está constituido con paredes impermeables y deslizantes. El

objetivo del estudio es encontrar una profundidad tal que el análisis en 2D sea suficiente para

resolver los fenómenos que existen en la mecánica de los fluidos al interior del molde,

evitando un excesivo costo computacional.

El segundo caso comprende una aplicación industrial en el llenado de molde con flujo

turbulento, para tres situaciones específicas: cuando el ingreso de aluminio fundido es

realizado por la zona inferior, zona media y zona superior. La simulación pretende realizar un

 buen diseño del sistema de ingreso del material, y posteriormente una pieza de excelente

calidad. Los resultados obtenidos en el presente trabajo son validados con los resultados

obtenidos mediante fórmulas empíricas de distintos autores encontrados en la literatura.

El tercer caso investiga el colapso súbito de una columna de agua en 2D para flujo

laminar. El derrame de agua se produce luego de retirar la compuerta que mantenía el agua

confinada, desplazándose al interior de un recipiente. La solución se resuelve por medio de

dos programas computacionales: Ansys/Fluent v.14 y OpenFoam v.2.1.1, con el propósito de

comparar los tiempos de cálculo y así determinar la mejor alternativa de solución. Luego, se

realiza una aplicación real para el derrame súbito de agua, modelando un eventual

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 20/194

 

rompimiento de una presa en tres dimensiones para flujo turbulento, en la cual la gran masa de

agua que colapsa inesperadamente, impacta con un grupo de viviendas.

En el cuarto caso se realiza una predicción de efectos de tsunami en estructuras del

 borde costero de La Serena. En una primera instancia la metodología de simulación se validacon resultados experimentales de otros autores, encontrados en la literatura, para el impacto de

una ola única al interior de un tanque. Luego se realiza el análisis para una estructura real, El

Faro Monumental de La Serena. La motivación es el terremoto y posterior tsunami ocurrido el

27 de febrero de 2010 en la octava región de Chile, país propenso a catástrofes sísmicas por su

ubicación geográfica. El estudio comprende la evaluación de dos configuraciones diferentes de

la ola: un impacto frontal y otro angular, ambas situaciones se modelan para la descripción del

fenómeno en la estructura actual del faro. Luego, determinando la escenario más crítico, siento

éste la ola frontal, se realiza sobre una situación mejorada de la estructura, proyecto que

comenzará la puesta en marcha el año 2013, donde se encuentran presentes muros de

contención para olas de gran tamaño y una elevación del terreno. Por último, se efectúa un

último caso, en donde se incorpora los parámetros del perfil de playa real existente en el sector

y la batimetría presente a lo largo del borde costero.

1.3 

REVISIÓN BIBLIOGRÁFICA

En el presente trabajo, se han revisado artículos pertenecientes a las siguientes revistas

internacionales: International Journal for Numerical Methods in Fluids, Communications in

 Numerical Methods in Engineering, International Journal of Heat and Fluid Flow, Journal of

Computational Physics, Journal of Fluids Enginnering, entre otras. Además se considera el

estudio de la tesis de Magister en Ciencias de la Ingeniería de Mario Saavedra Vergara de La

Universidad de Santiago de Chile y la Memoria de geógrafo de Carolina Villagrán Colina de

La Universidad de Chile. Por último, se estudia el manual guía de dos programas

computacionales: Ansys Fluent v.14.0 y OpenFoam v.2.1.1, junto a sus diversos tutoriales,

respectivamente.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 21/194

 

1.4  OBJETIVOS

1.4.1 OBJETIVO GENERAL

El objetivo principal del presente trabajo es el estudio de la mecánica de fluidos

 bifásica de flujos inmiscibles, que interactúan con diferentes geometrías. Se investiga la

 posición espacio temporal de la interfase móvil que se genera de la interacción de ambos

fluidos con aplicaciones industriales de gran importancia ingenieril.

1.4.2 OBJETIVOS ESPECÍFICOS

  Estudiar el efecto de la profundidad para un molde con forma de S y la evolución en el

tiempo del frente de llenado.

  Estudiar el diseño de moldes y la mecánica de fluidos para el llenado por gravedad en

tres situaciones: el molde se llena por la zona inferior, por la zona media y por la zona

superior. 

  Comparar los resultados del presente trabajo con los obtenidos mediantes fórmulas

empíricas encontradas en la literatura.

  Evaluar el mejor diseño y disposición de los componentes que forman el molde para la

construcción de una pieza final.

  Evaluar comparativamente el frente móvil del colapso de la columna de agua en 2D

con flujo laminar, realizado caso en dos programas distintos: ANSYS/Fluent y

OpenFoam.

  Estudiar el tiempo de CPU ocupado en los dos programas diferentes para los el caso

colapso de columna de agua.

  Analizar una situación real del derrame súbito de agua, aplicado en el rompimiento de

una presa, frente a un grupo de viviendas, en 3D para flujo turbulento.  Estimar la fuerza provocada por el colapso de agua en el grupo de viviendas.

  Predecir los efectos provocados por un tsunami en estructuras ubicadas en el borde

costero de La Serena, realizando el análisis sobre la situación actual del Faro de La

Serena y una situación mejorada con la incorporación de muros de contención.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 22/194

 

1.5 METODOLOGÍA

La mecánica de fluidos en este trabajo es estudiada mediante los principios de

conservación de masa y momento lineal, expresadas mediante las ecuaciones de Navier-

Stokes. La posición de la interfase móvil y la asignación de las propiedades para el flujo bifásico se realizan mediante el término alfa, valor numérico que indica la fracción de

volumen que ocupa un fluido en un determinado volumen de control. La interfase móvil se

define como la región en donde dos o más fluidos inmiscibles se encuentran interactuando

entre sí.

El método de los volúmenes finitos (MVF) es empleado para la simulación numérica,

usando el algoritmo de acoplamiento PISO (Método de Presión implícita con División de los

Operadores) para resolver las ecuaciones gobernantes. La técnica VOF (volumen de fluido) esaplicada para el seguimiento de la interfase móvil de los fluidos inmiscibles, donde se incluye

una ecuación de transporte extra que registra el valor de la fracción de volumen.

Los problemas investigados en este trabajo se desarrollan mediante dos programas

computacionales: Ansys Fluent v.14.0 y OpenFoam v.2.1.1. Ambos necesarios para

implementar el método de volúmenes finitos y las diferentes técnicas y algoritmos para la

discretización de las ecuaciones.

Los resultados presentados en este trabajo incluyen la evolución de la posición de la

interfase móvil para problemas de régimen transitorio, el contorno de la magnitud de

velocidad, el tiempo de llenado de molde para distintos sistemas de ingreso, el tiempo de CPU

 para el colapso de columnas de agua y para la predicción de efectos de tsunami de incluyen la

fuerza del impacto de la ola en la estructura y la presión dinámica.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 23/194

 

1.6 APORTES Y ORIGINALIDAD

Actualmente la Mecánica de Fluidos Computacional ha tomado gran fuerza en diversas

ramas industriales alrededor de todo el mundo, ya que por medio de ordenadores cada vez más

 poderosos y el uso de numerosas técnicas para la resolución de ecuaciones matemáticas, selogra realizar diversos estudios de fenómenos naturales presentes en distintos procesos. En el

 presente trabajo se utilizan dichas técnicas y métodos numéricos desarrollados en los últimos

años, evaluando el comportamiento y desempeño de sus formulaciones frente a problemas

caracterizados por flujos bifásicos inmiscibles. Además se realiza investigaciones aplicadas a:

el llenado de moldes, colapso súbito de agua y predicción de efectos de tsunami, por medio de

la simulación computacional.

Entre los aportes específicos de esta tesis se encuentran:

  Determinar en el llenado de molde con forma de S, un punto donde el análisis en 2D

sea idéntico al en 3D, así evitar un excesivo costo computacional.

 

Diseñar y estableces un adecuado sistema de ingreso y dimensiones, en el llenado de

molde con metal fundido, para el caso en 3D con flujo turbulento.

  Estudiar tres sistemas de ingreso para el metal fundido al interior del molde,

estimando el mejor diseño a realizar para un flujo ordenado y libre de burbujas.

 

Evaluar la rapidez y desempeño de dos programas computacionales: Ansys Fluent

v.14.0 y OpenFoam v.2.1.1, realizando el estudio del derrame de una columna de

agua.

 

Predecir efectos de tsunami en El Faro Monumental de La Serena y estimar la

situación más crítica frente a dos configuraciones de ola: impacto frontal e impacto

angular, ambas en el borde costero de La Serena.

  Estudiar la estructura del Faro mejorado, incorporando muros de contención y una

elevación del terreno en el Faro actual, en el caso de predicción de efectos detsunamis.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 24/194

 

CAPÍTULO II

PREDICCIÓN 3D DE LA INTERFASE MÓVIL EN LLENADO DE UN MOLDE EN

FORMA DE S CON MVF

2.1 INTRODUCCIÓN

El proceso de inyección de un material fundido en un molde, muy popular en la

fabricación de piezas, ha crecido velozmente en los últimos años. Entre las ventajas destacan

la gran gama piezas que se puede fabricar, su rápida elaboración, los bajos costos y la

 posibilidad del logro de piezas de gran calidad con geometrías complejas. 

En este trabajo se realiza el análisis de la predicción 3D de la interface móvil en el

 proceso de inyección de un fluido A ingresando en una cavidad con forma de S, que

inicialmente está ocupada por un fluido B. Los fluidos empleados en la simulación tienen una

relación de densidades de 1000, y una relación de viscosidades de 10. Los resultados se

obtienen utilizando el método de volúmenes finitos y la predicción de la interface se logra

empleando el modelo VOF, implementados en el programa ANSYS/FLUENT versión 14.0.

La validación parcial de resultados se efectúa resolviendo el caso asintótico 2D, cuyos

resultados se comparan con los reportados en la literatura mediante el empleo del método de

elementos finitos. Los resultados incluyen la evolución en el tiempo de las distribuciones de

velocidad y presión, junto con la determinación de la posición instantánea del frente de

llenado. La influencia de la tercera dimensión se investiga variando el ancho del molde.

2.2 REVISIÓN BIBLIOGRÁFICA

El gran desarrollo y empleo del moldeo por inyección ha sido producto de la gran

cantidad de tipo de materiales nuevos en el mercado, además de un aumento en la demanda de

 piezas fabricadas con metales y polímeros. Materiales plásticos como el PVC, PS, PMMA y el

PA se desarrollaron en la década de los años 30, aunque recién a comienzos de la década de

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 25/194

 

los 50 se comenzaron a fabricar las máquinas de inyección específicamente para polímeros,

 basándose en las máquinas a presión para la fabricación de metales, que describe la figura 2.1.

El modelado de este tipo de procesos es muy complejo, razón por la cual en las últimas

décadas investigadores de todo el mundo han contribuido al estudio de los fenómenos queocurren en la inyección. Es por esto, que para conseguir todos los beneficios que otorga este

método de inyección de un material en un molde, se deben tener en claro todos los aspectos

que involucra el proceso de llenado de moldes. El presente estudio de dicho proceso surge de

la necesidad de obtener una pieza final de excelente calidad y mejorar los resultados obtenidos

existentes en la literatura (Dhatt et al., 1990) [1], (Usmani et al., 1992) [2]. Se utiliza el

método de volúmenes finitos (MVF) (Patankar, 1980) [3], diferente al método de elementos

finitos (MEF) aplicado en los resultados encontrados en la literatura (Cruchaga et al., 2005)

[4].

Otros estudios de llenado de molde se pueden encontrar en la literatura, para distintos

tipos de geometrías con moldes en forma de U (Cruchaga et al., 2002) [5], con dos puntos de

inyección del material (Swaminathan et al., 1994) [6], e incluyendo la transferencia de calor

en la mecánica de los fluidos para el llenado molde (Pariona et al., 2008) [7].

Figura 2.1. Máquina de moldeo por inyección.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 26/194

 

2.3 OBJETIVOS

2.3.1 OBJETIVO GENERAL

El objetivo de este trabajo es presentar resultados de la simulación computacional

tridimensional de llenado de un molde en forma de S, obtenidos empleando el programa

comercial ANSYS/FLUENT v.14 [8], basado en el método de volúmenes finitos. En particular

se analiza el efecto de la profundidad del molde en la evolución en el tiempo del frente de

llenado.

2.3.2 OBJETIVOS ESPECÍFICOS

  Predecir la posición instantánea de la interfase móvil en llenado de molde con

forma de S en 2D y 3D.

  Obtener resultados de la velocidad, líneas de corriente y presión, en el llenado de

molde en dos dimensiones.

  Estudiar la influencia de la profundidad del molde en el frente de llenado para el

caso 3D.

  Analizar el tiempo de CPU para distintas profundidades.

 

Comparar la situación en 2D con los diferentes casos en 3D y así proponer una

metodología para el análisis eficiente de problemas de ingeniería.

2.4 MODELO MATEMÁTICO GENERAL

El estudio del flujo bifásico del fluido A, que ingresa y desplaza al fluido B al interior

del molde, considera cada uno de ellos como fluidos newtonianos, incompresibles, con

 propiedades constantes. El proceso transiente de inyección del material es isotérmico.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 27/194

 

La dinámica de fluidos se describe por las ecuaciones diferenciales parciales no

lineales, acopladas, de continuidad (2.1) y las tres ecuaciones vectoriales de momento lineal

(2.2).

  (2.1)

  (2.2)

2.4.1 MÉTODO VOF

El seguimiento de la superficie libre, que separa ambos fluidos, se realiza empleando el

método de fracción de volumen de fluido (VOF), propuesto por Hirt y Nichols (1981) [9]. La

actualización de la interfaz del frente material utiliza la ecuación de transporte, dada por la

siguiente ecuación (2.3), que se resuelve simultáneamente con las otras ecuaciones

gobernantes (2.1) y (2.2):

(2.3)

donde  es el vector velocidad que se debe determinar como solución del problema de

mecánica de fluidos (2.1) y (2.2), y  es la fracción de volumen. Dependiendo del valor que  

tome en un volumen de control, entre 0 y 1, el dominio entero puede ser dividido dentro de

tres categorías, siguiendo el siguiente criterio:

    (2.4)

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 28/194

 

Una vez que se resuelve la ecuación del frente material (2.3), la interface entre los

fluidos participantes puede ser determinada aplicando la conservación de masa a cada fase

 presente en la mezcla. Cuando se consideran dos fases, como en este trabajo, la asignación de

las propiedades para resolver las ecuaciones (2.1) y (2.2), se efectúa con una ponderación de

las propiedades del fluido. Luego, la distribución de fracción de volumen para cada fluido,

calculada en (2.4), se determina utilizando las siguientes relaciones constitutivas:

    (2.5)

donde el subíndice 1 está referido al fluido B y 2 para el fluido A,   la fracción devolumen del fluido,  la densidad y  la viscosidad dinámica del fluido.

2.4.2 PROPIEDADES REOLÓGICAS

Las propiedades físicas utilizadas para el fluido A y el fluido B, en el llenado de molde

con forma de S se muestran en la tabla 2.1. Ambos fluidos se modelan como Newtonianos y

sus propiedades constantes.

Tabla 2.1. Propiedades térmicas empleadas en el llenado de un molde con forma de S.

Fluido B Fluido A

Densidad (ρ) = 0.1 kg/m³ Densidad (ρ) = 100 kg/m³ 

Viscosidad dinámica (µ) = 0.02 kg/(m s) Viscosidad dinámica (µ) = 0.2 kg/(m s)

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 29/194

 

2.5 SITUACIÓN FÍSICA

El problema 3D de inyección de un fluido A newtoniano incompresible en un molde

con forma de S, requiere describir simultáneamente el desplazamiento de un segundo fluido B,

desde el interior del molde, como se ilustra en la figura 2.2. La metodología de soluciónconsiste en resolver y validar los resultados para el caso 2D y luego investigar el efecto del

espesor del molde. El proceso en ambos casos comienza al ingresar el material a la cavidad

con una velocidad impuesta de 0.1 m/s. Al inicio de la cavidad se considera como condición

inicial que el fluido A ocupa un volumen correspondiente a 2 cm de largo por toda el área

transversal. Al interior del molde, el fluido que ingresa desplaza al fluido residente, sin que

ocurra mezcla entre ambos, provocando su evacuación a la atmósfera, por la salida en el

extremo superior derecho. Las paredes del molde se suponen rígidas, impermeables y

deslizantes. En el presente estudio se considera una gravedad de 10 m/s², las dimensiones del

molde y las propiedades de ambos fluidos, son las que se indican en la figura 2.2 y en la tabla

2.1, respectivamente.

Figura 2.2. Dimensiones del molde en forma de S, en el plano central.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 30/194

 

El estudio 3D se realiza empleando las dimensiones indicadas en la figura 2.2, para

distintas profundidades del molde (3, 6, 12, 24 y 48 cm) con el propósito de determinar el

efecto de la influencia de las paredes verticales en el avance del frente de llenado. La figura

2.3 muestra los cinco moldes investigados.

Figura 2.3. Maquetas 3D en el llenado de molde con forma de S, para los cinco moldes

investigados.

2.6 IMPLEMENTACIÓN COMPUTACIONAL

La solución de las ecuaciones gobernantes acopladas (2.1 a 2.3), con las condiciones

iniciales y de borde, se resuelven utilizando el método de volúmenes finitos (MVF), con el

algoritmo de acoplamiento presión-velocidad, PISO, Issa (1986) [10], tanto para el estudio del

caso 2D y 3D.

El modelo de volumen de fluido (VOF) es usado para describir la mecánica de fluidos bifásica incompresible. Las dos fases Eulerianas son resueltas mediante un esquema implícito

 para la superficie libre.

Los gradientes son calculados mediante la formulación Least Squares Cell Based,

mientras que en la presión se utiliza PRESTO y para los términos convectivos en las

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 31/194

 

ecuaciones de momentum se usa la Ley de Potencia. La discretización de la ecuación de

fracción de volumen se realiza mediante funciones de interpolación de segundo orden de tipo

upwind, mientras que la formulación transiente se implementa empleando funciones implícitas

de primer orden.

Los factores de sub-relajación utilizados en la modelación son: 0.3 para la presión, 0.5

 para la fracción de volumen, 0.7 para las componentes de la velocidad, 0.6 para la densidad y

1 para las fuerzas de cuerpo.

La discretización espacial en la validación 2D utiliza una malla estructurada con

elementos de tamaño de 2 x 2 mm similar a la presentada en [4]. El estudio 3D emplea

volúmenes cúbicos de 2 mm de lado, como ilustra la figura 2.4. La construcción de las

maquetas 3D se efectúa con el software comercial CAD Inventor 2012 (figura 2.3). En el caso3D la longitud en el molde del brazo derecho superior es de 8 cm, adecuándola para evitar

efectos de presión al borde de la pared. El número de elementos empleados en las

simulaciones fue de 2.401, en el caso 2D y 33.750, 67.500, 135.000, 270.000 y 540.000 para

las simulaciones 3D con profundidades de 3, 6, 12, 24 y 48 cm, respectivamente.

Figura 2.4. Vista general de mallas empleadas para simulaciones en 2D y 3D en el llenado de

molde con forma de S.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 32/194

 

La discretización temporal se realiza empleando 100 pasos de tiempo por segundo, con

un máximo de 100 iteraciones por paso de tiempo. El procedimiento de cálculo es iterativo y

se emplea como criterio de convergencia una variación mínima de 10 -3 para cada una de las

variables dependientes, en cada volumen de control y en cada paso de tiempo. Los cálculos se

realizan empleando 4 procesadores en paralelo de un PC Intel Core i5 de 2.5 GHz y 6 GB de

RAM.

2.7 PRESENTACIÓN, ANÁLISIS Y DISCUSIÓN DE RESULTADOS

La inyección en la cavidad bidimensional se utiliza para validar los resultados de

avance del frente de llenado, comparando los resultados obtenidos en el presente estudio, con

los calculados con el método de elementos finitos por Cruchaga et al. [4].

La discretización espacial para la validación 2D utiliza tres mallas distintas, donde se

selecciona la malla 2, con un total de 2.250 elementos, de tamaño de 2 x 2 mm, con un costo

computacional de 1.083,53 segundos, ilustrado en la figura 2.5.

Figura 2.5. Tiempo de Cálculo según Malla, para el llenado de molde en 2D con forma de S.

La evolución del frente de llenado del molde con forma de S, en dos dimensiones, se

muestra en la figura 2.7, para distintos instantes de tiempo. El flujo volumétrico del fluido A

455,92

1083,53

2995,75

0

500

1000

1500

2000

2500

3000

3500

1000 2250 9000

Tiempo de CPU

[s]

Número de elementos

Malla 1 (3x3 mm)

Malla 2 (2x2 mm)

Malla 3 (1x1 mm)

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 33/194

 

en la entrada del molde es de 0.003 m³/s. En el tiempo 0.2s se observa como el efecto de la

gravedad se impone sobre la velocidad, permitiendo que el fluido se desplace a lo largo de la

 pared inferior del molde. En este instante, la zona del frente del material logra el valor máximo

de la presión dinámica (5 Pa), coincidiendo a su vez con el mayor valor de velocidad, como se

aprecia en la figura 2.8. En el tiempo 0.4s el fluido A continúa fluyendo en la pared inferior y

se encuentra inminente al impacto con la pared, mientras que el fluido B presenta

recirculaciones, como se aprecia en las líneas de corriente. A continuación, en el instante 0.8s

el nivel del fluido A va en aumento en la zona inferior del molde. En este instante se observan

 pequeñas oscilaciones del fluido cercano a la pared derecha, debido al impacto con la pared y

a la recirculación del fluido. Luego, en el instante 1.6s el fluido circula por la zona superior y

se aprecia una pequeña curvatura en la pared vertical izquierda de esta zona, originando

 posibles burbujas. La simulación finaliza en el instante 2s, cuando el fluido ya completa lazona inferior del molde y se evacúa por la salida superior derecha, alcanzando el mayor valor

de la presión estática (45 Pa) en el fondo del material que va ingresando y a su vez llenando el

molde.

En las situaciones en tres dimensiones, se mantienen las mismas propiedades asumidas

en el caso anterior, para los fluidos presentes. Sin embargo las paredes laterales presentan una

condición de no deslizamiento. En las figuras 2.9 a 2.13 se ilustra la evolución temporal del

frente de llenado, para los distintos espesores del molde (3, 6, 12, 24 y 48 cm).

En el estudio del llenado del molde con e = 3 cm, mostrado en la figura 2.9, se

distingue claramente que la forma del frente de llenado en su plano medio, no logra similitud

con el caso en 2 dimensiones. El efecto de la gravedad aún es mayor al efecto de la velocidad

 para el avance del fluido A hasta el instante 0.8s, aunque éste presenta menor relación con el

logrado en la simulación bidimensional. En el tiempo 1.6s no se observan posibles

formaciones de burbujas como en el caso de comparación 2D. En el instante 2s se logra un

flujo similar al caso en 2D.

El análisis continúa con el estudio del llenado del molde de un espesor mayor, esta vez

con e = 12 cm, mostrado en la figura 2.11. Se observa que el frente de llenado en el plano

medio del molde es similar al del caso bidimensional, pero con pequeñas diferencias. Aunque

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 34/194

 

se logra una curvatura en la interfaz del fluido en la pared izquierda superior del molde en el

instante 1.6s, aún no se observa la formación de posibles espacios con aire o burbujas.

El caso tridimensional con e = 48 cm, logra la forma idéntica del frente de llenado que

el caso 2D, en el plano medio del molde para todos los instantes de tiempo, como se observaen la figura 2.13.

El estudio del llenado de un molde con forma de S y diferentes espesores, revela que

cuando se deba predecir el avance del frente de llenado en la zona media de un molde, el

estudio bidimensional puede ser aplicado cuando la profundidad del molde es mayor a 16

veces la altura de entrada, evitando así el excesivo costo computacional asociado al uso de un

modelo 3D.

La figura 2.6, muestra los diferentes tiempos de cálculo, para una malla de 2x2x2 mm

en las distintas situaciones estudiadas, apreciándose que al aumentar el espesor del molde,

aumenta el número de volúmenes y así el tiempo de cálculo en las simulaciones

computacionales.

Figura 2.6. Tiempo de Cálculo según número de elementos para el llenado de molde con

forma de S en 2D y distintas profundidades en 3D.

1083,53 1459,8842756,003

6422,377

14085,002

23740,9

0

5000

10000

15000

20000

25000

2250 33750 67500 135000 270000 540000

Tiempo de Cálculo

[s]

Número de elementos

Nro. elementos v/s Tiempo de Cálculo

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 35/194

 

a) ETILT b) MLIT c) técnica standard d) ANSYS/FLUENTt = 0.2s

t = 0.4s

t = 0.8s

t = 1.6s

t = 2.0s

Figura 2.7. Posición de la interfaz caso 2D para diferentes instantes de tiempo. Obtenidas con

a) ETILT [4], b) MLIT [4], c) Standard technique [4] y d) MVF ANSYS/FLUENT.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 36/194

 

a) Magnitud develocidad

b) Líneas decorriente

c) Presión dinámica d) Presión estática

t = 0.2s

t = 0.4s

t = 0.8s

t = 1.6s

t = 2.0s

Magnitud de velocidad [m/s] Presión dinámica [Pa] Presión estática [Pa]

Figura 2.8. Resultados del llenado de molde 2D con forma de S. a) Contorno de velocidades,

 b) Líneas de corriente, c) Presión dinámica y d) Presión estática.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 37/194

 

a) Modelo 2D b) Modelo 3D, plano medio c) Modelo 3Dt = 0.2s

t = 0.4s

t = 0.8s

t = 1.6s

t = 2.0s

Figura 2.9. Posición de la interfaz para diferentes instantes de tiempo, obtenidas con

ANSYS/FLUENT: a) Caso 2D, b) Caso 3D, e = 3 cm, plano medio y c) Caso 3D, e = 3 cm,

 planos posterior e inferior.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 38/194

 

a) Modelo 2D b) Modelo 3D, plano medio c) Modelo 3Dt = 0.2s

t = 0.4s

t = 0.8s

t = 1.6s

t = 2.0s

Figura 2.10. Posición de la interfaz para diferentes instantes de tiempo, obtenidas con

ANSYS/FLUENT: a) Caso 2D, b) Caso 3D, e = 6 cm, plano medio y c) Caso 3D, e = 6 cm,

 planos posterior e inferior.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 39/194

 

a) Modelo 2D  b) Modelo 3D, plano medio  c) Modelo 3Dt = 0.2s

t = 0.4s

t = 0.8s

t = 1.6s

t = 2.0s

Figura 2.11. Posición de la interfaz para diferentes instantes de tiempo, obtenidas con

ANSYS/FLUENT: a) Caso 2D, b) Caso 3D, e = 12 cm, plano medio y c) Caso 3D, e = 12 cm,

 planos posterior e inferior.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 40/194

 

a) Modelo 2D  b) Modelo 3D, plano medio  c) Modelo 3Dt = 0.2s

t = 0.4s

t = 0.8s

t = 1.6s

t = 2.0s

Figura 2.12. Posición de la interfaz para diferentes instantes de tiempo, obtenidas con

ANSYS/FLUENT: a) Caso 2D, b) Caso 3D, e = 24 cm, plano medio y c) Caso 3D, e = 24 cm,

 planos posterior e inferior.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 41/194

 

a) Modelo 2D  b) Modelo 3D, plano medio  c) Modelo 3Dt = 0.2s

t = 0.4s

t = 0.8s

t = 1.6s

t = 2.0s

Figura 2.13. Posición de la interfaz para diferentes instantes de tiempo, obtenidas con

ANSYS/FLUENT: a) Caso 2D, b) Caso 3D, e = 48 cm, plano medio y c) Caso 3D, e = 48 cm,

 planos posterior e inferior.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 42/194

 

2.8 CONCLUSIONES PRELIMINARES

El llenado tridimensional de un molde en forma de S ha sido investigado utilizando el

método de volúmenes finitos, con la técnica VOF, mediante el programa ANSYS/FLUENT

14. Los resultados para un caso asintótico 2D del avance del frente de llenado se validaron con

los resultados 2D publicados en la literatura. 

Mediante el análisis de la simulación computacional y la modelación matemática en el

llenado de molde con forma de S, se permite concluir lo siguiente

  Los resultados para la validación parcial de la interfase móvil en el modelo en 2D

logran una gran similitud del presente trabajo con los reportados en la literatura.

 

La evolución temporal de las líneas de corriente, en el llenado de molde con forma de

S, muestra una posible formación de burbujas en  debido a la recirculación del

fluido B al interior del molde, producto de la geometría escalonada de la superficie

sólida.

 

Los resultados de la variación de presión en el tiempo, para el llenado de molde con

forma de S, en 2D, indican que el mayor valor de la presión dinámica es de 5 [Pa], el

cual se logra al comienzo de la inyección del material y a su vez coincide en el instante

donde el flujo logra mayor velocidad. Por otro lado, la presión estática se eleva a

medida que va ingresando el fluido, siendo máxima en la zona en donde ocurre la

acumulación del metal fundido, logrando un valor de 45 [Pa] en el fondo del molde.

Este parámetro es de suma importancia a lo largo del proceso de inyección del material

al interior del molde.

  El modelo tridimensional debe ser utilizado en lugar de uno 2D cuando el ancho del

canal de alimentación es igual o menor que 16 veces su altura. 

Los tiempos de cálculo del modelo 3D, con mallas entre 33.750 y 540.000 volúmenes,

un paso de tiempo de 0.01 s, varían entre 1.460 y 23.741 s, en un PC Intel Core i5 de

2.5 GHz y 6 GB de RAM, empleando cuatro procesadores en paralelo. Por su parte, el

modelo 2D, se resuelve en 456, 1.084 y 2.996 s, comparando mallas de 1.000, 2.250 y

9.000 volúmenes, respectivamente.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 43/194

 

CAPÍTULO III

MECÁNICA DE FLUIDOS 3D PARA FLUJO TURBULENTO DE METAL FUNDIDO

EN LLENADO DE MOLDE CON MVF Y VOF

3.1 INTRODUCCIÓN

En el presente capítulo se presentan resultados de la predicción 3D de la mecánica de

fluidos y del avance de la interface móvil de aluminio fundido en el llenado de un molde por

gravedad. El estudio del movimiento transitorio del flujo bifásico se realiza utilizando una

malla fija, el programa de volúmenes finitos ANSYS/Fluent y el método de VOF para la

 predicción de la interface formada entre los dos fluidos inmiscibles: aluminio fundido y aire.

La mecánica de fluidos para el flujo bifásico turbulento se describe con el modelo k  –  ε

realizable mediante los resultados de variación en el tiempo de las distribuciones de velocidad

y posición instantánea de la interfase móvil. El tiempo de llenado calculado con la simulación

computacional se compara y valida con los resultados obtenidos mediante fórmulas empíricas

empleadas tradicionalmente en el diseño de sistema de alimentación de moldes disponibles en

la literatura para el llenado de moldes.

La complejidad del análisis tridimensional, de este tipo de problemas, proviene de los

distintos fenómenos involucrados en el proceso, donde interactúan dos fluidos newtonianos e

incompresibles. El proceso está gobernado por las ecuaciones de Navier-Stokes. En el análisis

se emplea el programa ANSYS/Fluent versión 14.0 [8] mediante el método de volúmenes

finitos (MVF) [3]. El comportamiento del fluido es a través de una descripción Euleriana,

mientras que el seguimiento del avance del frente de llenado se aplica el método de volumen

de fluidos (VOF), presentado por Hirt y Nichols (1981) [9] encontrado en el mismo programa.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 44/194

 

3.2 REVISIÓN BIBLIOGRÁFICA

El diseño de sistemas de llenado de moldes para la fabricación de piezas a partir de

 polímeros, metales o aleaciones se realiza empleando abundante información empírica,

complementada con un intensivo uso de técnicas de prueba y error. La práctica de estatecnología comienza con un material en fase sólida que se debe fundir o con un material

 previamente fundido, como indica la figura 3.1. Esta transformación de fase sólido a líquido

requiere el uso de abundantes recursos energéticos, normalmente asociados a procesos de

combustión de hidrocarburos. El éxito del proceso consiste en obtener una pieza de las

dimensiones deseadas, sin distorsiones geométricas y con las propiedades físicas que se

requieren para su posterior utilización. El logro de piezas de excelente calidad resulta entonces

atractivo desde el punto de vista económico, energético y ambiental.

Existen diferentes configuraciones para el diseño de sistemas de entrada que componen

el ingreso del material en el molde, trascendentes a eliminar defectos en el llenado.

Recomendaciones para el logro de una pieza de gran calidad se encuentran en la literatura

(Stefanescu, 2009) [11], (Abril, 1956) [12], que presentan distintos criterios a seguir en el

diseño de molde, como: el tiempo de llenado, la velocidad, la dirección del flujo, el volumen y

el tamaño del bebedero.

Figura 3.1. a) Componentes de un molde. b) Llenado de fundición en molde por gravedad.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 45/194

 

La realización de experimentos, el uso de técnicas de radiografía, hilos de contacto y

moldes transparentes son frecuentemente utilizados para la visualización de los fenómenos

que ocurren desde el momento que ingresa el material al molde, y así evitar algún defecto en

la construcción de la pieza, ver figura 3.2. Otros estudios ayudan a ahorrar los excesivos

gastos que lleva la realización de experimentos, donde autores como: Wukovici y Metevelis

(1989) [11], Upadhya y Paul (1993) [11], describen fórmulas empíricas para determinar el

tiempo de llenado en el molde. En la actualidad es posible el uso de la simulación

computacional y modelación matemática para captar con mayor precisión la mecánica de

fluidos y transferencia de calor al interior de moldes, logrando así obtener una pieza final libre

de bolsas con aire atrapado y otros defectos que trae consigo un mal diseño.

Figura 3.2. Molde transparente y Rayos-X en experimentos para el diseño de molde.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 46/194

 

3.3 OBJETIVOS

3.3.1 OBJETIVO GENERAL

Los principales objetivos que se pretenden lograr son la predicción de la mecánica de

fluidos, la caracterización de la evolución en el tiempo del frente de avance del metal fundido

y el cálculo del tiempo de llenado del molde. Los resultados de la simulación se compara con

los del análisis teórico desarrollado por Wukovici y Metevelis (1989) [11], Upadhya y Paul

(1993) [11] y otras ecuaciones existentes en la literatura [11]. En general, se conoce que el

tiempo de llenado está en función de la masa del material vertido, su densidad, gravedad, el

área transversal de ingreso y las dimensiones del molde.

3.3.2 OBJETIVOS ESPECÍFICOS

  Estudiar el diseño de moldes y la mecánica de fluidos de flujo por gravedad en tres

situaciones: llenado por la zona inferior, por la zona media y por la zona superior.  

  Predecir la interfase móvil en un modelo en tres dimensiones para los tres casos del

llenado de molde por gravedad. 

  Obtener resultados del contorno de velocidades al interior del molde cuando el material

que ingresa se efectúa en distintas configuraciones. 

  Comparar los resultados del presente trabajo con los obtenidos mediantes fórmulas

empíricas encontradas en la literatura.

  Evaluar el mejor diseño y disposición de los componentes que forman el molde para la

construcción de una pieza final.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 47/194

 

3.4 MODELO MATEMÁTICO GENERAL

El estudio del flujo bifásico del aluminio fundido que ingresa y del aire que está

siendo desplazado al interior del molde considera a cada uno de ellos como fluidos

newtonianos, incompresibles, con propiedades constantes. El proceso transiente de inyeccióndel metal fundido supone que el flujo es turbulento y que el proceso es isotérmico.

La dinámica de fluidos se describe por las ecuaciones diferenciales parciales no

lineales, acopladas, de continuidad (3.1) y las tres ecuaciones vectoriales de momento lineal

(3.2).

  (3.1)   (3.2)

El movimiento de los dos fluidos se describe utilizando las ecuaciones de turbulencia

del modelo k- ε Realizable (TKE Pr = 1.0 ; TDR Pr = 1.2  ; ), donde la energía

cinética turbulenta k y la rapidez de su disipación ε se determinan mediante:  

  (3.3)

  (3.4)

donde:  es el término producción y  : el término de disipación. El valor de los parámetros y constantes de este modelo se indica a continuación:

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 48/194

 

     

         

              

          

3.4.1 MÉTODO VOF

El seguimiento de la superficie libre, entre el metal fundido y el aire, se realiza

empleando el método de fracción de volumen de fluido (VOF), propuesto por Hirt y Nichols

(1981) [9]. La actualización de la interfaz del frente material utiliza la ecuación de transporte,

dada por la siguiente ecuación que se resuelve simultáneamente con las otras ecuaciones

gobernantes (3.1 a 3.4):

(3.5)

donde  es el vector velocidad que puede ser determinado desde la solución del flujo

de fluido, y   es la fracción de volumen, que dependiendo del valor que   tome en un

volumen de control entre 0 y 1. El dominio entero puede ser dividido dentro de tres categorías,

siguiendo el siguiente criterio:

    (3.6)

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 49/194

 

Una vez que se resuelve la ecuación del frente material (3.5), la interface entre los

fluidos participantes puede ser determinada aplicando la conservación de masa a cada fase

 presente en la mezcla. Cuando se consideran dos fases, como en este trabajo, la asignación de

las propiedades para resolver las ecuaciones (3.1 a 3.4) se efectúa con una ponderación de las

 propiedades del fluido, empleando la distribución de fracción de volumen para cada fluido,

calculadas en (3.4), descrita por las siguientes relaciones constitutivas:

    (3.7)

donde el subíndice 1 está referido al aluminio y el subíndice 2 para el aire,   lafracción de volumen del fluido,  la densidad y  la viscosidad del fluido.

3.4.2 PROPIEDADES REOLÓGICAS

Las propiedades físicas del aire y el metal fundido empleadas en los cálculos se

encuentran en la literatura [13] y se presentan en la tabla 3.1.

Tabla 3.1. Propiedades térmicas empleadas en la simulación de llenado de molde en 3D.

Aire a T=25ºC Aluminio a T = 860ºC

Densidad (ρ) = 1.225 kg/m³  Densidad (ρ) = 2650.0 kg/m³ 

Viscosidad dinámica (µ) = 1.7894x 

kg/(m s)

Viscosidad dinámica (µ) = 0.003233 kg/(m s)

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 50/194

 

3.5 SITUACIÓN FÍSICA

El proceso de inyección de un metal comienza ingresando el material fundido a una

temperatura inicial Ti, superior a la de solidificación, en la copa del sistema. El metal en fase

líquida cae por gravedad a lo largo del bebedero, fluye por el corredor, ingresando al molde por dos puertas. El tiempo de llenado depende de la ubicación de las puertas donde ingresa el

material al molde. La posición de las puertas de ingreso se estudiada para tres casos diferentes,

ubicadas en la zona inferior, zona media y zona superior, según se observa en la figura 3.3. El

análisis del proceso de inyección finaliza cuando se ha alcanzado el nivel de altura requerida

en el molde para la pieza que se está fabricando.

Figura 3.3. Situación Física, molde previamente llenado por el metal en t = 0.

Llenado a) Inferior, b) Zona media y c) Superior.

a)

b) c)

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 51/194

 

3.5.1 DISEÑO DE MOLDE

En el caso particular analizado en este trabajo, el metal fundido es aluminio. Las

dimensiones del molde son: 180 mm de alto (b), 300 mm de ancho (a) y 150 mm de

 profundidad (c). El metal previamente llenado con un alto de 23 mm (d) cae desde la copa auna altura de 200 mm (h), que tiene un diámetro superior D de 60 milímetros. El bebedero es

de 19 mm de diámetro y 150 mm de largo. El corredor es de sección cuadrada, de 23 mm de

lado, con una longitud de 392,29 mm. El metal fundido ingresa al molde a través de dos

 puertas de sección rectangular de 15 mm de alto por 70 mm de ancho por 60 mm de

 profundidad, separadas por una longitud de 120 mm una de la otra, como se ilustra en la figura

3.4.

El material fundido transita a través de tres áreas que son importantes en el diseño delsistema de alimentación: bebedero, corredor y puerta. La relación recomendada entre estas tres

áreas para sistemas despresurizados se encuentra disponible en la literatura: A p > Ac > A b [11].

Un ejemplo típico de estas relaciones entre las áreas para inyección de Aluminio es: 4 > 2 > 1.

En el presente estudio se consideró un área de: 1050 mm2, 529 mm2 y 283.285 mm2, para A p,

Ac y A b, respectivamente. Las dimensiones son homólogas para las tres situaciones.

Figura 3.4. Dimensiones del molde para cuando el material ingresa por la zona inferior.

① 

② 

③ 

① 

② 

③ 

Ap = 1050 mm2 

Ac = 529 mm  

Ab = 283.285 mm2 

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 52/194

 

3.6 IMPLEMENTACIÓN COMPUTACIONAL

La solución de las ecuaciones gobernantes acopladas (3.1 a 3.5), con las condiciones

iniciales y de borde, se logra utilizando el método de volúmenes finitos (MVF), usando el

algoritmo de acoplamiento PISO, Issa (1986) [10].

El modelo de volumen de fluido (VOF) es usado para describir la mecánica de fluidos

 bifásica incompresible. Las dos fases Eulerianas son resueltas mediante un esquema explícito

 para la superficie libre.

Los gradientes son calculados mediante la formulación Least Squares Cell Based,

mientras que en la presión se utiliza PRESTO y para el momentum por Ley de Potencia. La

discretización de la ecuación de fracción de volumen se realiza mediante el esquema

CICSAM, en tanto para la energía cinética turbulenta y la rapidez de disipación turbulenta se

ocupa funciones de interpolación de primer orden upwind. Por último, la formulación

transiente es a través de funciones implícitas de primer orden.

Los factores de sub-relajación utilizados en la modelación son: 0.7 para la presión, 0.3

 para el momentum, 0.6 para la densidad, 0.6 para las fuerzas de cuerpo, 0.6 para la energía

cinética turbulenta, 0.6 para la tasa de disipación turbulenta y 0.6 para la viscosidad turbulenta.

La definición del modelo matemático se completa indicando las condiciones iniciales yde borde utilizadas. El estudio considera que inicialmente el aire se encuentra a temperatura

uniforme de 25ºC y el metal fundido se vierte en la copa del bebedero a 860ºC. Las

condiciones de borde incluyen que la presión es la atmosférica en la entrada, llenándose la

copa y bajando el fluido por la fuerza de campo gravitacional, una presión atmosférica

constante a la salida y condiciones de deslizamiento en todas las superficies de contacto entre

los fluidos y las paredes del sistema de inyección y del molde.

La discretización temporal se realizó con 1000 pasos de tiempo por segundo, con un

máximo de iteraciones por paso de tiempo de 1000.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 53/194

 

La discretización espacial para los tres casos se efectuó con una malla trabajada con

volúmenes triangulares, mostrada en la figura 3.5 y para la construcción de la maqueta 3D

 para los tres casos estudiados se utilizó el software comercial CAD Inventor 2012.

Esta vez la altura del molde ( ) es de 223 milímetros, adecuándola para evitar efectosde presión al borde de la pared superior, concluyendo la simulación computacional al haber

alcanzado el frente de llenado los 180 milímetros. El número de elementos creados fue de

168559, y el número de nodos fue de 239.737, empleando la operación de refinamiento en

curvas y proximidades de la geometría. Se revisó la malla gracias a los parámetros de radio de

aspecto y swekness, que bordeaban el 1 y 0 respectivamente.

Figura 3.5. Vista General maqueta 3D y malla utilizada. a) Llenado inferior, b) Llenado zona

media y c) Llenado superior

b) c)

a)

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 54/194

 

3.7 PRESENTACIÓN, ANÁLISIS Y DISCUSIÓN DE RESULTADOS

Los resultados de la predicción del frente de llenado y la distribución de velocidades

 para diferentes instantes de tiempo en los tres casos del llenado de molde inferior, zona media

y superior se muestran en la figura 3.7, 3.8 y 3.9, respectivamente.

En la Figura 3.7, para el llenado de molde por la zona inferior, se aprecia que el

material ingresa por la copa e impacta la base del bebedero en torno a los 0.28s y la velocidad

máxima al interior del molde se genera en el bebedero, siendo de 1.7 m/s. Luego el material

llena completamente la base del bebedero e ingresa al molde y a los 1.8s se aprecia que el

flujo mayormente sigue la trayectoria por la puerta de ingreso más alejada al bebedero y la

velocidad máxima sigue siendo en el bebedero, sin embargo está disminuye a 1.4 m/s. El

material sigue ingresando hasta lograr un frente de llenado relativamente uniforme a los 4.3s,instante en que se observa que en una de las puertas de ingreso el metal fundido presenta

 burbujas, lo que es perjudicial para las propiedades de la pieza final. El aluminio alcanza una

altura del molde de 180 mm a los 25s, en este instante se observa que las burbujas han

desaparecido y la velocidad en el bebedero es de 0.7 m/s.

En la Figura 3.8, para el llenado de molde por la zona media, el material impacta

cercano a los 0.28s, en la base del bebedero y la velocidad máxima es de 1.8 m/s alcanzada

 por el metal fundido en el bebedero. El aluminio sigue fluyendo y a los 1.5s se aprecia comose forma una cascada. La mayor cantidad del material entra al molde por la puerta de ingreso

más alejada, formando un frente de llenado no uniforme, en este instante la velocidad en el

 bebedero cae a 1.4 m/s. Lo mismo ocurre cercano al tiempo de 7.5s. El material alcanza la

altura deseada en el molde a los 21 s y la velocidad alcanzada en el bebedero por el aluminio

fundido es de 1 m/s.

En la Figura 3.9, en el llenado de molde por la zona superior, el material también

impacta en la base del bebedero cercano a los 0.28s y la velocidad del aluminio en el bebedero

es de 1.8 m/s. El metal fundido ingresa al molde formando cascadas y se aprecia un frente de

llenado no uniforme hasta un tiempo cercano de los 15.2s. Luego de este tiempo, el frente de

llenado comienza a uniformarse y a los 20s llega a una altura de 180 mm y una velocidad

máxima en el molde alcanzada por el metal fundido es de 1 m/s en la zona del bebedero.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 55/194

 

3.7.1 VALIDACIÓN PARCIAL DE RESULTADOS

El tiempo de llenado calculado en los casos de estudio se comparan con los resultados

analíticos descritos por Wukovici y Metevelis (3.6), en el año 1989, para el llenado de molde

ingresando el material desde el inferior y con los de Upadhya y Paul (3.7), en el año 1993, para el llenado de molde ingresando el material desde una zona media. También se usa una

ecuación existente en la literatura que describe el tiempo de llenado de molde ingresando el

material desde la zona superior (3.8).

 

              (3.6)

        

             

      

    

  (3.7)

                    

         (3.8)

        

donde  es altura de la fundición desde la zona de ingreso del material, h es la altura

de la copa,   la masa de metal a ser vertida en el molde,   la masa de la

fundición superior a la zona de ingreso del material,  la masa de la fundición inferior

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 56/194

 

a la zona de ingreso del material,   densidad del material vertido,    el área de choque

encontrada en la base del bebedero y  la gravedad. 

La evolución de la interfase en el interior del molde, con tres sistemas de ingreso:

inferior, medio y superior, calculado con Fluent se compara con datos calculados con tresmétodos analíticos y se muestran en la Figura 3.6.

Figura 3.6. Resultados obtenidos mediante ANSYS/Fluent y métodos empíricos para el

llenado de molde por diferentes zonas.

05

10

15

20

25

30

0,09 0,12 0,15 0,18

   T   i   e   m   p   o    [   s    ]

Altura [m]

Llenado inferior Wukovici y Metevelis [2]

0

5

10

15

20

25

0,09 0,12 0,15 0,18

   T   i   e   m   p   o    [   s    ]

Altura [m]

Llenado zona media Upadhya y Paul [2]

0

5

10

15

20

0,09 0,12 0,15 0,18

   T   i   e   m   p   o    [   s    ]

Altura [m]

Llenado superior Análisis empírico [2]

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 57/194

 

Interfase móvil en el frente de llenado Magnitud de velocidad, [m/s]

Figura 3.7: Evolución en el tiempo del frente de llenado y contorno de velocidades, en llenado

inferior de molde.

t = 25.0s

t = 0.28s

t = 4.30s

t = 25.0s

t = 0.28s

t = 1.80s t = 1.80s

t = 4.30s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 58/194

 

Interfase móvil en el frente de llenado Magnitud de velocidad, [m/s]

Figura 3.8: Evolución en el tiempo del frente de llenado y contorno de velocidades, en llenado

zona media del molde.

t = 0.28s

t = 1.50s

t = 7.50s

t = 21.0s

t = 7.50s

t = 0.28s

t = 1.50s

t = 21.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 59/194

 

Interfase móvil en el frente de llenado Magnitud de velocidad, [m/s]

Figura 3.9: Evolución en el tiempo del frente de llenado y contorno de velocidades, en llenado

superior del molde. 

t = 0.28s t = 0.28s

t = 10.00s t = 10.00s

t = 15.2s t = 15.2s

t = 20.0s t = 20.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 60/194

 

3.8 CONCLUSIONES PRELIMINARES

La predicción del efecto de la forma de llenado de un molde con metal fundido ha sido

efectuada empleando ANSYS/Fluent 14.0 y el método VOF, para tres formas de inyección:

inferior, intermedia y superior. La simulación 3D requiere emplear 239.737 nodos y 1000

 pasos de tiempo por segundo.

Mediante el análisis de la simulación computacional y la verificación de los resultados

con las fórmulas encontradas en la literatura se puede concluir lo siguiente:

  Se realiza un buen diseño de molde, en cuanto a la relación de las dimensiones

sugeridas que se encuentran en la literatura, para el sistema de ingreso de aluminiofundido. En la situación real de llenado de molde, esta práctica conlleva a una pieza

libre de rechupes, que surgen a consecuencia de fallos en la solidificación del material,

 producto del mal diseño de los componentes. El correcto diseño otorga una pieza final

libre de defectos, que pudiesen ser originados por tensiones internas. En el presente

trabajo se evita con espesores constantes y sin cambios bruscos de sección. Además de

comenzar la colada por secciones más delgadas, aumentando el área hasta las puertas

de ingreso finales.

 

Los resultados de la interfase móvil y el contorno de magnitud de velocidad fueron

obtenidos satisfactoriamente para los tres casos estudiados: ingreso del aluminio

fundido por la zona inferior, intermedia y superior.

  Se concluye que el llenado por el punto superior es más rápido, completando el llenado

del molde a los 20s, permitiendo de esta forma aumentar la productividad. Sin

embargo, la interfase metal fundido-aire tiene oscilaciones que pueden resultar

 perjudiciales para la calidad final de la pieza a fabricar. Este tipo de colada se

recomienda cuando la altura de la pieza es pequeña, así se evita la salpicadura del

material y una posible formación de gotas frías, que solidifiquen antes del material y

formen desperfectos en la superficie.

 

Se infiere que el llenado de molde por el punto inferior es el más lento de los tres

sistemas, alcanzando la altura deseada (180mm) a los 25s, pero a su vez, permite la

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 61/194

 

entrada del flujo sin turbulencia. El principal inconveniente es que el metal se va

enfriando al subir y puede no llenar a completar el molde.

 

Considerando tanto la calidad como la rapidez, se recomienda el uso de un llenado del

molde por la zona media para la elaboración de la pieza, logrando el llenado de molde

sin la formación de burbujas a los 21s.

  La comparación de los resultados del presente trabajo con los resultados obtenidos

mediante formulas empíricas, encontradas en la literatura, muestra una gran

concordancia de su evolución en el tiempo para el llenado de molde.

  La simulación computacional permite observar los diferentes fenómenos que ocurren

en el llenado de molde, que en experimentos físicos no se pueden visualizar. Además

 permite controlar diferentes parámetros con el objetivo de optimizar y diseñar una

 pieza de fundición por gravedad con excelentes cualidades, logrando todas las ventajas

que esta técnica posee, tales como: mayor precisión en las dimensiones, menor

mecanizado gracias a superficies mejor acabadas, propiedades mecánicas más

elevadas, mejor calidad y una mayor producción.

  Se propone gracias al estudio de los distintos sistemas de ingreso en el presente

trabajo, diversos sistemas intermedios de solución para eliminar la turbulencia y los

defectos que ella conlleva. La turbulencia del flujo se puede reducir al mínimo a través

de la siguientes metodologías: Un sistema de ingreso escalonado o de múltiples puertas, comenzando desde la zona inferior y cuando haya alcanzado una cierta altura,

lo hace por una entrada siguiente ubicada a mayor altura. Un sistema de giro en la

colada, comenzando con el molde invertido, con la intención de cambiar la inclinación

en un determinado momento y así conservar el metal con mayor temperatura en la

superficie del molde.

 

A futuro se pretende realizar un análisis no isotérmico en el proceso de llenado de

molde en 3D con flujo turbulento, incluir la evolución temporal del cambio de fase en

el aluminio fundido e incorporar un espesor determinado en las paredes del molde,

 para así comparar los resultados con los del presente trabajo.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 62/194

 

CAPÍTULO IV

ESTUDIO DE LA INTERACCIÓN FLUIDO-ESTRUCTURA DEL COLAPSO DE

UNA COLUMNA DE AGUA APLICADO EN RUPTURA DE REPRESA

4.1 INTRODUCCIÓN

El estudio de la evolución temporal de superficies libres e interfaces móviles es de

suma importancia en una infinidad de problemas ingenieriles de actualidad. Entre ellos se

 puede mencionar el transporte de líquidos confinados al interior de un tanque, el colapso y

quiebre de represas, llenado de depósitos y procesos de refinamiento de metales.

En este capítulo se presenta el estudio del derrame de una columna de agua

considerando flujo laminar en la interacción fluido-sólido en dos dimensiones. Los fluidos

analizados son Newtonianos, como fase primaria hay aire y agua como fase secundaria. El

estudio transitorio del flujo bifásico se realiza utilizando una malla fija, el método de

volúmenes finitos y la técnica VOF. En primera instancia se resuelve un caso base y los

resultados se comparan a través de la aplicación de dos programas computacionales: el

 programa comercial Ansys/Fluent para Windows y el programa gratuito OpenFoam para

Linux. Luego se estudia la rotura de una represa en tres dimensiones y el impacto del aguaconsiderado flujo turbulento con viviendas cercanas, estimando la fuerza provocada por el

desastre.

Se analiza la capacidad que tiene el programa gratuito OpenFoam (Open Field

Operation and Manipulation). Este software trabaja con una amplia biblioteca en C++ para la

 plataforma Linux, siendo posible personalizar y extender la solución a problemas de mecánica

de medios continuos, incluyendo la fluidodinámica computacional (CFD). Luego se comparan

los resultados obtenidos y el tiempo de CPU con el programa comercial ANSYS/Fluent.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 63/194

 

4.2 REVISIÓN BIBLIOGRÁFICA

El estudio del derrame de una columna de fluido ha sido utilizado por muchos autores

 para validar sus algoritmos propuestos con diferentes metodologías. En la actualidad hay una

gran cantidad de casos analizados que se han transformados en benchmark. Si bien, el problema ha sido estudiado en reiteradas ocaciones por investigadores alrededor de todo el

mundo considerando un colapso de fluido newtoniano, en este capítulo se analizará la

interacción que existe al incorporar una pequeña estructura en la base del contenedor, además

de comparar los dos software de estudio: Ansys/Fluent v.14 y OpenFoam v.2.1.1.

Una aplicación importante en el colapso de columnas líquidas es el quiebre de represas

(Dam Break), ya que en muchas instalaciones mundiales ha sido el motivo para el comienzo

del estudio. Existen una gran variedad de investigaciones experimentales realizados porSchoklitsch (1917) [14], Martin y Moyce (1952) [15], Lauber y Hager (1998) [16], Estrade

(1967) [17], para distintas dimensiones y superficies del estanque contenedor de agua.

El estudio pretende analizar el comportamiento del colapso de una columna de agua,

 para así entender y evitar desastres que han ocurrido por falta de conocimiento, como el

colapso de la presa de Malpasset, Francia, el 2 de diciembre de 1959, donde se derrumbó la

 pared entera que contenía al fluido matando a 421 personas. El quiebre del muro creó un

volumen de agua con 40 metros de alto moviéndose a 70 km/h, destruyendo dos pequeñasaldeas: Malpasset y Bozon, llegando a recorrer 7 kilómetros en 20 minutos llegando a Fréjus,

todavía con 3 metros de altura, fluyendo el agua hasta encontrarse con el océano [18].

Figura 4.1. Presa de arco Malpasset, Francia.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 64/194

 

Otros estudios encontrados en la literatura comprenden el colapso de columnas de

fluidos no newtonianos [19], que permiten comprender diversas aplicaciones de fenómenos

naturales y situaciones industriales, tales como la generación de avalanchas de nieve,

erupciones volcánicas y agitaciones de concreto.

Por otro lado la tecnología del cálculo numérico ha avanzado con el transcurrir del

tiempo y las nuevas tecnologías van ampliando los conocimientos en programación, como

también en otras ramas del conocimiento tecnológico. Estos constantes avances, han

incentivado al mercado, la ciencia, la educación y la economía a la investigación de

metodologías de cálculo cada vez más potente y veloces. Por esta razón hay un avance

continuo en los sistemas operativos utilizados en computadores para modelación matemática y

simulaciones computacionales. Linux monopoliza el mercado de supercomputadores

mundiales, gobernando 455 sistemas entre las 500 mejores [20], incluyendo las tres primeras,

como se ilustra en la figura 4.2.

Figura 4.2. Sistema operativo utilizado en el top-500 de supercomputadoras.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 65/194

 

4.3 OBJETIVOS

4.3.1 OBJETIVO GENERAL

Describir la mecánica de fluidos en el colapso súbito de una columna de agua dentro de

un contenedor y la interacción con una pequeña estructura en dos dimensiones con flujo

laminar, realizando simulaciones computacionales por medio de dos programas en el caso en

dos dimensiones, uno comercial y otro gratuito, ANSYS/Fluent y OpenFoam respectivamente,

y comparar el tiempo de CPU. Luego, implementar la metodología de trabajo para el estudio

de la rotura de una represa en tres dimensiones, evaluando la fuerza producida de la masa de

agua y el impacto con estructuras cercanas.

4.3.2 OBJETIVOS ESPECÍFICOS

  Evaluar comparativamente el frente móvil del colapso de la columna de agua en 2D

con flujo laminar para las simulaciones computacionales en ANSYS/Fluent y

OpenFoam.

 

Comparar los resultados de velocidad en el colapso de columna de agua 2D con flujo

laminar para los obtenidos en ANSYS/Fluent y OpenFoam.

 

Estudiar el tiempo de CPU ocupado en los dos programas distintos para los diferentes

casos de estudio.

  Describir el frente móvil del colapso de la columna de agua en 3D con flujo turbulento

 para las simulaciones computacionales en ANSYS/Fluent en la rotura de una represa.

  Estudiar los resultados de velocidad en la rotura de una represa en 3D con flujo

laminar para los obtenidos en ANSYS/Fluent.

  Evaluar la fuerza producida por la masa de agua en estructuras cercanas a la rotura de

la represa en la situación en tres dimensiones.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 66/194

 

4.4 MODELO MATEMÁTICO GENERAL

El derrame de la columna de fluido Newtoniano producto de la apertura de la

compuerta que lo sostiene es estudiado en dos y tres dimensiones, considerando en 2D un flujo

laminar y turbulento, y para la situación en 3D que el flujo es laminar. En todos los casos el proceso es transiente e isotérmico y los fluidos son incompresibles e inmiscibles.

La dinámica de fluidos se describe por las ecuaciones diferenciales parciales no

lineales, acopladas, de continuidad (4.1) y las ecuaciones vectoriales de momento lineal (4.2),

dos para el caso en 2D y tres para el caso en 3D.

  (4.1)

  (4.2)

El movimiento de los dos fluidos: aire y agua, para el caso en 2D con flujo turbulento

se describe utilizando las ecuaciones de turbulencia del modelo k- ε Realizable (TKE Pr = 1.0

; TDR Pr = 1.2 ;

), donde la energía cinética turbulenta k y la rapidez de su

disipación ε se determinan mediante:

  (4.3)

  (4.4)

donde:  es el término producción y  : el término de disipación. El valor de los

 parámetros y constantes de este modelo se indica a continuación:

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 67/194

 

     

         

              

          

4.4.1 MÉTODO VOF

El seguimiento de la superficie libre, entre el agua y el aire, se realiza empleando elmétodo de fracción de volumen de fluido (VOF), propuesto por Hirt y Nichols (1981) [9]. La

actualización de la interfaz del frente material utiliza la ecuación de transporte, dada por la

siguiente ecuación que se resuelve simultáneamente con las otras ecuaciones gobernantes (4.1

a 4.4):

(4.9)

donde  es el vector velocidad que puede ser determinado desde la solución del flujo

de fluido, y   es la fracción de volumen, que dependiendo del valor que   tome en un

volumen de control entre 0 y 1, el dominio entero puede ser dividido dentro de tres categorías,

siguiendo el siguiente criterio:

  (4.10)

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 68/194

 

Una vez que se resuelve la ecuación del frente material (4.9), la interface entre los

fluidos participantes puede ser determinada aplicando la conservación de masa a cada fase

 presente en la mezcla. Cuando se consideran dos fases, como en este trabajo, la asignación de

las propiedades para resolver las ecuaciones (4.1 a 4.4) se efectúa con una ponderación de las

 propiedades del fluido, empleando la distribución de fracción de volumen para cada fluido,

calculadas en (4.9), descrita por las siguientes relaciones constitutivas:

  ;   (4.11)

donde el subíndice 1 está referido al aire y el subíndice 2 para el agua,  la fracción devolumen del fluido,  la densidad y  la viscosidad del fluido.

4.4.2 PROPIEDADES REOLÓGICAS

Las propiedades físicas del aire y agua empleadas en los cálculos son modeladas como

fluidos Newtonianos y se encuentran en la literatura. Se incluye la tensión superficial de

ambas fases presentadas en la tabla 4.1.

Tabla 4.1. Propiedades térmicas empleadas en el estudio de la interacción fluido-estructura del

colapso de una columna de agua aplicado en ruptura de represa.  

Aire Agua

Densidad (ρ) = 1.0 kg/m³  Densidad (ρ) = 1000 kg/m³

Viscosidad dinámica (µ) = 1.48x10- kg/(m s) Viscosidad dinámica (µ) = 1x10-  kg/(m s)

Aire y Agua

Tensión superficial = 0.07 N/m

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 69/194

 

4.5 COLAPSO DE COLUMNA DE AGUA EN 2D PARA FLUJO LAMINAR CON

ANSYS/FLUENT Y OPENFOAM

4.5.1 SITUACIÓN FÍSICA

El problema estudiado corresponde al colapso de una columna de fluido Newtoniano

en 2D para flujo laminar, producto de la apertura de la compuerta que lo contiene, figura 4.3.

El derrame dentro del recipiente cuadrado ocurre debido a efectos gravitatorios. El recipiente

 presenta una pequeña estructura con la cual el agua va a impactar al momento que se va

desplazando por la base del recipiente. Las dimensiones del recipiente son 0.584 m x 0.584 m,

la superficie superior está abierta a la atmósfera. Al interior del molde coexiste la columna de

agua con una dimensión de 0.1461 m x 0.292 m, [21]. La compuerta que retiene al agua es

retirada y comienza súbitamente el desplazamiento del fluido por la pared inferior.

Figura 4.3. Situación física para caso colapso de columna de agua 2D en flujo laminar.

0.584 m

0.584 m

0.048 m

0.1461 m 0.1459 m0.024 m

0.292 m

watercolumn

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 70/194

 

4.5.2 IMPLEMENTACIÓN COMPUTACIONAL

Las generalidades para el mismo caso de estudio, utilizando dos programas distintos

corresponden a: la discretización espacial, discretización temporal y condiciones de borde.

La discretización temporal emplea un paso de tiempo constante de 0.001s, con un

máximo de 100 iteraciones por paso de tiempo. La simulación computacional finaliza una vez

que se ha alcanzado los 5 s de estudio.

La discretización espacial utiliza una malla trabajada con un total de volúmenes

rectangulares de 8.129 nodos y 7.700 elementos, ilustrada en la figura 4.4, similar a la

empleada en el tutorial de la guía de OpenFoam [21].

Las condiciones de borde del problema correspondientes al caso estudiado son:

  Paredes: Condición de pared con deslizamiento libre y sin penetración ‘‘slip wall’’.  

  Cara superior del dominio: Condición de presión atmosférica ‘‘pressure outlet’’. 

  Caras de la estructura y suelo del dominio: Condición de pared con deslizamiento libre

y sin penetración ‘‘slip wall’’. 

Figura 4.4. Malla caso colapso de columna de agua 2D para flujo laminar.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 71/194

 

ANSYS/FLUENT v.14 en plataforma Windows

La solución de las ecuaciones gobernantes acopladas (4.1, 4.2 y 4.9 a 4.11), y las

condiciones iniciales y de borde, se logra utilizando el método de volúmenes finitos (MVF)

con que cuenta el programa comercial ANSYS/Fluent, usando el algoritmo de acoplamientoPISO, Issa (1986) [10].

El modelo de volumen de fluido (VOF) es usado para describir la mecánica de fluidos

 bifásica incompresible. Las dos fases Eulerianas son resueltas mediante un esquema explícito

con un número de Courant de 0.025.

Los gradientes son calculados mediante la formulación Least Squares Cell Based,

mientras que en la presión se utiliza PRESTO y para el momentum el esquema de tercer orden

MUSCL. La discretización utilizada para la ecuación de fracción de volumen es de alto orden

CICSAM y por último la formulación transiente es a través de funciones implícitas de primer

orden.

Los factores de sub-relajación utilizados en la modelación son: 0.7 para la presión, 0.5

 para el momentum, 1 para la densidad y 1 para las fuerzas de cuerpo.

OPENFOAM 2.1.1 en plataforma Linux

La mecánica de fluidos se resuelve con el método de volúmenes finitos, usando el

algoritmo PISO, Issa (1986) [10] y la técnica VOF con que cuenta el programa gratuito

OpenFoam.

El solver utilizado para resolver las ecuaciones gobernantes acopladas (4.1, 4.2 y 4.9 a

4.11) para dos fluidos incompresibles, inmiscibles e isotérmicos usando VOF es interFoam. La

discretización de la ecuación de fracción de volumen se realiza mediante el esquema MUSLE,en tanto en la ecuación de momentum el término convectivo ( ) se utiliza la

formulación de GaussLimitedLinearv1.0. El término ( ) se calcula con el esquema de

VanLeer. El término ( ) resuelve el esquema especializado interfaceCompression,

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 72/194

 

que permite producir interfases más suaves. Por último la formulación transiente utiliza una

modelación Euleriana y para los gradientes el esquema que se emplea es GaussLinear.

Los factores de sub-relajación utilizados en la modelación son: 0.3 para la presión y 0.7

 para la velocidad.

4.5.3 PRESENTACIÓN, ANÁLISIS Y DISCUSIÓN DE RESULTADOS

Los resultados obtenidos para describir la mecánica de los fluidos en el colapso súbito

de una columna de agua en dos dimensiones con flujo laminar se presentan en las figuras 4.8,

4.9 y 4.10 resueltas con el programa comercial ANSYS/Fluent v.14.0 y de manera similar en

las figuras 4.11, 4.12 y 4.13 resueltas con el programa gratuito OpenFoam v.2.1.1.

La posición tiempo-espacial y el contorno de magnitud de la velocidad son resueltas

 para ambas fases: aire y agua.

Se observa que para t=0.1s la columna de agua comienza a deslizarse por efectos de la

gravedad. La velocidad máxima en ese instante de tiempo se produce en la base de la columna,

mostrando grandes similitudes entre los resultados de los dos programas empleados, como

ilustran las figuras 4.8 y 4.11 al comienzo de la simulación.

La modelación matemática para el mismo caso, resuelto en los dos programas distintos,

logra capturar la zona de frente de punta del fluido, para los instantes t=0.2s y t=0.3s, donde la

 punta del agua suspendida en el aire se dispersa formando pequeñas burbujas en el extremo

del látigo de agua, caracterizándose en ese mismo lugar por alcanzar la mayor velocidad.

Entre el intervalo de tiempo t=0.4s a t=0.7s se aprecia como el frente de punta del agua

impacta con la pared del contenedor, donde luego escurre por la pared logrando una dirección

del fluido contraria a la del comienzo del estudio. Este fenómeno induce a una agitación delagua en el recipiente, además de perturbaciones en la fase aire, formándose dos vórtices de

recirculaciones de aire, como se observa en las figuras 4.9 y 4.12, para los mismos instantes de

tiempo, en los dos programas en estudio.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 73/194

 

A medida que transcurre el tiempo, la superficie libre del agua comienza a decantar y

 perder altura, pero aún se produce una agitación del agua en el contenedor en los instantes

t=0.7s a t=1.0s. Esto se puede apreciar en el contorno de las fases, ya que aunque la suposición

en la modelación matemática son dos fases inmiscibles, éstas aún se encuentran dispersas,

formando partículas de aire salpicando en la superficie libre del agua, como se muestra en las

figuras 4.9 y 4.12.

La simulación del colapso de agua continúa para los instantes de tiempo t=1.5s a t=5s,

donde el agua que contuvo el recipiente logra reducir significativamente sus oscilaciones a

medida que transcurre el tiempo, hasta los 5s. En este período se observa una disminución de

la velocidad para cada una de las dos fases, desapareciendo los vórtices formados por la

recirculación de aire, como se ilustra en las figuras 4.10 y 4.13.

La secuencia de imágenes correspondientes a las figuras 4.8, 4.9 y 4.10, corresponden

a los resultados gráficos obtenidos para la simulación mediante el programa comercial

ANSYS/Fluent. Mientras que las figuras 4.11, 4.12 y 4.13 corresponden a los resultados

gráficos obtenidos mediante la simulación con el programa OpenFoam. Los rangos de los

contornos ilustrados, tanto para la superficie libre y la magnitud de velocidad, se ilustran en

las figuras 4.5 y 4.6, respectivamente, calculadas con los dos programas.

Figura 4.5. Mapa de contorno de variables Ansys/Fluent en colapso de columna de agua 2D

con flujo laminar.

Fracción de fase (α2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Magnitud de Velocidad (m/s)

0 0.34 0.68 1.02 1.36 1.7 2.04 2.38 2.72 3.06 3.39

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 74/194

 

Figura 4.6. Mapa de contorno de variables OpenFoam en colapso de columna de agua 2D con

flujo laminar.

Para el mismo caso en estudio los resultados obtenidos mediante el programa

ANSYS/Fluent v.14 en plataforma Windows y OpenFoam v.14 en plataforma Linux son

similares, tanto para el contorno de las fases como para la magnitud de la velocidad. Contrario

es el caso del tiempo computacional empleado para ambos programas, en donde existe una

gran diferencia, siendo OpenFoam 4,8 veces más veloz que Ansys/Fluent en resolver las

ecuaciones gobernantes con la misma malla e igual paso de tiempo, como se observa en la

figura 4.7.

Figura 4.7. Tiempos de CPU para colapso de agua, 2D, laminar. Fluent vs OpenFoam.

OpenFoam

ANSYS/Fluent

0

2000

4000

6000

8000

2D laminar

1583,5

7620

Tiempo deCálculo [s]

1

0.75

0.5

0.25

0

Fracción de fase (α2)

3.39

3

2

1

0

Magnitud de Velocidad (m/s)

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 75/194

 

Los tiempos de cálculo para resolver el modelo 2D, laminar, con una malla de 8.129

nodos y 7.700 elementos, un paso de tiempo de 0.001s, varían entre 1.583,5 s para OpenFoam

y 7.620 s para ANSYS/Fluent respectivamente. Ambos programas se ejecutan en un PC Intel

Core i5 de 2.5 GHz y 6 GB de RAM, empleando sólo un procesador de su capacidad.

La diferencia principal que presenta Linux sobre Windows es su rapidez, debido a una

mayor optimización del código fuente. Además de ser un software libre, Linux ofrece la

 posibilidad de que el usuario está autorizado a modificar, incluso su código fuente, de

cualquier forma deseada. Esto también choca bastante con Microsoft Windows, ya que las

modificaciones no están permitidas. El código fuente es la versión original de un programa tal

y como lo haya escrito un programador usando un lenguaje de programación y antes de ser

compilado de forma que sus instrucciones puedan ser entendidas directamente por un

ordenador. Por lo tanto, es necesario tener el código fuente con el fin de poder realizar

cambios en un determinado programa. Esta capacidad de experimentar con el código fuente, y

hacerlo sin necesidad de dar a conocer las modificaciones a terceros ha sido muy importante

 para un gran número de organizaciones.

Otra característica sustancial en Linux es que es altamente resistente a los fallos de

sistema y raramente necesita reiniciar. Esto puede ser muy importante para las grandes

organizaciones, ya que unos minutos de tiempo de inactividad puede suponer un costo

sustancial. La razón es que Linux ha sido diseñado desde cero para ser un sistema operativo

estable y robusto. 

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 76/194

 

Contorno de fase, 2D, laminar Contorno de Velocidad, 2D, laminar

Figura 4.8. Colapso de columna de agua, 2D, laminar en ANSYS/Fluent. 0.1s a 0.5s.

t = 0.1s

t = 0.2s

t = 0.3s

t = 0.4s

t = 0.5s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 77/194

 

Contorno de fase, 2D, laminar Contorno de Velocidad, 2D, laminar

Figura 4.9. Colapso de columna de agua, 2D, laminar en ANSYS/Fluent. 0.6s a 1.0s.

t = 0.6s

t = 0.7s

t = 0.8s

t = 0.9s

t = 1.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 78/194

 

Contorno de fase, 2D, laminar Contorno de Velocidad, 2D, laminar

Figura 4.10. Colapso de columna de agua, 2D, laminar en ANSYS/Fluent. 1.5s a 5.0s.

t = 1.5s

t = 2.0s

t = 3.0s

t = 4.0s

t = 5.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 79/194

 

Contorno de fase, 2D, laminar Contorno de Velocidad, 2D, laminar

Figura 4.11. Colapso de columna de agua, 2D, laminar en OpenFoam. 0.1s a 0.5s.

t = 0.1s

t = 0.2s

t = 0.3s

t = 0.4s

t = 0.5s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 80/194

 

Contorno de fase, 2D, laminar Contorno de Velocidad, 2D, laminar

Figura 4.12. Colapso de columna de agua, 2D, laminar en OpenFoam. 0.6s a 1s.

t = 0.6s

t = 0.7s

t = 0.8s

t = 0.9s

t = 1.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 81/194

 

Contorno de fase, 2D, laminar Contorno de Velocidad, 2D, laminar

Figura 4.13. Colapso de columna de agua, 2D, laminar en OpenFoam. 1.5s a 5s.

t = 1.5s

t = 2.0s

t = 3.0s

t = 4.0s

t = 5.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 82/194

 

4.6 COLAPSO DE COLUMNA DE AGUA EN 3D PARA FLUJO TURBULENTO

APLICADO EN LA ROTURA DE UNA REPRESA

4.6.1 SITUACIÓN FÍSICA

La rotura de una represa corresponde al colapso de una columna de fluido Newtoniano

en 3D para flujo turbulento, producto del desprendimiento de la pared que contenía el agua en

su zona central, figura 4.14. El derrame súbito de la gran masa de agua ocurre debido a efectos

gravitatorios. El caso en estudio presenta una configuración de pequeñas estructuras

(viviendas) con la cual el agua va a impactar al momento que se va desplazando por el terreno.

Las dimensiones del dominio en estudio son 355m x 40m x 160m, la superficie superior está

abierta a la atmósfera. Al interior de la represa coexiste la masa de agua con una dimensión de

50m x 35m x 160m. La zona media de la compuerta que retiene al agua es destruida y

comienza súbitamente el desplazamiento del fluido por la pared inferior.

Figura 4.14. Situación física en rotura de represa.

40m

50m20m

285m

160m

100m

60m

 

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 83/194

 

El grupo de las pequeñas estructuras se encuentra a 100m en frente de la represa y la

zona en que se produce la rotura. La configuración es estructurada, enumeradas para una

mejor comprensión. Las dimensiones de cada vivienda es de 5m x 10m x 5m situadas a 10m

una de otra en el eje x y 5m en el eje z, como se ilustra en la figura 4.15. Las paredes de la

muralla de contención en la represa presentan una geometría piramidal, siendo truncada en la

 punta, situada a 100m de las pequeñas estructuras, como se muestra en la figura 4.16.

Figura 4.15. Disposición viviendas en caso rotura de represa.

Figura 4.16. Dimensiones de colapso de columna de agua en rotura de represa.

10m

5m

40m

35m

10m

5m

10m

35m

10m

50m 20m 100m 150m

1

2

3

4

5

6

7

8

9

①②③ 

④⑤⑥ 

⑦⑧⑨ 

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 84/194

 

4.6.2 IMPLEMENTACIÓN COMPUTACIONAL

Las ecuaciones que gobiernan al problema (5.1 a 5.4) se resuelven por medio del

método de volúmenes finitos (MVF) y el algoritmo de acoplamiento PISO, Issa (1986) [10].

La solución de la posición espacio-temporal de la interfase móvil que se describe

gracias a la ecuación de fracción de volumen es a través de la técnica volumen de fluido

(VOF), aplicable para fluidos incompresibles e inmiscibles.

La formulación para calcular los gradientes utiliza Least Square Cell Based,

mientras que para la presión se ocupa PRESTO y las ecuaciones de momento se resuelven

 bajo el esquema Ley de Potencia. La discretización de la ecuación de fracción de volumen se

realiza mediante el esquema de tercer orden CICSAM. En tanto la energía cinética turbulenta

y su rapidez de disipación turbulenta se calculan a través de funciones de interpolación de

segundo orden Upwind. La formulación transiente se resuelve por medio de funciones

implícitas de primer orden.

Los factores de sub-relajación son: 0.7 para la presión, 0.5 para el momentum, 0.7 para

las fuerzas de cuerpo, 0.7 para la densidad, 0.6 para la energía cinética turbulenta, 0.6 para la

rapidez de disipación turbulenta y 0.6 para la viscosidad turbulenta.

El dominio computacional para resolver las ecuaciones que gobiernan el problema yasí estudiar el impacto de la masa de agua con las pequeñas estructuras se considera de 150m

de extensión desde la configuración de las viviendas hasta la pared frontal. En esta es posible

estimar el valor de la fuerza producida en las estructuras y los efectos del frente de agua luego

del impacto aguas abajo de la represa.

La discretización temporal utiliza un paso de tiempo constante, de 200 pasos de tiempo

 por segundo. El estudio de la rotura de la represa se analiza entre 0s < t < 10s, con un número

máximo de iteraciones de 100 por paso de tiempo.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 85/194

 

La descripción del modelo matemático se completa definiendo las condiciones de

 borde, como se muestra en la figura 4.17 y son:

  Paredes laterales del dominio: Condición de pared con deslizamiento libre y sin

 penetración ‘‘slip wall’’.   Pared frontal y trasera del dominio: Condición de pared con deslizamiento libre y sin

 penetración ‘‘slip wall’’. 

 

Murallas de contención en la represa: Condición de pared con deslizamiento libre y sin

 penetración ‘‘slip wall’’. 

  Paredes de las pequeñas estructuras (viviendas): Condición de pared con deslizamiento

libre y sin penetración ‘‘slip wall’’. 

 

Pared superior del dominio: Condición de presión atmosférica ‘‘ pressure outlet’’. 

Figura 4.17. Condiciones de borde en el estudio de la rotura de una represa.

Slipwall

Slipwall

Slipwall

Slipwall

Slipwall

Slipwall

Slipwall

Pressure outlet

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 86/194

 

La discretización espacial utiliza volúmenes tetraédricos, en la cual la malla empleada

tiene: 622.570 nodos y 443.201 elementos. El tamaño de los elementos es de 3m, con un

refinamiento de 0.5m alrededor de las pequeñas estructuras, como se aprecia en la figura 4.18.

Figura 4.18. Malla utilizada en el estudio de la rotura de una represa.

4.6.3 PRESENTACIÓN, ANÁLISIS Y DISCUSIÓN DE RESULTADOS

El eventual rompimiento de una presa y el posterior derrame súbito de una gran masa

de agua frente a un grupo de viviendas, ha sido estudiado. Los resultados de la fuerza neta en

la dirección del avance del fluido (ȋ) se presentan en las figuras 4.19, 4.20  y 4.21,

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 87/194

 

despreciando el aporte de la fuerza en el resto de las coordenadas cartesianas, debido al orden

de magnitud.

Los resultados de la fuerza debido al impacto del aire y el agua sobre las pequeñas

estructuras presentan una cierta correlación debido a su ubicación. En la figura 4.19 se indicala evolución temporal de la fuerza sobre las viviendas 1,2 y 3, agrupadas al comienzo de la

configuración de estructuras, siendo éstas las primeras en las que impacta la gran masa de

agua. Se observa que el valor máximo de la fuerza es de 19,9 [MN] y se sitúa sobre la

vivienda 2, ubicada en el centro de la primera línea de colisión, ocurriendo en torno a los 4.7s.

El impacto de la fuerza en las estructuras vecinas presenta el mismo patrón, con diferencias en

el orden de magnitud debido a la dirección del frente móvil, esparciéndose en todo el dominio

luego de colapsar súbitamente el fluido. Los valores del valor máximo de fuerza en las

viviendas 1 y 3 son: 16,3 y 15,8 MN, respectivamente.

La figura 4.20 muestra la fuerza de impacto sobre la siguiente línea de estructuras,

 perteneciente a las viviendas 4,5 y 6. Los resultados revelan que ocurre el efecto contrario al

del primer grupo, ya que los mayores valores de fuerza se presentan en las estructuras situadas

en los bordes, logrando una fuerza máxima de: 4,2 y 3,6 MN para las viviendas 4 y 6,

respectivamente, en torno a los 5.2s. El valor de la fuerza de impacto en la vivienda 5, ubicada

en el centro de toda la configuración de casas, se mantiene constante en todo el cálculo,

 producto de la cortina de contención que se forma por las viviendas ubicadas frente a toda la

línea.

La fuerza en el último grupo de viviendas se presenta en la figura 4.21, para las

viviendas 7, 8 y 9. Se observa la evolución de la fuerza gradual con el tiempo, diferente al

salto de la fuerza que de aprecia para el impacto del primer grupo de estructuras. En esta línea

de estructuras la fuerza máxima se encuentra presente al final del cálculo, en torno a los 10s,

aumentando mientras el frente del desprendimiento de agua avanza, siendo de: 1,3 MN para la

vivienda 1 y 3,9 MN para las viviendas 7 y 9.

Los resultados obtenidos para describir el comportamiento de la mecánica de los

fluidos, envuelta en la rotura imprevista de una presa con el derrame súbito de agua, en 3D

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 88/194

 

con flujo turbulento, se presentan en las figuras 4.22 y 4.23, resueltas con el programa

comercial ANSYS/Fluent v.14.0.

La posición tiempo-espacial y el contorno de magnitud de la velocidad son resueltas

 para ambas fases: aire y agua.

El estudio de la rotura de presa, comienza en el momento en que la presa ha sido

fracturada, despreciando la superficie que se desprende y en la que ha ocurrido la falla. La

gran masa de agua que contenía la estructura se derrama súbitamente en el dominio,

avanzando en múltiples direcciones. Se aprecia que para t=1.0s la masa de agua inicia la

evacuación de la estructura que lo contenía, producto de la gravedad. Luego, para t=2s,

continua el avance del agua, principalmente en dirección al grupo de viviendas ubicadas frente

a la rotura, además se observa el aumento de la velocidad en la zona del frente del derrame.Posteriormente, en los instantes t=3.0s y t=4.0s, el frente móvil se desplaza no solo en

dirección a las casas, sino que además se aprecia un avance en todo el dominio, logrando un

frente de derrame curvo. El impacto del agua en las pequeñas estructuras ocurre cercano a

t=5s, obteniéndose el máximo valor de la velocidad, 30 [m/s]. Además se aprecia como ha

disminuido el nivel de agua contenida en la presa, que inicialmente contenía 35 [m] y

aumentado la velocidad del agua en su superficie, buscando la evacuación por la grieta

impuesta, como se muestra en la figura 4.22.

El derrame de la gran masa de agua, luego del impacto con el primer grupo de

viviendas continúa fluyendo a lo largo de todo el dominio. Los resultados de la interfase móvil

y el contorno de velocidad en la superficie libre se presentan en la figura 4.22, para el

intervalo de tiempo 6.0s< t <10.0s. En el tiempo t=6.0s, se observa como el frente móvil deja

de ser uniforme y avanza por los rincones en donde no se encuentra con los obstáculos. Luego

 para los instantes t=7.0s a t=9.0, se aprecia como la velocidad en la superficie libre del fluido

ha disminuido, sin embargo, se mantiene la pérdida de agua en la presa debido a la falla. La

simulación concluye para t=10.0s, donde el nivel de altura de agua en la presa ha disminuido

hasta los 25 [m], además de haber logrado impactar con cada una de las viviendas. La

magnitud de velocidad en la superficie libre no presenta valores altos en comparación con el

resto del estudio, sin embargo, existe una mayor superficie en donde se encuentran valores

medios.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 89/194

 

Figura 4.19. Fuerza sobre las viviendas 1,2 y 3 debido al impacto del agua desprendida por la

rotura de represa.

Figura 4.20. Fuerza sobre las viviendas 4,5 y 6 debido al impacto del agua desprendida por la

rotura de represa.

Figura 4.21. Fuerza sobre las viviendas 7,8 y 9 debido al impacto del agua desprendida por la

rotura de represa.

0

5.000.000

10.000.000

15.000.000

20.000.000

25.000.000

0 1 2 3 4 5 6 7 8 9 10

Fuerza [N]

Tiempo [s]

Vivienda 1

Vivienda 2

Vivienda 3

0

5.000.000

10.000.000

15.000.000

20.000.000

25.000.000

0 1 2 3 4 5 6 7 8 9 10

Fuerza [N]

Tiempo [s]

Vivienda 4

Vivienda 5

Vivienda 6

0

5.000.000

10.000.000

15.000.000

20.000.000

25.000.000

0 1 2 3 4 5 6 7 8 9 10

Fuerza [N]

Tiempo [s]

Vivienda 7

Vivienda 8

Vivienda 9

19,9 MN

16,3 MN

15,8 MN

4,2 MN

3,6 MN-0,45 MN

3,9 MN

3,9 MN

1,3 MN

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 90/194

 

Interfase móvilMagnitud de Velocidad, [m/s]

Figura 4.22. Resultados del colapso de columna de agua en 3D aplicado en la rotura de una

represa. Interfase móvil (izquierda) y Contorno de velocidades (derecha). 1.0s a 5.0s.

t = 5.0s t = 5.0s

t = 4.0st = 4.0s

t = 3.0st = 3.0s

t = 2.0st = 2.0s

t = 1.0st = 1.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 91/194

 

Interfase móvilMagnitud de Velocidad, [m/s]

Figura 4.23. Resultados del colapso de columna de agua en 3D aplicado en la rotura de una

represa. Interfase móvil (izquierda) y Contorno de velocidades (derecha). 6.0s a 10.0s.

t = 10.0s t = 10.0s

t = 9.0st = 9.0s

t = 8.0st = 8.0s

t = 7.0st = 7.0s

t = 6.0st = 6.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 92/194

 

4.7 CONCLUSIONES PRELIMINARES

El análisis y discusión de los resultados permite concluir lo siguiente:

  La modelación del colapso de columna de agua en dos dimensiones, utilizando el

método de volúmenes finitos y la técnica VOF, obtenidas mediante el programa

Ansys/Fluent v.14 en plataforma Windows y el programa OpenFoam v.2.1.1 en

 plataforma Linux, describen en forma similar el comportamiento de la mecánica de

fluidos en la interacción fluido-fluido-estructura al interior del contenedor.

 

Los resultados de la posición de la interfase del frente móvil y la evolución de lavelocidad en el tiempo han sido estimados eficientemente, logrando una correlación de

los resultados para los dos programas diferentes.

  OpenFoam es 5 veces más rápido que Ansys/Fluent en resolver las ecuaciones que

gobiernan el problema: colapso de columna de agua en 2D para flujo laminar. La

solución del problema es lograda por OpenFoam en 1584s, mientras que Ansys/Fluent

tarda 7620s.

 

La desventaja de utilizar generalmente un programa para la plataforma Linux, es elentrenamiento previo para su correcto funcionamiento, ya que los problemas

analizados en el programa computacional OpenFoam, deben ser programados en un

lenguaje de programación avanzado: Lenguaje C++, en comparación a Ansys/Fluent

que trabaja en la plataforma Windows, que presenta una mayor facilidad de uso y una

interfaz más agradable para el usuario.

  La generación de mallas es otra ventaja con la que cuenta el programa Ansys/Fluent,

donde la generación de mallas es automática, incluso para una situación en la cual la

geometría es compleja, siendo aún más rápida la creación de mallas no estructuradas

frente a mallas estructuradas, incluso es posible realizar fácilmente modificaciones en

su discretización espacial. Mientras que OpenFoam requiere mayor programación y

conocimiento para la creación de mallas estructuradas (hexaedros) y un programa

adicional para el uso de mallas no estructuradas (mezcla de tetraedros y hexaedros).

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 93/194

 

  El estudio del colapso de columna de agua en 3D, para flujo turbulento, aplicado en la

rotura de una represa, utilizando con MVF y VOF, se obtiene mediante el programa

computacional Ansys/Fluent. Si bien OpenFoam demostró mayor rapidez en los

cálculos, se opta por utilizar Ansys/Fluent debido a la compleja geometría que presente

el estudio, utilizando una malla no estructurada de 622.570 nodos y 443.201

elementos, en la cual se cumplen los parámetros de razón de aspecto y skewness, los

cuales son menor a 40 y cercano a 0, respectivamente, para obtener una buena calidad

de la malla.

  Los resultados de la interfase móvil y magnitud de velocidad sobre la superficie libre,

representan la física del problema apropiadamente. La secuencia de imágenes muestran

la evolución temporal del derrame producto del rompimiento súbito de la represa,

señalando el impacto del agua sobre el grupo de viviendas, el cual ocurre cercano a los5s.

  La evolución de la fuerza sobre las viviendas en el tiempo, revela la magnitud del

impacto en cada estructura, además del instante de tiempo en el que ocurre, la cual a su

vez, concuerda con la secuencia de imágenes de la interfase móvil. Se genera un valor

máximo en la vivienda 2, con una de fuerza de 19.9 MN, debido a la ubicación frontal

a la falla, luego las viviendas 1 y 3 muestran un valor máximo de 16.3 y 15.8 MN,

respectivamente, teniendo la localización de las 3 estructuras, la misma línea deimpacto en torno a los 4.7s. Luego, la siguiente línea de estructuras, correspondiente a

las viviendas, 4, 5 y 6, muestran valores máximos de fuerza de 4.2, -0.45 y 3.6 MN,

respectivamente y se observa un valor mínimo para la vivienda 5, ubicada en el centro

de la configuración de casas. Esto se debe a la formación de una especie de muro de

contención, por parte de las viviendas ubicadas delante. Por último, la tercera línea de

colisión del derrame de agua, pertenece a las viviendas 7, 8 y 9, las cuales presentan

valores máximos de fuerza de: 3.9, 3.9 y 1.3 MN. Se aprecia de la magnitud de la

fuerza vs tiempo en este último grupo de estructuras, que el impacto del agua es menos

 brusco en relación a la primera y segunda línea, situación que se esperaba, por

encontrarse ubicados a más distancia que las anteriores. De esta forma se señala que

tanto la configuración de las estructuras como su ubicación, son variables

 preponderantes para estimar la fuerza sobre ellas.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 94/194

 

CAPÍTULO V

PREDICCIÓN DE EFECTOS DE TSUNAMI EN BORDE COSTERO DE LA SERENA

SECTOR EL FARO MONUMENTAL

5.1 INTRODUCCIÓN

El presente capítulo corresponde a la predicción de efectos de tsunami en un faro

ubicado en el borde costero. La serie de ondas oceánicas provocadas generalmente por

terremotos que ocurren cerca de la costa desplaza enormes cantidades de agua. Estas viajan

ganando, en el borde costero, gran altura en energía potencial, pero a su vez perdiendo energía

cinética, causando grandes daños e incluso muertes.

La importancia que toma el estudio de estas catástrofes naturales, tales como las

ocurridas por el terremoto del 27 de febrero de 2010 en Chile y su posterior tsunami, motiva el

estudio de la mecánica de fluidos 3D y la posición espacio-temporal en el avance de una ola

única impactando en la estructura.

La zona geográfica de estudio corresponde al Faro Monumental de La Serena,

construido entre los años 1950 y 1951, ubicado en la IV región de Coquimbo, Chile.

Basándose en la intensidad del terremoto del 27 de febrero de 2010, el tsunami ocurrido en

1922 en la bahía de Coquimbo y la existencia de un proyecto de reconstrucción de dicha

estructura producto de haber sido considerado monumento histórico del país el 9 de Junio de

2010, se realiza una investigación de dicho fenómeno. En primera instancia se resuelve un

caso de validación, comparándolo con datos experimentales y los presentados por otros

autores. Luego se investiga un caso en donde se estudia la situación del Faro actual y la

situación del nuevo proyecto con una estructura del Faro mejorada, y por último se presenta un

estudio del viaje de una ola desde el interior del mar.

La complejidad de este tipo de problemas proviene de distintos fenómenos que se

originan cuando interactúan dos fluidos Newtoniano e incompresibles. El movimiento de los

fluidos inmiscibles está gobernado por las ecuaciones de Navier-Stokes y el flujo es

normalmente turbulento. El comportamiento del fluido se describe a través de una modelación

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 95/194

 

Euleriana, utilizando el método de elementos finitos (MVF). El seguimiento de la interfase

móvil se logra empleando el método de volumen de fluido (VOF), desarrollado por Hirt y

 Nichols (1981) [9]. Ambas técnicas están implementadas en el programa computacional

Ansys/Fluent v.14.0, que se usa para realizar las simulaciones computacionales.

El análisis de impacto de una ola única con la estructura El Faro Monumental,

 producto de un eventual Tsunami, comprende la evaluación de la fuerza sobre la estructura,

estimando los daños ocasionados en la situación actual y la situación que ocurriría con el

nuevo proyecto de protección, que presenta muros de contención para marejadas. Se presentan

resultados sobre el estudio del frente de la ola móvil, la relación en altura de la ola generada, la

 presión dinámica y la magnitud de velocidad.

Figura 5.1. a) Faro Monumental de La Serena, Chile. (Situación actual). b) Zona geográfica de

estudio.

a)

b)

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 96/194

 

5.2 REVISIÓN BIBLIOGRÁFICA

El estudio del impacto de Tsunami en estructuras ubicadas en el borde costero

 permanecía como un área específica de la investigación. Sin embargo desde el tsunami

ocasionado en las playas de Tailandia, Indonesia, en el año 2004, donde murieron alrededor de200.000 personas, motiva a investigadores e incluso militares de todo el mundo a interesarse

aún más por este fenómeno.

Investigaciones de modelos de tsunamis realizadas en las instalaciones de Hinsdale

Wave Research Laboratory (HWRL), en Oregón, EE.UU, perteneciente a la National Science

Foundation (NSF), Red de Simulación de Ingeniería Sísmica (Ness), Dan Cox [22], han

aportado conocimientos relevantes. Estos estudios reportan resultados experimentales de la

generación de trenes de olas impactando con estructuras, con la posibilidad de cambiar lascondiciones físicas. La máquina generadora de olas permite a los científicos estudiar tanto olas

regulares, como una serie de valles y crestas, como los tsunamis que se generan y también

olas solitarias. En HWRL se combinan los trabajos experimentales con simulaciones

computacionales, Oshnack et al. (2009) [23], ha modelado un hotel ubicado en Tailandia,

dañado estructuralmente producto de un tsunami en el año 2004.

Figura 5.2. a) Experimentos físicos de efectos de tsunami. b) Instalaciones de Hinsdale Wave

Research Laboratory (HWRL), Oregón, EE.UU.

a) b)

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 97/194

 

Registros de lugares azotados por estos fenómenos han ayudado a comprender cada

vez más la física involucrada, como por ejemplo en el tsunami en las islas de Samoa, Océano

Pacífico, en el año 2009. Investigadores de GEER (NSF’s Geoengineering Extreme Events

Reconnaissance Association) viajaron inmediatamente al lugar de la catástrofe, recolectando

datos mediante la técnica ‘‘Light Detection and Ranging’’, un sistema de teledetección

utilizado para obtener datos sobre las características físicas de un área, creando modelos

virtuales de 4 milímetros de precisión.

Otros estudios han reportado en la literatura datos de eventos reales como los ocurridos

en las islas de Okushiri, Japón, en el año 1993, Dutykh (2009) [24]. Los daños originados por

el tsunami con deslizamientos de tierra en Madeira en el año 1930, fueron representados por

Glockner (2009) [25], mediante simulación computacional y modelación matemática.

La ubicación geográfica de Chile y su batímetria son aspectos importantes de

considerar para generar un modelo de análisis. Históricamente, nuestro país registra 13 sismos

de magnitud 7.0 o mayor desde 1973, según el USGS. El tsunami de 1960 alcanzó las costas

de Chile, matando a 1.655 personas, originado por un terremoto de una magnitud de 9,5 en

escala Richter, siendo el mayor sismo registrado en la historia de la humanidad.

Figura 5.3. Escombros de la costa de las islas Okushiri, Japón, ocasionados por un tsunami en

el año 1993.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 98/194

 

5.3 OBJETIVOS

5.3.1 OBJETIVO GENERAL

Estudiar la mecánica de dos fluidos inmiscibles: agua y aire, interactuando con

estructuras y estimar los efectos de tsunami impactando en El Faro Monumental de La Serena,

mediante la simulación computacional considerando una ola impuesta.

5.3.2 OBJETIVOS ESPECÍFICOS

  Validar la metodología de trabajo, basada en el cálculo con el método de volúmenes

finitos usando Ansys/Fluent, en la interacción fluido-fluido-estructura mediante

resultados experimentales y simulaciones con el método de elementos finitos,

disponibles en la literatura.

  Comparar resultados de la mecánica de fluidos bifásica, relevante en la investigación,

tales como: contornos de la superficie libre y fuerza de la ola impuesta en la estructura.  

  Analizar los efectos de tsunami en la estructura El Faro de La Serena, evaluando la

magnitud de la fuerza en dos situaciones: una ola angular y una ola frontal.  

  Determinar contornos de magnitud de velocidad, presión dinámica, contorno de fases y

la relación en altura de la ola, para las dos situaciones de ola.  

  Predecir los resultados de la eventual construcción del proyecto existente de

reconstrucción de El Faro de La Serena y el efecto de tsunami en dicha estructura

mejorada, presentando distintas configuraciones de muros de contención para

marejada. 

  Determinar el frente móvil de la ola, altura de ola, magnitud de velocidad, presión

dinámica y la fuerza en la estructura propuesta en el nuevo proyecto.  

 

Considerar una ola impuesta al interior de mar, incorporando parámetros como la batimetría y el perfil de la playa en El Faro de La Serena con su situación actual. 

  Determinar los efectos de la ola aguas adentro, mediante la fuerza en la estructura,

velocidad, presión dinámica e interfase móvil. 

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 99/194

 

5.4 MODELO MATEMÁTICO GENERAL

El estudio de la mecánica de fluidos bifásica en la predicción de tsunami en estructuras

es mediante una ola impuesta, considerando un flujo turbulento. Los fluidos: agua y aire, son

modelados como Newtonianos, incompresibles e inmiscibles, con propiedades constantes. El proceso de la interacción de fluidos con sólidos es transiente e isotérmico.

La dinámica de fluidos se describe por las ecuaciones diferenciales parciales no

lineales, acopladas, de continuidad (5.1), las tres ecuaciones vectoriales de momento lineal

(5.2), la energía cinética turbulenta (5.3) y la rapidez de disipación de la energía cinética

turbulenta (5.4):

  (5.1)

  (5.2)

El movimiento de los dos fluidos se describe utilizando las ecuaciones de turbulencia

del modelo k- ε Realizable (TKE Pr = 1.0 ; TDR Pr = 1.2 ; ), donde la energía

cinética turbulenta k y la rapidez de su disipación ε se determinan mediante:

  (5.3)

  (5.4)

donde:  es el término producción y  : el término de disipación. El valor de los

 parámetros y constantes de este modelo se indica a continuación:

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 100/194

 

     

         

              

          

5.4.1 MÉTODO VOF

El seguimiento de la superficie libre, entre el aire y el agua, se realiza empleando elmétodo de fracción de volumen de fluido (VOF), propuesto por Hirt y Nichols (1981) [9]. La

actualización de la interfaz del frente de la ola utiliza la ecuación de transporte, dada por la

siguiente ecuación, que se resuelve simultáneamente con las otras ecuaciones gobernantes (5.1

a 5.4):

(5.3)

donde  es el vector velocidad que puede ser determinado desde la solución del flujo

de fluido, y   es la fracción de volumen, que dependiendo del valor que   tome en un

volumen de control entre 0 y 1. El dominio puede ser dividido dentro de tres categorías,

siguiendo el siguiente criterio:

    (5.4)

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 101/194

 

Una vez que se resuelve la ecuación del frente material (5.3), la interface entre los

fluidos participantes puede ser determinada aplicando la conservación de masa a cada fase

 presente en la mezcla. Cuando se consideran dos fases, como en este trabajo, la asignación de

las propiedades para resolver las ecuaciones (5.1 a 5.4) se efectúa con una ponderación de las

 propiedades del fluido, empleando la distribución de fracción de volumen para cada fluido,

calculadas en (3.4), descrita por las siguientes relaciones constitutivas:

    (5.5)

donde el subíndice 1 está referido al aire y el subíndice 2 para el agua,  la fracción devolumen del fluido,  la densidad y  la viscosidad del fluido.

5.4.2 PROPIEDADES REOLÓGICAS

Las propiedades físicas del aire y el agua empleadas en la simulación, son las

incorporadas por defecto con que cuenta el programa Ansys/Fluent y se presentan en la tabla

5.1.

Tabla 5.1. Propiedades térmicas empleadas en la simulación para predicción de tsunami.

Aire a T=25ºC Agua a T = 25ºC

Densidad (ρ) = 1.225 kg/m³  Densidad (ρ) = 998.2 kg/m³

Viscosidad dinámica (µ) = 1.7894x 

kg/(m s)

Viscosidad dinámica (µ) = 0.001003 kg/(m s)

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 102/194

 

5.5 CASO DE VALIDACIÓN

5.5.1 SITUACIÓN FÍSICA

Se realiza la simulación computacional del experimento físico correspondiente a la

interacción fluido-fluido-estructura, realizado por los profesores Petroff y Yeh de la

Universidad de Washington, Seattle [26], considerando una ola única al interior de un

estanque, en donde impacta con una estructura larga. Adicionalmente se realiza una

comparación numérica con los resultados de Bidoae [27] y los de Sauerland y Fries [28],

donde en ambos se utiliza el método de elementos finitos.

Las dimensiones del experimento físico se modelaron computacionalmente,

correspondientes a un estanque de 1.60m de largo, 0.61m de ancho y 0.60m de alto. La

estructura al interior del tanque tiene una altura de 0.60m, lados de 0.12mx0.12m y está

situada 0.58m delante de la pared posterior del estanque, a unos 0.25m de la pared lateral

derecha. La ola impuesta tiene una altura de 0.38m desde la base del tanque, con una longitud

de 0.40m y avanza hacia el sólido desde una distancia de 0.5m.

Debido a dificultades en el experimento físico, por lo difícil de mantener la masa de

agua sin que ésta escurra al interior del tanque, se debió implementar un nivel inicial de agua,

de 0.01m de profundidad, como se ilustra en la figura 5.4.

Figura 5.4. Situación física. Caso de validación predicción de tsunami.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 103/194

 

La simulación comienza en el instante en que la compuerta que mantiene la masa de

agua es retirada. Producto de la acción de la gravedad de -9.81 m/s2 ( ), se genera una única

ola que se desplaza al interior del tanque, impactando luego con la estructura larga,

 provocando una división de la ola a las paredes laterales. La ola continúa desplazándose y se

 presenta un segundo impacto, en la pared posterior del tanque, lo que ocasiona una onda de

choque que hace cambiar el rumbo de la ola y vuelve a impactar con la estructura.

5.5.2 IMPLEMENTACIÓN COMPUTACIONAL

Se resuelve las ecuaciones gobernantes acopladas (5.1 a 5.4) y las condiciones iniciales

y de borde utilizando el método de volúmenes finitos, el algoritmo de acoplamiento PISO, Issa

(1986) [10] y una malla fija y estructurada.

Para describir la mecánica de fluidos bifásica inmiscible se utiliza la técnica de

Volumen de fluido (VOF), mediante una formulación explícita y Euleriana para las ambas

fases, con un número de Courant de 0.025.

Los gradientes son calculados mediante la formulación Least Squares Cell Based,

mientras que en la presión se utiliza PRESTO y para el momentum por Ley de Potencia. La

discretización de la ecuación de fracción de volumen se realiza mediante el esquemaCICSAM. En tanto para la energía cinética turbulenta y su rapidez de disipación turbulenta se

ocupa funciones de interpolación de segundo orden upwind. Por último, la formulación

transiente es a través de funciones implícitas de primer orden.

La discretización temporal corresponde a 200 pasos de tiempo por segundo, con un

total de 100 iteraciones máximas por paso de tiempo, a lo largo de todo el cálculo.

La discretización espacial propuesta por Bidoae utilizando su metodología ELMMC[27] corresponde a 80 x32 x 32 macro celdas cúbicas, donde la superficie de la macro celda y

la celda vecina están divididas en 27 micro celdas, tres en cada dirección espacial.

En el presente trabajo el dominio ha sido discretizado con un total de 80 x 61 x 60

volúmenes, de tamaño 0.01m x 0.01 x 0.01m.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 104/194

 

Las condiciones de borde para el caso de validación, corresponden a:

  Paredes laterales y base del estanque: Condición de pared con deslizamiento perfecto

‘‘slipwall’’ y sin penetración. 

 

Pared frontal y posterior: Condición de pared con deslizamiento perfecto ‘‘slipwall’’ ysin penetración. 

  Caras de la estructura larga: Condición de pared con deslizamiento perfecto

‘‘slipwall’’ y sin penetración. 

  Cara superior del estanque: Condición de presión atmosférica ‘‘pressure outlet’’ 

5.5.3 EXPERIMENTOS FÍSICOS

Los experimentos físicos de una ola impuesta al interior de un tanque, registran la

evolución en el tiempo de la fuerza neta sobre la estructura, medidos con una celda de carga

montada dentro de la estructura en su parte inferior, despreciando las caras laterales producto

de la dirección de la ola.

5.5.4 PRESENTACIÓN, ANÁLISIS Y DISCUSIÓN DE RESULTADOS

La figura 5.5 muestra los resultados de la fuerza neta sobre la estructura debido a la ola

impuesta, para el caso de validación de predicción de efectos de tsunami. La fuerza es

calculada en las caras: frontal y posterior, situadas en la estructura larga, despreciando el valor

de la fuerza sobre las caras laterales.

La simulación comienza al igual que el experimento justo en el momento en que es

retirada la compuerta que sostenía el agua, la cual genera una ola que avanza en dirección a la

estructura situada al interior del estanque. Una primera zona de estudio se puede distinguir, la

cual ocurre entre 0s < t < 0.33s, que comprende el intervalo de tiempo desde que el agua por

efectos gravitatorios se derrama hasta impactar la estructura. El presente trabajo logra un valor

máximo de la fuerza de 36.72 N, idéntico al reportado en el experimento físico, mientras que

la solución por medio de la metodología sXFEM es de 35 N.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 105/194

 

La ola producto del impacto con la estructura se divide en dos frentes, avanzando por

los lados del estanque, donde luego impacta con la pared trasera y posteriormente regresa

impactando nuevamente la estructura. Este evento ocurre entre 0.33s < t < 1.4s y se observa

que el presente trabajo describe una mejor concordancia que la metodología sXFEM. El

segundo impacto con la estructura ocurre en el instante 1.4s, con un valor de -17.8 N, al igual

que el experimento físico, pero a diferencia de sXFEM que ocurre a los 1.35s.

La tercera zona ocurre en el intervalo de tiempo 1.4s < t < 3s, apreciando que el

experimento físico logra mejor correlación con los resultados reportados por medio de

sXFEM. El valor de la fuerza máxima en la cara posterior de la estructura para el presente

trabajo es superior a sXFEM y al experimento físico, pero reporta una mejor similitud

temporal que sXFEM.

Los resultados de la comparación de la interfase móvil para diferentes instantes de

tiempo descritos con la metodología ELMMC y calculados en el presente trabajo se ilustran en

las figuras 5.6 y 5.7.

Figura 5.5. Fuerza sobre la estructura debido a la ola para caso de validación.

-20

-10

0

10

20

30

40

0 0,5 1 1,5 2 2,5 3

   F   x    [   N    ]

t [s]

Presente TrabajoExperiment [6]

XFEM [8]

sXFEM

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 106/194

 

Razvan Bidoae [7] ELMMC method [Presente trabajo], MVF, VOF, Rke

Figura 5.6. Resultados de interfase móvil en el caso de validación tsunami. Intervalo 0s < t <

0.841s.

t = 0.000s

t = 0.210s

t = 0.422s

t = 0.631s

t = 0.841s

t = 0.000s

t = 0.210s

t = 0.210s

t = 0.631s

t = 0.841s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 107/194

 

Razvan Bidoae [7] ELMMC method [Presente trabajo], MVF, VOF, Rke

Figura 5.7. Resultados de interfase móvil en el caso de validación tsunami. Intervalo 1.051s <

t < 1.892s.

t = 1.051s

t = 1.261s

t = 1.472s

t = 1.681s

t = 1.892s

t = 1.051s

t = 1.261s

t = 1.472s

t = 1.681s

t = 1.892s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 108/194

 

5.6 CASO ‘‘PREDICCIÓN DE EFECTOS DE TSUNAMI EN FARO

MONUMENTAL SITUACIÓN ACTUAL Y MEJORADA’’ 

La predicción de efectos de tsunami en el borde costero de La Serena, específicamente

en el monumento histórico El Faro se presenta a continuación. Se considera un terreno plano yuna ola única que impacta en la estructura. La ola es estudiada en dos situaciones, una ola

frontal y una angular. Los registros reportados por Carolina Villagrán (2007) [29], en base a la

dirección del oleaje y los vientos predominantes en la bahía de Coquimbo provienen del SW,

indican que habitualmente se genera una ola angular con un ángulo de 45°, como ilustra la

figura 5.8. Por otro lado, la distancia promedio observada en los mapas virtuales (googlemap)

así como la reportada en la memoria explicativa de los límites del monumento histórico El

Faro, corresponden a 100 m entre la estructura y la línea de marea. La información con los

datos sísmicos reales reportados por los organismos de alerta y alarma de tsunami en Chile

(SHOA y ONEMI), indican que un terremoto con características similares a los eventos

sísmicos ocurridos en la IV y V región en el año 1730 generaría olas de 15 m de altura.

Figura 5.8. Diagrama de refracción del oleaje y Batimetría, Bahía de Coquimbo.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 109/194

 

La edificación actual de El Faro, emplazada en el borde costero de la bahía de

Coquimbo, presenta una geometría particular, deteriorada cada año por el azote continuo del

oleaje en la estructura. Su altura máxima es de 26.5m y tiene una base de dimensiones 37m x

36.8m. Debido al paso de tiempo, el socavamiento de las aguas lluvia y marejadas, se hizo un

intento de conservación de su estructura, declarado monumento nacional el 9 de Junio de

2010. En el año 2012 se genera un proyecto de reconstrucción, que tiene como objetivo

generar una protección costera para mitigar los efectos de socavación e inundaciones al Faro

Monumental. El diseño considera la construcción de una terraza, capaz de soportar el oleaje

directo que incide en los cimientos de la terraza del Faro. La situación física de este proyecto

se ilustra en la figura 5.9, con la explanada alrededor de la estructura y gradas hacia el mar.

El nuevo proyecto propone crear una terraza que llegue a una cota +3.9m sobre el nivel

del mar, que no sobrepase el nivel visual desde la costanera, para no obstruir la visión al Faro

ni al mar, con un largo de 415m y un área de trabajo de 16000m2. El borde costero estará

constituido por un paseo pavimentado con baldosas de hormigón. Por último la protección del

Faro y del nuevo borde costero ante posibles tsunamis, se conformará con muros de hormigón

armado tipo L apoyados en una cama de rocas de 10 a 30 kilos y pilares fundados a 1.5m de

 profundidad, como se muestra en la figura 5.9.

Figura 5.9. a) Situación actual de El Faro Monumental. b) Situación mejorada, proyecto de

reconstrucción El Faro.

a) b)

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 110/194

 

5.6.1 SITUACIÓN FÍSICA

La predicción de efectos de tsunami en el borde costero de La Serena comienza con

una ola impuesta a 100m aguas arriba desde la estructura. El análisis ha representado

fielmente la zona de estudio, realizando una evaluación y análisis con una relación de escala1:1. Se analizan dos situaciones para la estructura actual del Faro de La Serena, considerando

una ola angular y alternativamente otra frontal. Por último se modela una ola viajando

 perpendicularmente a la situación del proyecto del Faro mejorado. Las dimensiones de la

estructura El Faro, situación actual y mejorada, se obtienen desde los planos de planta general

conseguidos en el Ministerio de Obras Portuarias del país. En los tres casos la ola tiene como

dimensiones: 20m de largo y 15m de altura y comienza, ubicada a 100m frente a la estructura,

viajando hasta impactar con la estructura, con una gravedad de 10 m/s2, como se observa en la

figura 5.10.

Figura 5.10. Situación física predicción de efectos de tsunami. a) Fato actual, ola frontal. b)

Faro actual, ola angular. c) Faro mejorado, ola frontal.

a) b)

c)

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 111/194

 

5.6.2 IMPLEMENTACIÓN COMPUTACIONAL

La solución de las ecuaciones que gobiernan el problema (5.1 a 5.4) se logra a través

del método de volúmenes finitos (MVF), y el algoritmo de acoplamiento PISO, Issa (1986)

[10].

El seguimiento de la interfase móvil que describe la ecuación de fracción de volumen

(5.5) es por medio de la técnica de volumen de fluido (VOF), aplicable para fluidos

inmiscibles e incompresibles.

La formulación para calcular los gradientes utiliza Least Square Cell Based, mientras

que para la presión se ocupa PRESTO y las ecuaciones de momento se resuelven bajo el

esquema Ley de Potencia. La discretización de la ecuación de fracción de volumen se realiza

mediante el esquema de tercer orden CICSAM. En tanto la energía cinética turbulenta y la

rapidez de disipación de energía cinética turbulenta son a través de funciones de interpolación

de segundo orden Upwind. La formulación transiente se resuelve por medio de funciones

implícitas de primer orden.

Los factores de sub-relajación son: 0.7 para la presión, 0.5 para el momentum, 0.7 para

las fuerzas de cuerpo, 0.7 para la densidad, 0.6 para la energía cinética turbulenta, 0.6 para la

rapidez de disipación turbulenta y 0.6 para la viscosidad turbulenta.

La descripción del modelo matemático se completa definiendo las condiciones de

 borde e iniciales. El estudio de efectos de predicción de tsunami considera una ola única,

como se reporta en la literatura. Tanto el Faro como la base se consideran como paredes

deslizantes e impermeables ‘‘slipwall’’, mientras que la pared superior presenta una condición

de presión atmosférica ‘‘pressure outlet’’. Las paredes laterales presentan una condición de

simetría, evitando así una extensión del dominio, por último la pared posterior considerada

como ‘‘slipwall’’, se sitúa a una distancia de 150m de la estructura para evitar efectos en los

resultados.

La discretización temporal para todos los casos en estudio, utiliza un paso de tiempo

variable, de: 1000 pasos de tiempo por segundo entre 0s < t < 2s, un paso de tiempo de 0.005

entre 2s < t < 10s y por último un paso de tiempo de 0.01 entre 10s < t < 20s.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 112/194

 

El modelo de la maqueta 3D para la estructura del Faro actual y la situación mejorada

se realiza con el programa comercial CAD Inventor 2012, con una relación a escala 1:1. La

 predicción de efectos de tsunami en El Faro describe la fuerza en la estructura debido a la ola.

Las caras relevantes en que son calculadas las fuerzas se muestran en la figura 5.11. La

situación mejorada incorpora diferentes muros de contención para marejadas.

Figura 5.11. Maquetas 3D predicción de tsunami. a) Faro actual. b) Faro mejorado con muros

de contención.

b)

a)

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 113/194

 

La discretización espacial utiliza volúmenes tetraédricos para los tres casos, los cuales

 presentan un número diferente de volúmenes creados, cada uno dependiente del tamaño del

dominio. Las mallas utilizadas tiene: 1.796.524 nodos y 1.305.099 elementos en el caso del

Faro actual con ola frontal; 1.976.340 nodos y 1.434.026 elementos para la situación del Faro

actual con una ola angular; y 2.777.753 nodos y 2.002.009 elementos, en la situación del Faro

mejorado, con ola frontal, como se muestra en las figura 5.12, 5.13 y 5.14, respectivamente.

.

Figura 5.12. Malla predicción efectos de tsunami. Faro actual con ola frontal.

Figura 5.13. Malla predicción efectos de tsunami. Faro actual con ola angular.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 114/194

 

Figura 5.14. Malla predicción efectos de tsunami. Faro mejorado con ola frontal.

El dominio computacional para resolver las ecuaciones gobernantes del problema y así

estimar los efectos producidos por un tsunami en el borde costero de La Serena, se realiza

mediante la operación enclosure, con la que cuenta el programa Ansys/Fluent v.14.0. Se

emplea una metodología idéntica para las tres situaciones, considerando: 120m de extensión

frente a la estructura, para así situar la ola de 20m de ancho a 100m, como reporta la línea demarea promedio a lo largo del sector, 30m a ambos lados de la estructura, 5m por encima y

150m de prolongación posterior a El Faro. En esta forma es posible observar el efecto de la ola

luego del impacto, como se aprecia en las figura 5.15, 5.16 y 5-17.  

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 115/194

 

Figura 5.15. Dominio computacional caso Faro actual con ola frontal.

Figura 5.16. Dominio computacional caso Faro actual con ola angular.

150m

120m

30m

30m

150m

120m30m

30m

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 116/194

 

Figura 5.17. Dominio computacional caso Faro mejorado con ola frontal.

5.6.3 PRESENTACIÓN, ANÁLISIS Y DISCUSIÓN DE RESULTADOS

La predicción de efectos de tsunami en El Faro Monumental de La Serena debido al

viaje de una ola única ubicada a 100m frente a la estructura, distancia promedio entre el mar y

la estructura, ha sido estudiada. Se ha modelado dos situaciones en la llegada de la ola al borde

costero: una ola frontal y una ola angular, producto de las distintas direcciones que puede

tomar el oleaje en la bahía de Coquimbo. Luego se realiza una evaluación del impacto más

crítico (situación de tsunami con ola frontal) para una estructura mejorada en El Faro, la cual

 presenta muros de contención para olas de gran tamaño y una elevación de terreno en la base

de la estructura.

Los resultados de la evolución temporal de la interfase móvil, presión dinámica y el

contorno de velocidades son resueltas para describir el comportamiento de la ola y el posterior

impacto en la estructura. Además se cuantifica la fuerza neta presente en la misma dirección

de avance de la ola sobre las superficies de la estructura, despreciando el aporte sobre los

demás ejes cartesianos, debido al orden de magnitud.

120m

150m

30m

30m

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 117/194

 

El registro de las fuerzas ocasionadas por el viento, calculadas para las situaciones:

Faro actual con ola frontal, Faro actual con ola angular y Faro mejorado con ola frontal, se

 presentan en las figuras 5.19, 5.27 y 5.36, respectivamente. La fuerza en el impacto global

 producto de la acción del viento y el agua sobre las estructuras en los tres casos estudiados, se

muestran de manera similar en las figuras 5.20, 5.28 y 5.37. Además se realiza una

comparación en los efectos de un tsunami en el Faro actual de La Serena, debido a una ola

frontal y angular, cuantificando la situación más crítica, como se ilustra en la figura 5.35.

Luego se evalúa y contrasta la fuerza de impacto del tsunami en el Faro actual frente al Faro

mejorado, como se observa en la figura 5.44.

La secuencia de imágenes correspondientes a las figuras 5.24 a 5.26, 5.32 a 5.34 y 5.41

a 5.43, muestran los resultados gráficos obtenidos en la predicción de los efectos de tsunami,

 para los tres casos estudiados en el borde costero de la ciudad de La Serena, Chile. Los rangos

de los contornos corresponden a las variables de magnitud de velocidad y presión dinámica en

la superficie libre, suelo del dominio y todas las caras de la estructura El Faro y se ilustran en

la figura 5.18.

Figura 5.18. Mapa de contorno de variables en la predicción de efectos de tsunami en El Faro

Monumental situación actual y mejorada.

Magnitud de Velocidad [m/s]

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25

Presión Dinámica [kPa]

0 15 30 45 60 75 90 105 130 145 150

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 118/194

 

Predicción de efectos de tsunami en Faro actual con ola frontal

La fuerza del viento generada por el viaje de la ola en el borde costero antes del

impacto de la ola es mostrada en la figura 5.19. Se aprecia que la evolución de la intensidad de

la fuerza en el tiempo presenta una tendencia monótona creciente de carácter exponencial,alcanzando su valor máximo de 44[kN] en el instante de tiempo previo al impacto (5.45s).

Figura 5.19. Fuerza del viento sobre El Faro de La Serena en su situación actual debido a una

ola frontal de 15m de altura.

La figura 5.20 ilustra la fuerza del tsunami debido a una ola frontal sobre El Faro

actual de La Serena. El orden de magnitud de la fuerza sobre la estructura se eleva

repentinamente al impacto de la ola en la base de la estructura (5.5s), logrando un valormáximo de fuerza de 22.3[MN]. El avance de la ola continúa, mientras que a su vez la fuerza

sobre las superficies disminuye. Luego, ocurre un segundo valor máximo de impacto (10.25s),

elevando nuevamente la fuerza hasta los 13.8[MN], producto del flujo que asciende posterior

al primer impacto y vuelve a descender, impactando en la estructura. Finalmente la fuerza

decae hasta el término de la simulación, debido a la pérdida de energía potencial y la inercia.  

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

Fuerza [N]

Tiempo [s]

Fuerza del viento sobre la

estructura

44059 N

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 119/194

 

Figura 5.20. Fuerza sobre El Faro de La Serena en su situación actual debido a un tsunami con

ola frontal de 15m de altura.

La evolución temporal de la interfase móvil para describir la mecánica de fluidos,

 presente en los efectos de un tsunami con una ola frontal en El Faro actual de La Serena, se

muestran en las figuras 5.21 a 5.23. Se incluye una vista 2D frente a la ola y la estructura, que

otorga una relación de altura en el tsunami y permite así cuantificar de mejor manera elfenómeno en relación a la energía potencial ganada y perdida en el proceso.

La simulación comienza con una ola de 15m de altura, situada a 100m delante de la

estructura, la cual posee una altura máxima de 26.5m. Por efectos de la gravedad, la ola

comienza su avance en dirección a El Faro de La Serena, ubicado en el borde costero de la

ciudad. Se observa que en el instante t=1s la ola pierde energía potencial, llegando a una altura

de 14.3m, pero a su vez, ganando energía cinética para el viaje de la ola y su posterior impacto

con la estructura. Luego en el intervalo de tiempo 2s < t < 5s la ola continúa avanzando, sin

haber impactado aún, llegando a una altura de 5.5m en t=5s. Se observa que la velocidad

 promedio del avance del tsunami presenta un valor de 12.5[m/s], correspondiente a 45[km/hr],

velocidad reportada en la literatura cuando la ola se acerca a tierra firme. El registro de la

fuerza máxima registrada es en el instante t=5.5s, coincidiendo con el impacto del tsunami en

0

5.000.000

10.000.000

15.000.000

20.000.000

25.000.000

0 2 4 6 8 10 12 14 16 18 20

Fuerza [N]

Tiempo [s]

Fuerza global del tsunami

sobre la estructura

Fuerza del viento

Fuerza debido a la ola

13,8 MN

22,3 MN

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 120/194

 

la base de la estructura, como se aprecia en t=6s. La secuencia de imágenes correspondientes

al intervalo de tiempo 7s < t < 10s muestra la elevación de la frente del tsunami que impacta

en la estructura, llegando a formar dos olas principales de una altura máxima de 19.7m, como

se ilustra en t=9s. Los resultados del contorno de velocidades revelan como al momento del

impacto, la onda de choque pierde energía cinética, debido a la interacción fluido-estructura,

 pero a su vez se logra una ganancia de energía potencial, generando las olas de gran tamaño,

que posteriormente descienden y vuelven a impactar con la estructura, coincidiendo con un

segundo impacto en el instante t=10.25s. El impacto de la ola continúa, desde t=12s a t=20s,

donde el frente del tsunami recorre más distancia en espacios que no presentan obstáculos. Las

olas formadas por la colisión del fluido ya han descendido, avanzando por el primer piso de la

estructura, con una altura del tsunami de 5.2m, como se percibe en el tiempo t=16s. En este

intervalo de tiempo 12s < t < 20s la fuerza decae abruptamente, al igual que la velocidad y la presión dinámica alrededor de la estructura, concluyendo la simulación en t=20s.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 121/194

 

Interfase móvil Relación de altura fases

Figura 5.21. Resultados de predicción de tsunami en Faro actual con ola angular. Frente móvil

de la ola (izquierda) y Relación de altura ola (derecha). Intervalo 1.0s < t < 5.0s.

26.5m

26.5m

t = 1.0s t = 1.0s

t = 2.0s t = 2.0s

t = 3.0s t = 3.0s

t = 4.0s t = 4.0s

t = 5.0s t = 5.0s

14.3m

5.5m

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 122/194

 

Interfase móvil Relación de altura fases

Figura 5.22. Resultados de predicción de tsunami en Faro actual con ola angular. Frente móvil

de la ola (izquierda) y Relación de altura ola (derecha). Intervalo 6.0s < t < 10.0s.

26.5m

t = 10.0s t = 10.0s

t = 9.0s t = 9.0s

t = 8.0st = 8.0s

t = 7.0st = 7.0s

t = 6.0st = 6.0s

19.7m

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 123/194

 

Interfase móvil Relación de altura fases

Figura 5.23. Resultados de predicción de tsunami en Faro actual con ola frontal. Frente móvil

de la ola (izquierda) y Relación de altura ola (derecha). Intervalo 12.0s < t < 20.0s.

26.5m

t = 20.0s t = 20.0s

t = 18.0st = 18.0s

t = 16.0st = 16.0s

t = 14.0st = 14.0s

t = 12.0st = 12.0s

5.2m

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 124/194

 

Magnitud de Velocidad, [m/s] Presión Dinámica, [Pa]

Figura 5.24. Resultados de predicción de tsunami en Faro actual con ola frontal. Contorno de

velocidades (izquierda) y Presión dinámica (derecha). Intervalo 1.0s < t < 5.0s.

t = 1.0s t = 1.0s

t = 2.0s t = 2.0s

t = 3.0s t = 3.0s

t = 4.0s t = 4.0s

t = 5.0s t = 5.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 125/194

 

Magnitud de Velocidad, [m/s] Presión Dinámica, [Pa]

Figura 5.25. Resultados de predicción de tsunami en Faro actual con ola frontal. Contorno de

velocidades (izquierda) y Presión dinámica (derecha). Intervalo 6.0s < t < 10.0s.

t = 10.0s t = 10.0s

t = 9.0s t = 9.0s

t = 8.0st = 8.0s

t = 7.0st = 7.0s

t = 6.0st = 6.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 126/194

 

Magnitud de Velocidad, [m/s] Presión Dinámica, [Pa]

Figura 5.26. Resultados de predicción de tsunami en Faro actual con ola frontal. Contorno de

velocidades (izquierda) y Presión dinámica (derecha). Intervalo 12.0s < t < 20.0s.

t = 20.0s t = 20.0s

t = 18.0st = 18.0s

t = 16.0st = 16.0s

t = 14.0st = 14.0s

t = 12.0st = 12.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 127/194

 

Predicción de efectos de tsunami en Faro actual con ola angular

La figura 5.27 muestra la fuerza del viento ocasionada por el viaje de la ola angular,

situación reportada en literatura, debido a un viento predominante de origen SW en la bahía de

Coquimbo. Se observa que la evolución temporal de la intensidad de la fuerza describe unatendencia monótona creciente de carácter exponencial, alcanzando su valor máximo de

41.3[kN] en el instante de tiempo t=5.6s, previo al impacto de la ola sobre la estructura.

Figura 5.27. Fuerza del viento sobre El Faro de La Serena en su situación actual debido a una

ola angular de 15m de altura.

La fuerza global del tsunami sobre la estructura, considerando la acción del viento y la

ola angular, se ilustra en la figura 5.28. El impacto de la ola angular en una de las esquinas,

ubicada en la base de la estructura, ocurre en el instante t=5.65s, donde luego se eleva

 bruscamente debido al aumento en el área de impacto, observando que el orden de magnitud

de la fuerza sobre la estructura crece, logrando un valor en la fuerza de 11.5[MN], en el

instante de tiempo t=6.15s. A los 6.7s un nuevo valor alto de fuerza se percibe, llegando a un

valor de 16.4MN, siendo el valor máximo de la fuerza sobre la estructura en todo el estudio.

Este segundo impacto se corresponde comienza a desplazarse por la estructura, logrando

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5

Fuerza [N]

Tiempo [s]

Fuerza del viento sobre la

estructura

41248 N

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 128/194

 

obtener una mayor superficie de contacto fluido-sólido, además de encontrarse el avance del

frente del tsunami con cambios de sección en la base de la estructura. Luego, en torno a los 8s,

la magnitud de la fuerza decae con el paso del tiempo, mostrando un comportamiento

levemente lineal. Los registros de la fuerza producto de una ola angular son resueltos hasta

t=20s, donde concluye la simulación. 

Figura 5.28. Fuerza sobre El Faro de La Serena en su situación actual debido a un tsunami con

ola angular de 15m de altura.

Los resultados de la interfase móvil necesaria para describir el comportamiento y la

mecánica de fluidos, presente en los efectos de un tsunami con una ola angular en El Faro

actual de La Serena, se muestran en la secuencia de figuras 5.29 a 5.31. Además se presenta

una vista en 2D frente a la ola y la estructura, que permite observar la relación de altura en la

ola angular y así cuantificar de mejor manera el fenómeno en correlación a la energía

 potencial perdida o ganada. De manera análoga se estima la variación de energía cinética,

mediante resultados obtenidos de contornos de velocidad.

0

2.000.000

4.000.000

6.000.000

8.000.000

10.000.000

12.000.000

14.000.000

16.000.000

18.000.000

0 2 4 6 8 10 12 14 16 18 20

Fuerza [N]

Tiempo [s]

Fuerza global del tsunami

sobre la estructura

Fuerza del viento

Fuerza debido a la ola

11,5 MN

16,4 MN

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 129/194

 

El estudio comienza con una ola de 15m de alto, situada a 100m frente a la estructura,

distancia promedio reportada en mapas satelitales (googlemaps) y valores reales otorgados por

la Municipalidad de La Serena. Los planos de la estructura indican que posee una altura

máxima de 26.5m.

Por efectos gravitatorios, la ola emprende su viaje hacia El Faro Monumental de La

Serena, modelando una configuración con giro en la estructura, para así representar una ola

que es influida por los fuertes vientos provenientes del SW, dirigida al borde costero con una

inclinación de 45°, como reportan los registros de la bahía de Coquimbo, encontradas en la

literatura. Se observa que en el instante t=1s la ola pierde energía potencial, llegando a obtener

una altura de 14.3m, a su vez logra ganar energía cinética utilizada para el desplazamiento de

la ola sobre la superficie, hasta el posterior impacto con la estructura. Inmediatamente, el

intervalo de tiempo 2s < t < 5s revela como continúa el viaje de la ola angular y la

disminución en su altura, sin que esta haya impactado aún con la superficie, la ola decae a una

altura de 5.6m en t=5s. La ola presenta una velocidad promedio de: 12.5[m/s] o 45[km/hr],

valor que corresponde a la velocidad reportada en la literatura cuando la ola se acerca al borde

costero. El registro de la fuerza peak ocurre en el instante t=6.7s, en el momento que el frente

de avance del tsunami ha logrado cubrir la base de la estructura, como se aprecia en t=7s. La

secuencia de imágenes correspondientes al intervalo de tiempo 7s < t < 10s no indican la

formación de olas de gran tamaño, siendo el valor máximo de la altura de la fase de 8.5m,como se ilustra en t=10s. Por último, el intervalo de tiempo 12s < t < 20s, muestra como

continúa el avance de la ola, desplazándose a una menor velocidad, pero siendo mayor en los

lugares donde no existen obstáculos. La magnitud de la fuerza permanece en decrecimiento,

hasta el momento en que concluye el estudio a los 20s.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 130/194

 

Interfase móvil Relación de altura fases

Figura 5.29. Resultados de predicción de tsunami en Faro actual con ola angular. Frente móvil

de la ola (izquierda) y Relación de altura ola (derecha). Intervalo 1.0s < t < 5.0s.

t = 1.0s t = 1.0s

t = 2.0s t = 2.0s

t = 3.0s t = 3.0s

t = 4.0s t = 4.0s

t = 5.0s t = 5.0s

26.5m

26.5m

14.3m

5.6m

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 131/194

 

Interfase móvil Relación de altura fases

Figura 5.30. Resultados de predicción de tsunami en Faro actual con ola angular. Frente móvil

de la ola (izquierda) y Relación de altura ola (derecha). Intervalo 6.0s < t < 10.0s.

t = 10.0s t = 10.0s

t = 9.0s t = 9.0s

t = 8.0st = 8.0s

t = 7.0st = 7.0s

t = 6.0st = 6.0s

26.5m

8.5m

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 132/194

 

Interfase móvil Relación de altura fases

Figura 5.31. Resultados de predicción de tsunami en Faro actual con ola angular. Frente móvil

de la ola (izquierda) y Relación de altura ola (derecha). Intervalo 12.0s < t < 20.0s.

26.5m

t = 20.0s t = 20.0s

t = 18.0st = 18.0s

t = 16.0st = 16.0s

t = 14.0st = 14.0s

t = 12.0st = 12.0s

8.7m

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 133/194

 

Magnitud de Velocidad, [m/s] Presión Dinámica, [Pa]

Figura 5.32. Resultados de predicción de tsunami en Faro actual con ola angular. Contorno de

velocidades (izquierda) y Presión dinámica (derecha). Intervalo 1.0s < t < 5.0s.

t = 1.0s t = 1.0s

t = 2.0s t = 2.0s

t = 3.0s t = 3.0s

t = 4.0s t = 4.0s

t = 5.0s t = 5.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 134/194

 

Magnitud de Velocidad, [m/s] Presión Dinámica, [Pa]

Figura 5.33. Resultados de predicción de tsunami en Faro actual con ola angular. Contorno de

velocidades (izquierda) y Presión dinámica (derecha). Intervalo 6.0s < t < 10.0s.

t = 10.0s t = 10.0s

t = 9.0s t = 9.0s

t = 8.0st = 8.0s

t = 7.0st = 7.0s

t = 6.0st = 6.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 135/194

 

Magnitud de Velocidad, [m/s] Presión Dinámica, [Pa]

Figura 5.34. Resultados de predicción de tsunami en Faro actual con ola angular. Contorno de

velocidades (izquierda) y Presión dinámica (derecha). Intervalo 12.0s < t < 20.0s.

t = 20.0s t = 20.0s

t = 18.0st = 18.0s

t = 16.0st = 16.0s

t = 14.0st = 14.0s

t = 12.0st = 12.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 136/194

 

La figura 5.35 muestra una comparación de la fuerza registrada en la predicción de

efectos de tsunami en el faro actual de La Serena, para dos situaciones del viaje de una ola: un

viaje frontal hasta el borde costero, y un viaje angular. Se observa que la configuración de la

estructura en el caso una un tsunami con ola angular, no favorece la formación de olas de gran

tamaño en el momento que ocurre la onda de choque, siendo ésta una configuración menos

crítica que el caso de un tsunami ocasionado por una ola frontal.

La fuerza máxima ocasionada por un tsunami con ola frontal resulta ser de 22.3MN a

los 5.5s y ocurre en el primer impacto de la ola, mientras que para el caso de un tsunami con

ola angular, el peak de fuerza resulta ser de 16.4MN, presente en un impacto posterior,

cercano a los 6.7s.

Figura 5.35. Fuerza sobre El Faro de La Serena en su situación actual debido a un tsunami con

ola frontal v/s un tsunami con ola angular.

0

5.000.000

10.000.000

15.000.000

20.000.000

25.000.000

0 2 4 6 8 10 12 14 16 18 20

Fuerza [N]

Tiempo [s]

faro actual ola frontal

faro actual ola angular

Fuerza del viento

Fuerza debido a la ola16,4 MN

22,3 MN

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 137/194

 

Predicción de efectos de tsunami en Faro mejorado con ola frontal 

La evolución temporal de la magnitud de la fuerza sobre la estructura, que presenta el

 proyecto para la protección de El Faro de La Serena, se ilustra en la figura 5.36. Se observa

como la acción del viento es despreciable, en comparación con el valor de fuerza lograda porel impacto de la ola en las superficies de la estructura. El impacto de la ola, se produce en

t=5.65s, sin embargo, no alcanza el máximo valor de la fuerza. Inmediatamente, el avance del

flujo continúa, obteniéndose el registro del valor máximo de 10.1 MN, en t=6.9s. Luego, antes

que la magnitud de la fuerza descienda, se presenta un segundo incremento de fuerza de 9.8

MN, en t=7.6s, producto de la elevación de la masa de agua alrededor de la estructura,

logrando alcanzar la segunda planta e impactando mayor superficie.

Figura 5.36. Fuerza sobre El Faro de La Serena en su situación mejorada debido a un tsunami

con ola frontal de 15m de altura.

0

2.000.000

4.000.000

6.000.000

8.000.000

10.000.000

12.000.000

0 2 4 6 8 10 12 14 16 18 20

Fuerza [N]

Tiempo [s]

Fuerza global del tsunami

sobre la estructura

Fuerza del viento

Fuerza debido a la ola

10,1 MN

9,8 MN

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 138/194

 

Los resultados de la interfase móvil, magnitud de velocidad y presión dinámica se

muestran en las figuras 5.37 a 5.42. Además se incluye una vista frente al tsunami, para así

estimar la altura de la ola en relación a la estructura.

El análisis comienza con una ola de 15m de altura, situada a 100m frente a laestructura, que concuerda con la distancia de la línea de marea, que se describe en los planos

otorgados por la Municipalidad de La Serena. Los planos del proyecto, indican que la

estructura posee una altura máxima de 27.4m, estando 0.9m sobre el nivel del mar a su

situación actual, la cual mide 26.5m.

Por efecto de la gravedad, la ola inicia su viaje hacia la estructura. Se observa que en el

instante t=1s la ola disminuye su altura, perdiendo energía potencial, alcanzando una altura de

14.6m, sin embargo, la magnitud de velocidad aumenta, obteniendo mayor energía cinética, deesta forma el fluido logra desplazarse sobre la superficie del borde costero. Inmediatamente,

en el intervalo de tiempo 2s < t < 5s revela como continúa el viaje de la ola, continuando el

decrecimiento de la ola en relación a su altura, sin que esta haya impactado aún con la

superficie, la ola decae a una altura de 5.6m en t=5s. La ola presenta una velocidad promedio

de: 12.5[m/s] o 45[km/hr], valor que corresponde a la velocidad reportada en la literatura

cuando la ola se acerca al borde costero. Luego, el frente de la ola avanza e impacta los muros

de contención, para posteriormente ser bordeados, lo que provoca una menor colisión de la ola

en la estructura t=5.65s, El registro del valor máximo de fuerza ocurre en el instante t=6.9s, en

el momento que el frente de avance del tsunami ha logrado cubrir la base de la estructura y

llegar hasta la segunda planta, como se aprecia en t=7s. La secuencia de imágenes

correspondientes al intervalo de tiempo 7s < t < 10s no revelan la formación de olas de gran

tamaño, siendo el valor máximo de la altura de la fase de 8.3m, como se ilustra en t=8s. Por

último, el intervalo de tiempo 12s < t < 20s, muestra como continúa el avance de la ola, donde

la magnitud de la fuerza permanece en decrecimiento, hasta el momento en que finaliza el

estudio en t=20s.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 139/194

 

Interfase móvil Relación de altura fases

Figura 5.37. Resultados de predicción de tsunami en Faro mejorado con ola frontal. Frente

móvil de la ola (izquierda) y Relación de altura ola (derecha). Intervalo 1.0s < t < 5.0s.

t = 1.0s t = 1.0s

t = 2.0s t = 2.0s

t = 3.0s t = 3.0s

t = 4.0s t = 4.0s

t = 5.0s t = 5.0s

27.4m

27.4m

14.6m

5.6m

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 140/194

 

Interfase móvil Relación de altura fases

Figura 5.38. Resultados de predicción de tsunami en Faro mejorado con ola frontal. Frente

móvil de la ola (izquierda) y Relación de altura ola (derecha). Intervalo 6.0s < t < 10.0s.

t = 10.0s t = 10.0s

t = 9.0s t = 9.0s

t = 8.0st = 8.0s

t = 7.0st = 7.0s

t = 6.0st = 6.0s

27.4m

8.3m

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 141/194

 

Interfase móvil Relación de altura fases

Figura 5.39. Resultados de predicción de tsunami en Faro mejorado con ola frontal. Frente

móvil de la ola (izquierda) y Relación de altura ola (derecha). Intervalo 12.0s < t < 20.0s.

t = 20.0s t = 20.0s

t = 18.0st = 18.0s

t = 16.0st = 16.0s

t = 14.0st = 14.0s

t = 12.0st = 12.0s

27.4m

5.4m

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 142/194

 

Magnitud de Velocidad, [m/s] Presión Dinámica, [Pa]

Figura 5.40. Resultados de predicción de tsunami en Faro mejorado con ola frontal. Contorno

de velocidades (izquierda) y Presión dinámica (derecha). Intervalo 1.0s < t < 5.0s.

t = 1.0s t = 1.0s

t = 2.0s t = 2.0s

t = 3.0s t = 3.0s

t = 4.0s t = 4.0s

t = 5.0s t = 5.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 143/194

 

Magnitud de Velocidad, [m/s] Presión Dinámica, [Pa]

Figura 5.41. Resultados de predicción de tsunami en Faro mejorado con ola frontal. Contorno

de velocidades (izquierda) y Presión dinámica (derecha). Intervalo 6.0s < t < 10.0s.

t = 10.0s t = 10.0s

t = 9.0s t = 9.0s

t = 8.0st = 8.0s

t = 7.0st = 7.0s

t = 6.0st = 6.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 144/194

 

Magnitud de Velocidad, [m/s] Presión Dinámica, [Pa]

Figura 5.42. Resultados de predicción de tsunami en Faro mejorado con ola frontal. Contorno

de velocidades (izquierda) y Presión dinámica (derecha). Intervalo 12.0s < t < 20.0s.

t = 20.0s t = 20.0s

t = 18.0st = 18.0s

t = 16.0st = 16.0s

t = 14.0st = 14.0s

t = 12.0st = 12.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 145/194

 

La figura 5.43 revela la diferencia de la fuerza registrada debido al impacto de un

tsunami en El Faro de La Serena, realizando una comparación entre su situación estructural

actual y una situación mejorada, en el marco del proyecto ‘‘Construcción Obras de Protección

Costera Faro Monumental, La Serena’’. Se observa una disminución en los valores del registro

de la evolución temporal de la fuerza, para la nueva estructura que contempla el proyecto,

alcanzando un valor máximo de 10.4 MN en t=6.9s, en comparación a los 22.3 MN que se

logra en su situación actual en t=5.5s, ambas sometidas a una ola idéntica en la modelación de

un tsunami en el borde costero. La razón de tal diferencia en la magnitud de la fuerza,

 proviene de los muros de contención que presenta el proyecto. Por otra parte, la diferencia

temporal que presentan los valores máximos para cada situación, corresponde a que el

 proyecto que constituye El Faro mejorado exhibe una elevación de terreno en la base de la

estructura, provocando el retraso del frente de avance de la ola, bordeando en primer lugar laelevación, para luego continuar el avance hacia la estructura.

Figura 5.43. Fuerza sobre El Faro de La Serena en su situación actual v/s situación mejorada,

debido a un tsunami con ola frontal. 

0

5.000.000

10.000.000

15.000.000

20.000.000

25.000.000

0 2 4 6 8 10 12 14 16 18 20

Fuerza [N]

Tiempo [s]

Faro actual ola frontal

Faro nuevo ola frontal

Fuerza del viento

Fuerza debido a la ola

10,4 MN

22,3 MN

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 146/194

 

5.7 CASO ‘‘ESTUDIO DEL VIAJE DE OLA AL INTERIOR DEL OCÉANO EN

GENERACIÓN DE TSUNAMI’’ 

El estudio del viaje de una única ola al interior del océano en la generación de tsunami

se presenta a continuación. El dominio de estudio comprende el terreno en el cual se encuentrala estructura El Faro, donde se incorpora la batimetría o relieve del fondo marino de la bahía

de Coquimbo, elaborada en base a la interpretación fotográfica aérea registrada por

CONAMA-CONAF 2000. Se considera la batimetría y el océano, además de una ola única

que se desplaza por el mar hasta llegar a El Faro de La Serena. En base a los estudios

reportados en las situaciones reales de eventos de tsunami, la gran masa de agua producto del

levantamiento del terreno al interior del fondo marino viaja en múltiples direcciones, la cual

genera una ola que crece o disminuye en altura dependiendo de la batimetría del sector,

 parámetro muy relevante en la predicción de efectos de tsunami.

Figura 5.44. Formación de un tsunami incorporando la batimetría.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 147/194

 

El perfil de la playa o terreno es otro parámetro de suma importancia en el alcance que

 pueden producir los efectos de marejadas y olas de mayor tamaño, como lo son los tsunamis,

al llegar a impactar con estructuras ubicadas en el borde costero. El ‘‘beachface’’ o perfil

 promedio de la bahía de Coquimbo es discontinuo a lo largo de la playa. En el presente estudio

se incorpora el sector norte, emplazamiento de la estructura El Faro, presente en los registros

reportados por Carolina Villagrán (2007) [29].

El beachface exhibe una longitud que bordea los 90m, alcanzando una altura de 3m,

 por lo que la altura es un factor de diferencia con respecto al perfil de la zona de nivel del mar.

En cuanto a su forma, la cara de la playa comprende desde los primeros 26m, desde la línea de

máxima resaca, presentando una forma cóncava muy tenue asociado a procesos de erosión por

las olas, para luego pasar a una forma convexa hasta los 56m del perfil, luego una tenue

concavidad para luego ascender hasta los 3m, como se aprecia en la figura 5.45.

Figura 5.45. Perfil de la playa (Beachface) en la bahía de Coquimbo, sector El Faro.

El estudio de eventos de tsunami debe ser analizado de forma detallada, incorporando

todos los parámetros que influyen en la mecánica de fluidos de la ola que viaja sobre la

superficie del océano.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 148/194

 

El dominio de cálculo para representar fielmente los efectos de tsunami en la bahía de

Coquimno, IV región de Chile, comprende desde la zona de Punta Teatinos hasta Aníbal

Pinto, como lo propone Savedra en su tesís de magister (2010) [30].

Además de la incorporación de un mayor dominio para representar de mejor maneraeventos de tsunami, específicamente en el sector se observan ciertas alteraciones que

atraviesan más de diez ocaciones la bahía, desde las construcciones u hoteles hasta el mar,

como se observa en la figura 5.46. La existencia de estos canales sería incluida en un trabajo a

futuro, para así representar un dominio de cálculo ideal para representar el fenómeno.

Figura 5.46. Alteraciones en los perfiles de la bahía de Coquimbo.

5.7.1 SITUACIÓN FÍSICA

El estudio del viaje de una ola al interior del océano comienza con una única ola

impuesta a 300m aguas arriba desde la estructura El Faro de La Serena y 200m desde la línea

de la marea promedio que se reporta en el sector norte de la bahía de Coquimbo. Las

dimensiones de la estructura El Faro se obtienen desde los planos de planta general

conseguidos en el Ministerio de Obras Portuarias del país. La modelación representa fielmente

la zona de estudio con una relación 1:1 e incorpora los parámetros de batimetría y perfil de la

 playa, específicamente de la zona en que se ubica El Faro. El perfil de la playa presentado en

la figura 5.45, comienza desde un terreno plano a 11m delante de la estructura hasta llegar a la

línea de la marea y comienza la batimetría. La masa de agua ubicada sobre el nivel del mar en

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 149/194

 

un sector en que la batimetría alcanza los 20m de profundidad, tiene unas dimensiones de 15m

de altura y 50m de largo, como se observa en la figura 5.47.

Figura 5.47. Situación física estudio del viaje de una ola al interior del océano.

5.7.2 IMPLEMENTACIÓN COMPUTACIONAL

La solución de las ecuaciones que gobiernan el problema (5.1 a 5.4) se logra a través

del método de volúmenes finitos (MVF) y el algoritmo de acoplamiento PISO, Issa (1986)

[10].

El seguimiento de la interfase móvil que describe la ecuación de fracción de volumen

(5.5) es por medio de la técnica de volumen de fluido (VOF), aplicable para fluidosinmiscibles e incompresibles.

La formulación para calcular los gradientes utiliza Least Square Cell Based, mientras

que para la presión se ocupa PRESTO y las ecuaciones de momento se resuelven bajo el

esquema Ley de Potencia. La discretización de la ecuación de fracción de volumen se realiza

Perfil de la playa

Batimetría

Faro de La Serena

15m

50m

12m

100m

88m

200m

20m150m

150m  

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 150/194

 

mediante el esquema de tercer orden CICSAM. En tanto la energía cinética turbulenta y la

rapidez de disipación de la energía cinética turbulenta son a través de funciones de

interpolación de segundo orden Upwind. La formulación transiente se resuelve por medio de

funciones implícitas de primer orden.

Los factores de sub-relajación son: 0.7 para la presión, 0.5 para el momentum, 0.7 para

las fuerzas de cuerpo, 0.7 para la densidad, 0.6 para la energía cinética turbulenta, 0.6 para la

rapidez de disipación turbulenta y 0.6 para la viscosidad turbulenta.

El dominio computacional para resolver las ecuaciones gobernantes del problema y así

estudiar el viaje de la ola desde el interior del océano y posteriormente estimar los efectos

 producidos por un tsunami en el borde costero de La Serena, se realiza mediante la operación

enclosure, con la que cuenta el programa Ansys/Fluent v.14.0. Se considera: 350m deextensión frente a la estructura, 30m a ambos lados de la estructura, 5m por encima y 150m de

 prolongación posterior a El Faro. En esta forma es posible observar el efecto de la ola luego

del impacto, como se aprecia en la figura 5.48. 

Figura 5.48. Dominio computacional en el estudio del viaje de una ola al interior del océano.

150m 11m 33m 30m 26m 150m 100m

30m

30m

5m

20m23m

 Nivel del mar

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 151/194

 

La descripción del modelo matemático se completa definiendo las condiciones de

 borde, como se muestra en la figura 5.49 y son:

  Paredes laterales del dominio: Condición de simetría ‘‘symmetry’’.

 

Pared frontal y trasera del dominio: Condición de pared con deslizamiento libre y sin penetración ‘‘slip wall’’. 

  Base del dominio (terreno plano, perfil de la playa y batimetría): Condición de pared

con deslizamiento libre y sin penetración ‘‘slip wall’’. 

  Pared superior del dominio: Condición de presión atmosférica ‘‘pressure outlet’’. 

  Paredes de la estructura El Faro: Condición de pared con deslizamiento libre y sin

 penetración ‘‘slip wall’’. 

Figura 5.49. Condiciones de borde en el estudio del viaje de una ola al interior del océano.

La discretización temporal utiliza un paso de tiempo variable, de: 1000 pasos de

tiempo por segundo entre 0s < t < 2s, un paso de tiempo de 0.005 entre 2s < t < 10s y por

último un paso de tiempo de 0.01 entre 10s < t < 25s.

Symmetry

Symmetry

Slipwall

Slipwall

Slipwall

Slipwall

Pressure outlet

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 152/194

 

La discretización espacial utiliza volúmenes tetraédricos, en la cual la malla empleada

tiene: 1.862.963 nodos y 1.338.574 elementos. El tamaño de los elementos es de 3m, con un

refinamiento de 0.1m en zonas donde existe una proximidad, como se aprecia en la figura

5.50.

Figura 5.50. Malla utilizada en el estudio del viaje de una ola al interior del océano.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 153/194

 

5.7.4 PRESENTACIÓN, ANÁLISIS Y DISCUSIÓN DE RESULTADOS

El estudio del viaje de una ola mar adentro y la predicción del efecto de tsunami sobre

El Faro Monumental de La Serena, incorporando los parámetros de batimetría y perfil de

 playa ha sido estudiado.

La secuencia de imágenes correspondientes a las figuras 5.57 a 5.62, muestran los

resultados gráficos obtenidos en la predicción de los efectos de tsunami en el borde costero de

la ciudad de La Serena, Chile. Los rangos de los contornos corresponden a las variables de

magnitud de velocidad y presión dinámica sobre la superficie libre, se ilustran en la figura

5.51.

Figura 5.51 Mapa de contorno de variables en la predicción de efectos de tsunami en El Faro

Monumental con batimetría y perfil de playa.

La evolución temporal de la interfase móvil que describe la mecánica de fluidos,

 presente en los efectos de un tsunami incorporando los parámetros de batimetría y perfil de

 playa reales, reportados en la literatura, se muestran en las figuras 5.54 a 5.56.

La simulación comienza con una ola de 15m de altura y 50m de ancho, situada a 300m

delante de la estructura y 200m de la línea de marea. La estructura en tanto, se encuentra a 3m

s.n.m. a consecuencia de la incorporación del perfil de playa real, que reporta la zona donde se

encuentra ubicado El Faro. Por efectos de la gravedad, la ola comienza su avance en dirección

Magnitud de Velocidad [m/s]

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25

Presión Dinámica [kPa]

0 15 30 45 60 75 90 105 130 145 150

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 154/194

 

a la estructura y el borde costero de la ciudad. Los resultados de la interfase móvil, magnitud

de velocidad y presión dinámica, muestran como en t=4s la ola pierde energía potencial

(altura), pero a su vez, gana energía cinética (velocidad), necesario para el desplazamiento de

la ola mar adentro. Además se observa la formación de la ola, desde una gran masa de agua

 producto de un eventual movimiento del fondo marino, representada en t=0s. La simulación

continúa para los instantes de tiempo t=8s y t=12s, en los cuales se aprecia el viaje de la ola

desde el interior del mar sin existir movimientos importantes de la línea de marea. En t=12s la

ola ya ha sobrepasado la línea de marea, ascendiendo en dirección a la estructura pese a

encontrarse con la pendiente presente en el perfil de la playa. Luego se muestra gráficamente

en el instante t=20s como el tsunami impacta en la estructura, coincidiendo así con el

incremento en la fuerza registrada (18 MN).

La figura 5.52 ilustra la fuerza del viento ocasionada por el viaje de una ola frontal,

ubicada mar adentro a 300m frente a la estructura: El Faro Monumental de La Serena. Se

observa que la evolución temporal de la intensidad de la fuerza describe una tendencia

creciente, presentando un valor máximo de 701kN cercano a los 10.45s, producto de los

vientos ocasionados y los cambios de la ola producto de la batimetría y el perfil de la playa.

Figura 5.52. Fuerza del viento sobre El Faro de La Serena en su situación actual, con

 batimetría y perfil de la playa, debido a una ola frontal de 15m de altura.

0

100000

200000

300000

400000

500000

600000

700000800000

0 2 4 6 8 10 12 14 16

Fuerza [N]

Tiempo [s]

Fuerza del viento sobre la

estructura

701 kN

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 155/194

 

La acción del impacto del viento y la ola sobre la estructura, se considera como la

fuerza global del tsunami y se ilustra en la figura 5.53. La batimetría (nivel de altura

submarina) y el perfil de la playa son parámetros influyentes en la descripción de los efectos

del tsunami en el borde costero, como también repercute en la fuerza registrada sobre la

superficie de la estructura, logrando una disipación de la energía cinética en la llegada a las

costas de la tierra firme. En la figura 5.53 a 5.56 se observa como la acción del viento es

mínima, en comparación al impacto de la ola, la cual en torno a los 19s, presenta un aumento

de la fuerza sobre El Faro, debido a que consigue llegar una importante cantidad de fluido

transportado por la inercia de la ola, logrando el valor máximo del registro de la fuerza de

18MN. El frente de avance del tsunami sigue su dirección y se observa que en t=23.0s el agua

ha cubierto por completo la primera y segunda planta de la estructura. Inmediatamente para

los siguientes instantes de tiempo se aprecia como la ola sube por la estructura, logrado por lainercia en la formación de la ola, para luego descender producto de la misma gravedad,

formando una onda de choque alrededor de la estructura en t=27s. El estudio del viaje de una

ola al interior del océano concluye en t=30s, permitiendo así predecir y estimar los efectos de

un tsunami en el borde costero de La Serena, sector El Faro Monumental.

Figura 5.53. Fuerza sobre El Faro de La Serena en su situación actual, con batimetría y perfil

de la playa, debido a un tsunami con ola frontal de 15m de altura.

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

20000000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Fuerza [N]

Tiempo [s]

faro actual perfil de playa y

batimetria

Fuerza del viento

Fuerza debido a la ola

18 MN

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 156/194

 

Interfase móvil

Figura 5.54. Resultados de viaje de ola al interior del océano en Faro actual. Frente de ola

móvil. Intervalo 4s < t < 20s.

t = 20.0s

t = 4.0s

t = 8.0s

t = 12.0s

t = 16.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 157/194

 

Interfase móvil

Figura 5.55. Resultados de viaje de ola al interior del océano en Faro actual. Frente de ola

móvil. Intervalo 21s < t < 25s.

t = 25.0s

t = 21.0s

t = 22.0s

t = 23.0s

t = 24.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 158/194

 

Interfase móvil

Figura 5.56. Resultados de viaje de ola al interior del océano en Faro actual. Frente de ola

móvil. Intervalo 26s < t < 30s.

t = 30.0s

t = 26.0s

t = 27.0s

t = 28.0s

t = 29.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 159/194

 

Magnitud de Velocidad, [m/s]

Figura 5.57. Resultados de viaje de ola al interior del océano en Faro actual. Contorno de

velocidad en superficie libre. Intervalo 4s < t < 20s.

t = 20.0s

t = 4.0s

t = 8.0s

t = 12.0s

t = 16.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 160/194

 

Magnitud de Velocidad, [m/s]

Figura 5.58. Resultados de viaje de ola al interior del océano en Faro actual. Contorno de

velocidad en superficie libre. Intervalo 21s < t < 25s.

t = 25.0s

t = 21.0s

t = 22.0s

t = 23.0s

t = 24.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 161/194

 

Magnitud de Velocidad, [m/s]

Figura 5.59. Resultados de viaje de ola al interior del océano en Faro actual. Contorno de

velocidad en superficie libre. Intervalo 26s < t < 30s.

t = 30.0s

t = 26.0s

t = 27.0s

t = 28.0s

t = 29.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 162/194

 

Presión dinámica, [Pa]

Figura 5.60. Resultados de viaje de ola al interior del océano en Faro actual. Contorno de

 presión dinámica en superficie libre. Intervalo 4s < t < 20s.

t = 20.0s

t = 4.0s

t = 8.0s

t = 12.0s

t = 16.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 163/194

 

Presión dinámica, [Pa]

Figura 5.61. Resultados de viaje de ola al interior del océano en Faro actual. Contorno de

 presión dinámica en superficie libre. Intervalo 21s < t < 25s.

t = 25.0s

t = 21.0s

t = 22.0s

t = 23.0s

t = 24.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 164/194

 

Presión dinámica, [Pa]

Figura 5.62. Resultados de viaje de ola al interior del océano en Faro actual. Contorno de

 presión dinámica en superficie libre. Intervalo 26s < t < 30s.

t = 30.0s

t = 26.0s

t = 27.0s

t = 28.0s

t = 29.0s

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 165/194

 

5.8 CONCLUSIONES PRELIMINARES

El análisis y discusión de resultados permite concluir lo siguiente:

  Los resultados de la interfase móvil y la fuerza neta obtenidos en el caso de validación

de una ola impuesta al interior de un estanque con una estructura vertical, se verifican

y validan, logrando una gran similitud con resultados numéricos encontrados en la

literatura y resultados experimentales, respectivamente.

  El registro de la fuerza máxima presente en los resultados para el caso de validación,

reporta un valor máximo de 36.72 N, utilizando el método de volúmenes finitos y latécnica VOF, disponible en el programa computacional Ansys/Fluent v.14.0.

  La predicción de efectos de tsunami en el faro actual de La Serena y el borde costero,

ha sido sometido a la evaluación de dos diferentes ángulos de ataque de la ola: una ola

frontal y una angular, debido a los vientos predominantes en la bahía de Coquimbo.

Los resultados muestran que la situación más crítica, sería un eventual tsunami con un

impacto de una ola frontal sobre la estructura, el cual expone una fuerza máxima de

22.3 MN, mientras que el impacto angular, genera un valor menor de 16.4 MN, debido

a que presenta una menor área de ataque.

  La interfase móvil describe gráficamente la física del problema, además permite

obtener una relación en cuanto a la altura de las olas ocasionadas al momento del

impacto. Los resultados permiten observar olas de mayor tamaño en el estudio de un

impacto frontal, donde se logran olas de 19.7m luego de la interacción fluido-

estructura, en cambio para el caso de un impacto angular, la altura máxima alcanza por

las olas es de 8.5m.

 

Los contornos de velocidad y presión dinámica para la superficie libre, suelo del

dominio y caras de la estructura describen detalladamente la física del problema. La

magnitud de la velocidad predominante en la interfaz móvil es de: 12.5 m/s ó 45

km/hr, valor que corresponde a la velocidad real reportada en tsunamis al llegar al

 borde costero.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 166/194

 

  El fenómeno físico del viaje de una ola al interior del mar ha sido estudiado,

incorporando parámetros de gran relevancia en los resultados, como lo son: la

 batimetría (nivel de altura submarina) que presenta el sector de la bahía de Coquimbo y

el perfil de la playa (beachface) en la zona donde se encuentra ubicada la estructura El

Faro, describiendo de una mejor manera la física, en los efectos de un tsunami.

  La evolución de la magnitud de la fuerza en el tiempo es obtenida para el caso del viaje

de la ola mar adentro. Se considera el impacto sobre la estructura producto de la acción

del viento y la ola, registrando un valor máximo de 18 MN cercano a los 23s.

  Los tiempos de cálculo en la predicción del efecto de tsunami en El Faro de La Serena,

varían entre 5 a 10 días, utilizando una malla no estructurada, que fluctúa entre

1.796.524 a 2777753 nodos y 1.305.099 a 2.002.009 elementos, empleando el

 programa computacional Ansys/Fluent v.14.0 y en un PC Intel Core i5 de 2.5 GHz y 6

GB de RAM, con cuatro procesadores en paralelo.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 167/194

 

CAPÍTULO VI

CONCLUSIONES GENERALES

6.1 MODELO MATEMÁTICO

  En el presente trabajo los resultados de la posición de la interfase del frente móvil han

sido estimadas eficientemente, mediante el esquema explícito CICSAM, para los

casos: Llenado de molde con flujo turbulento para tres diferentes sistemas de ingreso,

Colapso de columna de agua aplicado en ruptura de represa y Predicción del efecto de

tsunami en El Faro de La Serena. El método de los volúmenes finitos (MVF) y la

técnica VOF, ambas, implementadas en los programas computacionales Ansys/Fluentv.14.0 y Openfoam v.2.1.1 describen la física de los problemas adecuadamente.

  En el programa computacional Ansys/Fluent se debe seleccionar el tipo de fase cuando

se trabaja con flujos bifásicos, ya sea nombrar una fase como primaria y otra como

secundaria. Fluent trabaja específicamente con la segunda fase, por lo cual se

recomienda nombrar al fluido predominante en el dominio como fase secundaria (ej:

 burbuja de agua en aire: seleccionar el aire como fase secundaria).

  La modelación de la turbulencia es por medio del modelo k-ε realizable, el cual

requiere un poco más de tiempo computacional que el modelo k-ε estándar, pero se

logra una mayor precisión en la predicción de la tasa de propagación, además

 proporciona un rendimiento superior para los flujos relacionados con la rotación, la

separación y la recirculación.

  La incorporación de la turbulencia en los problemas de estudio, otorgan una mejor

estimación de la mecánica de fluidos, pero a su vez, presentan mayor costo

computacional, por contar con un mayor número de ecuaciones en el modelo

matemático. Sin embargo en Ansys/Fluent es posible activar la modelación de la

turbulencia en cualquier instante de tiempo, en momentos donde los fluido exhiben un

comportamiento laminar, logrando una mayor rapidez en los resultados.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 168/194

 

6.2 IMPLEMENTACIÓN COMPUTACIONAL

  En el llenado de molde con forma de S en 3D, los tiempos de cálculo con mallas entre

33.750 y 540.000 volúmenes, un paso de tiempo de 0.01s, varían entre 1.460s y

23.741s. Por su parte, el modelo 2D, se resuelve en 456s, 1.084s y 2.996s, comparandomallas de 1.000, 2.250 y 9.000 volúmenes, respectivamente. El estudio del llenado de

molde con flujo turbulento para tres sistemas de ingreso, se realiza con un paso de

tiempo de 0.001, mallas de: 168.559 elementos y 239.737 nodos, con tiempos de

cálculo que varían entre 4 a 5 días. La discretización espacial en la predicción del

efecto de tsunami en El Faro de La Serena, se realiza con una malla no estructurada,

que varía entre 1.796.524 a 2.777.753 nodos y 1.305.099 a 2.002.009 elementos, donde

el tiempo de cálculo fluctúa entre los 5 a 10 días. Para el cálculo se emplea el programa

computacional Ansys/Fluent v.14.0 y en un PC Intel Core i5 de 2.5 GHz y 6 GB de

RAM, utilizando cuatro procesadores en paralelo.

  El estudio del colapso de una columna de agua en 2D con flujo laminar, se realizó con

dos programas computacionales: Ansys/Fluent para la plataforma Windows y

OpenFoam para la plataforma Linux, siendo OpenFoam 5 veces más rápido que

Ansys/Fluent en resolver las ecuaciones que gobiernan el problema. La solución del

 problema se logra con OpenFoam en 1584s, mientras que Ansys/Fluent tarda 7620s.

 

El estudio del colapso de columna de agua en 3D, para flujo turbulento, aplicado en la

rotura de una represa, se obtiene mediante el programa computacional Ansys/Fluent.

Si bien OpenFoam demostró mayor rapidez en los cálculos, se opta por utilizar

Ansys/Fluent debido a la compleja geometría que presente el estudio, utilizando una

malla no estructurada de 622.570 nodos y 443.201 elementos, en la cual se cumplen

los parámetros de razón de aspecto y skewness, los cuales son menor a 40 y cercano a

0, respectivamente, para obtener una buena calidad de la malla.

 

La desventaja de utilizar generalmente un programa para la plataforma Linux, es elentrenamiento previo para su correcto funcionamiento, ya que los problemas

analizados en el programa computacional OpenFoam, deben ser programados en un

lenguaje de programación avanzado: Lenguaje C++, en comparación a Ansys/Fluent

que trabaja en la plataforma Windows, donde presenta una mayor facilidad de uso y

una interfaz más agradable para el usuario.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 169/194

 

  La generación de mallas es otra ventaja con la que cuenta el programa Ansys/Fluent,

donde la generación de mallas es automática, incluso para situaciones en la cual la

geometría es compleja, siendo aún más rápida la creación de mallas no estructuradas

frente a mallas estructuradas, con la posibilidad de realizar fácilmente modificaciones

en su discretización espacial.

  El algoritmo de acoplamiento utilizado en el presente trabajo es PISO, el cual es

adecuado para flujos incompresibles. Mientras que la discretización para la presión, en

todos los problemas se utiliza PRESTO, recomendado en la literatura para ser utilizado

en conjunto con la técnica VOF, ya que tiene buen comportamiento en problemas con

alta velocidad de rotación en los fluidos, donde existe un dominio con superficies

curvas, medios porosos y mallas triangulares y tetraédricas.

6.3 FÍSICA DE LOS PROBLEMAS

  En el llenado de un molde con forma de S, se investiga la física peculiar que relaciona

los diferentes espesores del molde, en 2D y 3D. En el caso en 2D se realiza una

descripción completa de los fenómenos físicos que ocurren a lo largo del proceso, con

resultados obtenidos de la interfase móvil, líneas de corriente, contorno de velocidad y

 presiones al interior del molde. 

  El diseño, forma y tiempo de llenado ha sido investigado para distintas configuraciones

de ingreso del material en un molde, en 3D con flujo turbulento. Se logra obtener la

evidencia de burbujas en instantes de tiempos determinados del proceso, parámetro

importante en el que en experimentos físicos resulta difícil de conseguir.

 

El estudio del derrame de una columna de agua, en 2D, al interior de un recipiente con

una pequeña estructura en su interior, resuelto por medio de dos programas diferentes,

ha logrado describir adecuadamente la física del problema para ambos programas.   El caso de aplicación, ruptura de represa, en 3D con flujo turbulento, se logra captar la

física compleja del problema y como luego de impactar el fluido con las estructuras,

este sigue su cauce tras haber ocurrido la falla.

 

La validación en el caso de una ola al interior de un estanque con una estructura larga,

ha entregado resultados similares a los experimentales y numéricos realizados por

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 170/194

 

otros autores, los cuales permiten de esta forma trabajar con problemas más complejos

con principios físicos análogos, como el estudio de la predicción de efectos de tsunami.  

 

La predicción de eventos de tsunami mediante una ola impuesta ha estimado

eficientemente la física del problema reportado por registros históricos de sucesos

similares, donde la ola al llegar al borde costero alcanza los 45[km/hr], valor idéntico

al que registran las simulaciones computacionales en el presente trabajo.  

6.4 IMPORTANCIA EN INGENIERÍA

  En el estudio del llenado de un molde con forma de S, permite concluir que el modelo

tridimensional debe ser utilizado en lugar de uno 2D cuando el ancho del canal de

alimentación es igual o menor que 16 veces su altura. Los resultados de la variación de

 presión en el tiempo, indican que el mayor valor de la presión dinámica es de 5 [Pa], el

cual se logra al comienzo de la inyección del material en el frente del llenado y a su

vez coincide en el instante donde el flujo logra su mayor velocidad. Por otro lado, la

 presión estática se eleva a medida que va ingresando el fluido, siendo máxima en la

zona en donde ocurre la acumulación del metal fundido, logrando un valor de 45 [Pa]

en el fondo del molde. Este parámetro es de suma importancia a lo largo del proceso de

inyección del material al interior del molde.

  La simulación del llenado de molde con flujo turbulento para tres sistemas de ingresos,

 permite observar los diferentes fenómenos que ocurren en el proceso, que los

experimentos físicos no permiten visualizar. Además permite controlar diferentes

 parámetros con el objetivo de optimizar y diseñar una pieza de fundición por gravedad

con excelentes cualidades, logrando todas las ventajas que esta técnica posee, tales

como: mayor precisión en las dimensiones, menor mecanizado gracias a superficies

mejor acabadas, propiedades mecánicas más elevadas, mejor calidad y una mayor producción. Se concluye que el llenado por el punto superior es más rápido,

completando el llenado del molde a los 20s, permitiendo de esta forma aumentar la

 productividad. Sin embargo, durante el llenado la interfase metal fundido-aire tiene

oscilaciones que pueden resultar perjudiciales para la calidad final de la pieza a

fabricar. Este tipo de colada se recomienda cuando la altura de la pieza es pequeña, así

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 171/194

 

se evita la salpicadura del material y una posible formación de gotas frías, que

solidifiquen antes del material y formen desperfectos en la superficie. Por otra parte el

llenado de molde por el punto inferior es el más lento de los tres sistemas, alcanzando

la altura deseada (180mm) a los 25s, pero a su vez, permite la entrada del flujo sin

turbulencia. El principal inconveniente es que el metal se va enfriando al subir y puede

no llenar completamente el molde. Considerando tanto la calidad como la rapidez, se

recomienda el uso de un llenado del molde por la zona media para la elaboración de la

 pieza, logrando el llenado de molde sin formaciones de burbujas a los 21s.

  El estudio del derrame de una columna de agua aplicado en la ruptura de represa,

revela la magnitud del impacto en cada estructura, además del instante de tiempo en el

que ocurre, la cual a su vez, concuerda con la secuencia de imágenes de la interfase

móvil. Presentando un valor máximo en la vivienda 2, con un valor máximo de fuerzade 19.9 MN, debido a la ubicación frontal a la falla, luego las viviendas 1 y 3 muestran

un valor máximo de 16.3 y 15.8 MN, respectivamente, siendo la localización de las 3

estructuras, la misma línea de impacto en torno a los 4.7s. Luego la siguiente línea de

estructuras, correspondientes a las viviendas, 4, 5 y 6, las cuales muestran un valor

máximo de fuerza de 4.2, -0.45 y 3.6 MN, respectivamente, con un valor mínimo para

la vivienda 5, ubicada en el centro de la configuración de casas, esto se debe a la

formación de una especie de muro de contención, por parte de las viviendas ubicadas

delante. Por último, la tercera línea de colisión del derrame de agua, pertenece a las

viviendas 7, 8 y 9, las cuales presentan un valor máximo de fuerza de: 3.9, 3.9 y 1.3

MN. Se aprecia que la magnitud de la fuerza vs tiempo en este último grupo de

estructuras, el impacto del agua es menos brusco en relación a la primera y segunda

línea, situación que se esperaba, por encontrarse ubicado a más distancia que las

anteriores. De esta forma se señala que tanto la configuración de las estructuras como

su ubicación, son variables preponderantes para estimar la fuerza sobre ellas.

 

El análisis transiente en la predicción de efectos de tsunami y el estudio de la magnitud

de fuerza registrada sobre la estructura El Faro de La Serena, en su situación actual y

una situación mejorada, en el marco del proyecto ‘‘Construcción Obras de Protección

Costera Faro Monumental, La Serena’’ ha permitido realizar simulaciones

computacionales y un estudio de prefactibilidad, para estimar los efectos del impacto

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 172/194

 

de las olas para las dos diferentes situaciones. En la cual se obtuvo un valor de la

fuerza máxima de 22.3 MN en el caso de la estructura actual y un valor máximo de

10.4 MN para la estructura en el nuevo proyecto.

 

El fenómeno físico del viaje de una ola al interior del mar ha sido estudiado,

incorporando parámetros de gran relevancia en los resultados, como lo son: la

 batimetría (nivel de altura submarina) que presenta el sector de la bahía de Coquimbo y

el perfil de la playa (beachface) en la zona donde se encuentra la estructura El Faro

Monumental de La Serena, describiendo de una mejor manera la física en los efectos

de un tsunami. Además la evolución de la magnitud de la fuerza en el tiempo es

obtenida para el caso del viaje de la ola mar adentro, parámetro de suma importancia,

 para cuantificar los daños producto del tsunami y así prever una situación catastrófica.

El registro del impacto sobre la estructura producto de la acción del viento y la ola, seobtuvo un valor máximo en la magnitud de la fuerza de 18 MN cercano a los 23s.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 173/194

 

REFERENCIAS

[1] G. Dhatt, D.M. Gao y A. Ben Cheik: “A Finite Element Simulation of Metal Flow in

Moulds”, Int. J. Numer. Meth. in Engineering , Vol 30, pp. 821 – 831 (1990).

[2] A.S. Usmani, J.T. Cross y R.W. Lewis: “A Finite Element Model for the Simulation of

Mould Filling in Metal Casting and the Associated Heat Transfer ”,  Int. J. Numer. Meth. in

 Engineering , Vol 35, pp. 787 – 806 (1992).

[3] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington,

(1980).

[4] M. Cruchaga, D. J. Celentano y T. E. Tezduyar : “Moving-interface computations with

the edge-tracked interface locator technique (ETILT)”,  Int. J. Numer. Meth. Fluids, Vol 47, pp. 451 – 469 (2005).

[5] M. Cruchaga, D. J. Celentano y T. E. Tezduyar : “Computation of mould filling

 processes with a moving Lagrangian interface technique”, Commun. Numer. Meth. Engng. Vol

18, pp. 483 – 493 (2002).

[6] C.R. Swaminathan y V.R. Voller: “A time-implicit filling algorithm”,  Appl. Math

 Modelling , Vol 18, pp. 101 – 108 (1994).

[7] M.M. Pariona, G.A. Salem, F. Bertelli y N. Cheung: “ Numerical simulation for prediction of filling process in a sand mould”,  Revista Latinoamericana de Metalurgia y

 Materiales, Vol 28, pp. 99-110 (2008). 

[8] FLUENT Inc. FLUENT® User´s Guide (2009).

[9] C. W. Hirt y B. D. Nichols: “Volume of Fluid (VOF) Method for the Dynamics of Free

Boundaries”, J. of Computational Physics, Vol 39, pp. 201-225 (1981).

[10] O. Ubbink: “Numerical prediction of two fluid systems with sharp interfaces”, Thesis

submitted for the Degree of Doctor of Philosophy of the University of London and Diploma of

Imperial College, London: University of London and Imperial Collage, Department of

Mechanical Engineering Imperial Collage of Science, Technology & Medicine (1997).

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 174/194

 

[11] D. M. Stefanescu, Science and Engineering of Casting Solidification, Second Edition,

(2009).

[12] E.R. Abril, Metalúrgia Técnica y Fundición, (1956).

[13] M. Cruchaga y D. J. Celentano, “A finite element thermally coupled flow formulation

for phase-change problems”, Int. J. Numer. Meth. Fluids, Vol 34, pp. 279 – 305 (2000).

[14] A. Schoklitsch: “Über Dambruchwellen”, Sitzung-berichten der Königliche Akademie

der Wissenschaften, Vol 126, pp. 1489-1514 (1917).

[15] J.C. Martin y W.J. Moyce: “An experimental study of the collapse of liquid columns

on a rigid horizontal plane”,  Phys. Trans. Serie A, Math. Phys. Sci.  Vol 244, pp. 312-325

(1952).

[16] G. Lauber y W.H. Hager: “Experiments to dam break wave: Horizontal Channel”,  J.

 Hydraul. Res. Vol 36, pp. 291-307 (1998).

[17] J. Estrade: “Contribution à l'Etude de la Suppression d'un Barrage. Phase Initiale de

l'Ecoulement.", Bulletin de la Direction des Etudes et Recherches, Vol 1, pp. 3-128 (1967).

[18]  http://simscience.org/cracks/advanced/malpasset.html

[19] G.P. Matson y A.J. Hogg: “Two-dimensional dam break flows of Herschel – Bulkley

fluids: The approach to the arrested state”, J. Non-Newtonian Fluid Mech. Vol 142, pp. 79-94

(2007).

[20] http://www.muylinux.com/2010/05/31/windows-y-linux-cambian-sus-papeles-en-

supercomputadoras/

[21] OpenFOAM® User´s Guide (20011-2013).

[22] D. Cox: “ NESS Tsunami Facility Highlights”, HWRL (2007-2008).

[23] M.E. Oshnack, F. Aguíñiga, D. Cox, R. Gupta y J. Van de Lindt: “Effectiveness of

Small Onshore Seawall in Reducing Forces Induced by Tsunami Bore: Large Scale

Experimental Study”, J. Disaster Research. Vol 4 (2009).

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 175/194

 

[24] D. Dutykh y F. Dias: “Influence of sedimentary layering on tsunami generation”,

Computer Methods in Applied Mechanics and Engineering. Vol 3 (2009).

[25] S. Glockner: “A three fluid model to simulate waves generated by subaerial

landslides”, Coastal Engineering. Vol 57, PP. 779-794 (2010).

[26] C. Petroff, H. Yeh y H. Arnason: “Tsunami Bore Impingement onto a Vertical

Column”, Journal of Disaster Research, Vol 4, PP. 391-403 (2009).

[27] R. Bidoae: “Numerical Simulation of immiscible liquids in the vicinity of the free

surface”, The 6th International Conference on Hydraulic Machinery and Hydrodynamics,

Romania, pp. 587-593 (2004).

[28] H. Sauerland y T.P. Fries: “The stable XFEM for two- phase flows”, Computers &

 Fluids, Alemania (2012).

[29] C. Villagrán y M.V. Soto: “Dinámica costera en el sistema de bahías comprendidas

entre Ensenada Los Choros y Bahía Tongoy”, Memoria para  optar al título de geógrafo:

Universidad de Chile, Facultad de Arquitectura y Urbanismo , Chile (2007).

[30] M.A. Saavedra y N. Moraga: “Simulación numérica de flujos bifásicos inmiscibles con

aplicaciones a: rueda hidráulica flotante, colapso de columna no newtoniana y

generación/efectos de tsunami”, Trabajo de título para  optar al título de Ingeniero Civil

Mecánico y el grado académico de Magíster en Ciencias de la Ingeniería: Universidad de

Santiago de Chile, Facultad de Ingeniería , Chile (2010).

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 176/194

 

ANEXOS

ANEXO A

FUNDAMENTOS MATEMÁTICOS Y NUMÉRICOS

A.1 INTRODUCCIÓN

La representación de los fenómenos físicos ha sido un tópico a estudiar desde hace

muchos años, así el hombre ha desarrollado conocimientos y tecnologías para el avance de la

humanidad. Por esta razón investigadores de diversas áreas han ido perfeccionando métodos y

modelos matemáticos para entender y estudiar las leyes naturales involucradas en los

fenómenos físicos. Tales estudios son frutos de numerosas investigaciones y experimentos que

han dado solución al comportamiento de dichos fenómenos.

A través de los últimos años gracias a tratamientos matemáticos mediante el cálculo de

ecuaciones diferenciales parciales permiten describir la complejidad de la dinámica de los

fluidos. En este apartado se explica brevemente los fundamentos de la mecánica de fluidos

desde el concepto del medio continuo y sus dos formas de representación. Luego se

mencionan las ecuaciones de continuidad y conservación de masa que describen el

comportamiento de los fluidos y un tratamiento especial que merecen los flujos multifásicos

 para su representación.

Investigaciones más recientes logran representar un estudio avanzado de la

complejidad de los flujos turbulentos, mediante modelos matemáticos y técnicas

experimentales, es así que por último se realiza una descripción de las características que debe

exhibir el flujo para ser considerado laminar o turbulento y algunos de los modelos más

utilizados para el estudio de la turbulencia.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 177/194

 

Mecánica del medio continuo

Un medio continuo se refiere a una porción de materia formada por un conjunto

infinito de partículas, las cuales forman parte de un sólido, gas o líquido. El estudio

macroscópico del medio continuo presenta como hipótesis la existencia de un cuerpo libre de

discontinuidades en su composición, sin considerar espacios irregulares existentes a nivel

atómico.

Es posible describir el comportamiento del medio continuo a través de funciones

matemáticas que describen la posición espacio-temporal de cada partícula. En la mecánica de

fluidos la descripción del fluido es en términos de velocidad y aceleración, donde existen dos

 planteamientos para la descripción del movimiento: El método Lagrangiano y el método

Euleriano.

La descripción Lagrangiana representa a cada partícula del fluido en función del

tiempo, siendo a su vez asociado a un vector posición. Mientras el fluido se encuentra en

movimiento, la variable dependiente de la posición se encuentra en constante cambio. Por lo

cual las coordenadas de cada partícula en un instante son seguidas a través de un campo de

flujo. El conjunto de ecuaciones para realizar la descripción resulta costoso, ya que se necesita

tres veces el número de parámetros para determinar la solución. Las ecuaciones utilizadas para

describir el movimiento del fluido en tres dimensiones son mostradas en (A.1).

      (A.1)

La descripción Euleriana, en cambio, considera una coordenada en particular o una

región de estudio por donde transita el fluido, lo que lleva a reducir el número de variables

dependientes, expresando la posición espacio-temporal del fluido en términos de la velocidad,como se aprecia en (A.2).

  (A.2)

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 178/194

 

En el estudio de superficies libres la diferencia fundamental entre ambas formulaciones

es la utilización de una malla móvil en el método Lagrangiano, donde los puntos de la malla se

mueven con el fluido, la superficie libre es tratada como una frontera en el dominio

computacional y se aplican condiciones de borde cinemáticas y dinámicas. Este método no es

adecuado cuando la interfase móvil cambia significativamente en el tiempo, ya que la

distorsión excesiva de la malla lleva a errores numéricos y problemas con la convergencia en

la solución. Por otra parte, el método Euleriano utiliza una malla fija, en la cual la malla no

varía con el paso del tiempo y es generada al comienzo del cálculo, por lo que no presenta

dificultades geométricas. Sin embargo, dado que el movimiento del flujo no coincide con la

malla de cálculo, es necesario un tratamiento especial para seguir el comportamiento de la

superficie libre. Ambas formulaciones se ilustran en la figura A.1.

Figura A.1. Métodos de estudio para fluidos bifásicos. Malla móvil (izquierda) y malla fija

(derecha).

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 179/194

 

A.2 ECUACIONES GOBERNANTES

El comportamiento de la dinámica de fluidos puede ser descrita mediante leyes

matemáticas elementales, las cuales son: la ecuación de continuidad, momentum y energía. La

formulación general de conservación de una cantidad de flujo o ecuación de continuidad es

representada en su forma diferencial como se muestra en la ecuación (A.3).

  (A.3)

donde los términos de izquierda a derecha son: rapidez del cambio de la variable

,

término convectivo, término difusivo y términos fuentes, calculados por unidad de tiempo y

volumen.

Ecuación de continuidad

La ecuación de continuidad o conservación de masa al interior de un sistema, establece

que la masa al interior de un volumen de control, considerando pérdidas y ganancias a través

de la superficie de control, se mantiene invariante en el tiempo. Sustituyendo la cantidad:

 , en la ecuación (A.3), se obtiene:

  (A.4)

donde el término:  es la variación temporal de la masa al interior del volumen de

control, el término:   es la pérdida o ganancia de masa a través de la superficie de

control.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 180/194

 

Si se considera un flujo incompresible, la densidad del fluido se mantiene constante

ante la variación de la presión y la ecuación (A.4) sería expresada como:

  (A.5)

Ecuación de conservación de momento

Es la ecuación que se obtiene mediante el balance de fuerzas de un elemento

diferencial para luego analizar su relación con las leyes de Newton. La ecuación expresa que

la cantidad de momento lineal que varía en el tiempo al interior de un volumen de control es

igual a las ganancias y pérdidas en la superficie de control ante las fuerzas externas.

En la ecuación de transporte general (A.3) representada en su forma diferencial, se

sustituye la cantidad:  , para así finalmente obtener la ecuación de conservación

de cantidad de movimiento, como se muestra en la ecuación (A.6). 

  (A.6)

donde:   es la densidad,   es el vector de velocidad,   la presión estática,   es la

viscosidad dinámica y  la gravedad. Los términos de izquierda a derecha son: variación de

momentum al interior del volumen de control, ganancia o pérdida de momentum a través de la

superficie de control, fuerzas de presión normal por unidad de volumen, fuerzas de origen

viscoso y fuerza gravitacional por unidad de volumen.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 181/194

 

A.3 VOF

Una superficie libre se refiere a la interfase formada entre fluidos con densidades

diferentes. Entre los métodos Eulerianos para determinar la forma y posición de la superficie

libre se encuentra el método de volumen de fluido (VOF) propuesto por Hirt y Nichols (1981).

Este método es utilizado en problemas de flujo con movimiento de superficies libres y es

capaz de modelar dos o más fluidos mediante la solución de un conjunto de ecuaciones de

fracción volumétrica, donde la misma variable es fijada para cada uno de los fluidos del

dominio, basándose en la consideración de que los fluidos son inmiscibles.

Figura A.2. Ilustración de la simulación de la interacción de fluidos usando el método VOF.

Para cada fase que se agrega se introduce una variable llamada ‘‘fracción volumétrica

de la fase’’ en cada celda de cálculo, teniendo en cuenta que la suma de la fracciónvolumétrica de todas las fases existentes en cada celda tiene que ser la unidad. De esta forma

si la fracción de volumen de cada una de las fases es conocida en todo el dominio, se puede

obtener la posición, las variables y las propiedades para representar la interfase.

La fracción de volumen es denotada como α, donde puede cumplir tres condiciones:

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 182/194

 

Figura A.3. Descripción fracción volumétrica en celdas de control.

Por tanto, es necesario resolver una ecuación de transporte adicional para la fracción de

volumen de la primera fase, α. Esta ecuación tiene la misma forma que la ecuación de

continuidad, con la diferencia de que la densidad ρ es sustituida por α .

(A.7)

donde  es el vector velocidad que se debe determinar como solución del problema de

mecánica de fluidos, y  es la fracción de volumen. 

La asignación de las propiedades para cada fase se realiza mediante una ponderación

de las propiedades en cada celda de control y se calcula utilizando las siguientes relaciones

constitutivas:

    (A.8)

α = 1 Celda llena de fluido 1 

0 < α < 1 Celda con interfase 

α = 0 Celda llena de fluido 2 

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 183/194

 

Esquemas para la discretización de la interfase

El método VOF requiere esquemas para la discretización de la ecuación de transporte

de la fracción volumétrica, para así realizar la descripción de la superficie libre. La ecuación

de la fracción de volumen (A.1) puede ser resuelta a través de una formulación implícita oexplícita, entre ellas destacan el esquema de Reconstrucción geométrica, el esquema Donante-

aceptor y el esquema de alta resolución CICSAM, para cuando el problema es dependiente del

tiempo. Los tres esquemas con formulación explícita.

Esquema de Reconstrucción geométrica

El esquema de Reconstrucción geométrica, obra de Youngs (1982), representa lainterfase entre fluidos utilizando una interpolación lineal a tramos, donde es posible ser

aplicado a mallas no estructuradas, mostrando muy buena precisión. La interfase entre dos

fluidos tiene una pendiente lineal dentro de cada celda, como se observa en la figura A.4.

Figura A.4. Esquemas de discretización para la interfase. a) Forma real de la interfase, b)

Esquema Donante-aceptor, y c) Esquema Reconstrucción geométrica.

El primer paso de este esquema de reconstrucción es el cálculo de la posición de la

interfase lineal con respecto al centro de cada celda parcialmente llena, en base a la

información sobre la fracción de volumen y los derivados en la celda. El segundo paso es el

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 184/194

 

cálculo de la cantidad de advección del fluido a través de cada cara usando la interfase lineal

computarizada y la información sobre la distribución de la velocidad normal y la tangencial en

cada cara. El tercer paso es el cálculo es el cálculo de la fracción de volumen en cada celda

utilizando el equilibrio de los flujos calculados durante el paso anterior.

Esquema Donante-aceptor

El esquema Donante-aceptor utiliza una interpolación estándar para obtener los flujos

en las caras de las celdas cada vez que se llenan completamente con una u otra fase e identifica

una celda como un donante de una cantidad de fluido de una fase y otra celda vecina como una

celda aceptor de la misma cantidad de fluido, así se evita la difusión numérica de la interfase.

La orientación de la interfase es horizontal o vertical, dependiendo de la dirección del

gradiente de la fracción volumétrica α, existente dentro de la celda de control y de la celda

vecina en que se comparten la cara. La limitación que presenta este esquema es que sólo se

 puede utilizar con mallas hexaédricas o cuadriláteras.

Esquema de alta resolución CICSAM

El esquema de captura de interfases compresivas para mallas arbitrarias (CICSAM),

 basado en el trabajo de Ubbink (1997), es un esquema de resolución de diferenciación de

altura. El desplazamiento de la superficie libre es seguido mediante el cálculo de un campo

escalar que es discontinuo en la interfase y uniforme lejos de ella. Por este motivo, el método

no requiere de complejas estrategias para la reconstrucción de la interfase, que queda definida

 por las superficies de nivel del campo escalar en la discontinuidad. CICSAM implementa

estrategias de discretización para asegurar la definición abrupta de la interfase. La estrategia

de discretización combina métodos de interpolación corriente arriba y corriente abajo, con

limitadores que aseguran valores acotados para los flujos entre las celdas. El esquema

CICSAM es particularmente adecuado para flujos con altas relaciones de viscosidad entre las

fases, produciendo una interfase tan fuerte como el esquema de reconstrucción geométrica.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 185/194

 

A.4 MODELOS DE TURBULENCIA

En la dinámica de los fluidos, la turbulencia o flujo turbulento es un régimen

caracterizado por baja difusión de momento, alta convección y cambios espacio-temporales

rápidos de presión y velocidad. Los flujos no turbulentos son llamados flujos laminares, en

donde el régimen del fluido es ordenado y sigue una trayectoria suave llamada línea de

corriente. El flujo se considera laminar o turbulento observando el orden de magnitud del

número de Reynolds (A.9).

  (A.9)

donde   es la densidad del fluido,   es la velocidad característica del fluido,   la

longitud característica del sistema y  la viscosidad dinámica del fluido.

Figura A.5. Caracterización de flujo laminar y turbulento.

Para conocer este fenómeno se sugiere que una buena forma de entender el parámetro

de la turbulencia es a través de la observación de flujos que ocurren en la naturaleza: el

océano, el viento y ríos exhiben flujos complejos de interpretar, caracterizados generalmente

como flujos turbulentos.

El estudio científico de la turbulencia se ha desarrollado recientemente, aunque las

investigaciones de Lummey (1992) y de Frisch (1999) mencionan a Leonardo Da Vinci quien

acuño el término ‘turbolenza’, sin embargo Bousinesq (1877) publicó un trabajo en el que por

 primera vez se distingue entre los flujos laminar y turbulento. Indicó además que el transporte

Flujo laminar Flujo turbulento

Si   → Flujo laminar  → Flujo turbulento

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 186/194

 

de cantidad de movimiento es mayor en el régimen turbulento, fenómeno que explicó con una

analogía con el caso de transporte laminar e incorporando el término de viscosidad turbulenta.

En la actualidad existen varios modelos para poder interpretar el movimiento complejo

de los flujos turbulentos. Sin embargo no existe un único modelo de turbulencia queuniversalmente sea aceptado por todos. Al momento de la elección de un modelo de

turbulencia, se debe tener en cuenta las propiedades físicas del flujo, el nivel de precisión, la

disponibilidad de la fuente computacional y el tiempo disponible para la simulación. Los

modelos de turbulencia de dos ecuaciones como es el caso del k-ε han mostrado buena

 performance en la interpretación del fenómeno de la turbulencia.

Modelo k-ε estándar 

Este modelo es muy popular por su robustez, bajo costo computacional y una razonable

 precisión en un diverso rango de flujos turbulentos, aunque en la derivación del modelo, se

asume que el flujo es totalmente turbulento y que los efectos de la viscosidad molecular son

despreciables, por lo tanto el modelo k-ε estándar se restringe a ser solamente válido para

flujos completamente turbulentos. El modelo k-ε es semi-empírico basado en las ecuaciones

de transporte para la energía cinética turbulenta (k) y para la rapidez de disipación de la

energía cinética turbulenta (ε). Ambas ecuaciones representan la producción, la difusión y la

destrucción de la turbulencia en el sistema.

Energía cinética turbulenta (k):

  (A.10)

Disipación de la energía cinética turbulenta (ε): 

  (A.11)

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 187/194

 

donde  es un término que representa la generación de la energía cinética turbulenta

y aparece en ambas ecuaciones,  determina la disipación de la energía cinética turbulenta y es la viscosidad turbulenta.

  (A.12)

       (A.13)

Los términos

  ,

 y

 son constantes, mientras que

 y

 son los números de

Prandtl turbulentos para las ecuaciones k y ε, respectivamente. Los coeficientes del modeloson:

  ,   ,   ,   ,  

Modelo k-ε Realizable 

Además del modelo k-ε estándar, también existe el modelo k -ε realizable (Shit et. al

1995). El término realizable significa que el modelo satisface ciertas restricciones matemáticas

consistente con la física de los flujos turbulentos, donde otros modelos de turbulencia

 permanecen limitados. El modelo k-ε realizable se diferencia de los modelos k-ε tradicionales

al introducir una nueva ecuación para la viscosidad turbulenta involucrando la variable  que

ya no es una constante y una nueva ecuación para la disipación de la energía cinética

turbulenta. Aunque el modelo k-ε realizable requiere un poco más de tiempo computacional

que el modelo k-ε estándar, se logra una mayor precisión en la predicción de la tasa de

 propagación, además proporciona un rendimiento superior para los flujos relacionados con la

rotación, la separación y la recirculación.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 188/194

 

La energía cinética turbulenta (k) y la rapidez de su disipación (ε) se determinan

mediante las siguientes ecuaciones:

  (A.14)

  (A.15)

donde:  es el término producción y  : el término de disipación. El valor de los

 parámetros y constantes de este modelo se indica a continuación:

     

         

            

 

          

El valor de los coeficientes son los siguientes:

  ,   ,   ,  

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 189/194

 

ANEXO B

MECÁNICA DE FLUIDOS COMPUTACIONAL

B.1 INTRODUCCIÓN

La mecánica de fluidos computacional (CFD) es una rama que surge de la mecánica de

fluidos, donde utiliza métodos numéricos y algoritmos para resolver y analizar problemas

relacionados al flujo de sustancias. A través de los ordenadores es posible realizar los millones

de cálculos necesarios para simular la interacción de fluidos y gases con complejas superficies

 proyectadas por la ingeniería. Aunque aun así en casos extremadamente complejos y

utilizando supercomputadores solamente es posible llegar a soluciones aproximadas. En la

actualidad gracias al constante avance de investigadores de todo el mundo es posible reducir lavelocidad de cálculo, además de reducir el error a un porcentaje mínimo en situaciones cada

vez más complejas, como es el caso de los flujos turbulentos. La solución de los problemas

 puede ser verificada mediante diversos experimentos o situaciones reales, túneles de viento u

otros modelos creados a escala.

La forma de trabajo de la mecánica de fluidos computacional consiste en la

discretización de una región del espacio, dividiéndola en pequeños volúmenes de control,

creando lo que se conoce como una malla espacial. Luego se resuelve en cada uno de aquellosvolúmenes las ecuaciones gobernantes del problema, de forma iterativa hasta que el residuo es

lo suficientemente pequeño. En este apartado se realiza una descripción más detallada de las

etapas del análisis de CFD, el significado de la discretización espacial, el método de los

volúmenes finitos, la discretización temporal y las condiciones de borde e iniciales que se

requieres para resolver las ecuaciones al interior de cada volumen.

La dinámica de fluidos computacional es empleada en una gran cantidad de campos de

la ingeniería, entre los que se pueden destacar: aerodinámica en aviones y automóviles,

hidrodinámica en embarcaciones, turbodinámica en bombas y motores, transferencia de calor

en sistemas de enfriamiento y calentamiento, fuerza y respuesta dinámica en estructuras

debido a algún agente, estudios sobre redes de tuberías, flujo de sangre en el corazón, venas o

arterias, y análisis de canales y presas, entre otros.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 190/194

 

B.2 DISCRETIZACIÓN DE UNA VARIABLE

En el proceso de la dinámica de fluidos computacional, se realiza una aproximación de

una variable continua en un número finito de puntos, efectuando una discretización de la

variable, tal como se aprecia en la figura B.1. La variable continua se refiere a variables de

campo, como es el caso de la velocidad, densidad o presión, entre otras, que pueden ir en

constante cambio con el transcurso del tiempo. Luego las ecuaciones algebraicas en conjunto

con las condiciones de borde e iniciales, se resuelven para obtener los valores de las variables

en todos los nodos.

Figura B.1. Discretización de una variable.

B.3 ETAPAS EN UN ANÁLISIS DE CFD

El análisis por medio de CFD, es el arte, más que la técnica, que utiliza los ordenadores

 para la simulación de los movimientos del fluido y de otros fenómenos asociados. Un análisis

completo de la dinámica de los fluidos consta de las siguientes etapas:

  Cálculos previos 

Esta etapa consiste en formular el problema, plantear las ecuaciones que lo gobiernan yestablecer las condiciones de contorno, para así realizar la generación de una malla de

volúmenes finitos. Este paso requiere tener en claro el análisis que se pretende realizar

(fuerzas, flujos, transferencia de calor,...) y de la capacidad computacional con la que

se cuenta para el análisis.

 

Solución de las ecuaciones

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 191/194

 

Etapa principal del CFD, que tiene como finalidad resolver y otorgar una solución

numérica de las ecuaciones que gobiernan el problema.

  Análisis de los resultados 

En ella es posible obtener y analizar una representación gráfica de las variables que

gobiernan el flujo, para tener una visión rápida y amena de los resultados obtenidos.

Además se incluye, una comparación con otros resultados ya obtenidos, existentes en

normativas o publicaciones existentes, utilizando otros métodos de cálculos, técnicas

experimentales o realizando una representación a escala del problema.

B.4 DISCRETIZACIÓN ESPACIAL

El primer paso para realizar el cálculo de la solución en la dinámica de fluidos

computacional, consiste en la discretización espacial del dominio, para así posteriormente

calcular sobre esta misma la aproximación numérica de los flujos convectivos, difusivos y los

términos fuentes. Existen diferentes tipos de discretización para resolver un mismo problema,

entre los cuales, los más destacados son: diferencias finitas, elementos finitos y volúmenes

finitos. Todos estos métodos requieren de una previa discretización geométrica o espacial,

 para poder resolver las ecuaciones que gobiernan al fluido. Básicamente la malla generada

 para la discretización puede ser de dos tipos:

  Malla estructurada

Cada punto de la malla se encuentra identificado inequívocamente por los índices i, j,

k, en coordenadas cartesianas. Donde las celdas pertenecientes a la malla se encuentran

formadas de cuadriláteros en dos dimensiones y en hexaedros para el caso en tres

dimensiones. La principal ventaja de este tipo de malla es el orden que se genera,

resultando de forma más rápida y fácil el acceso a la información de las celdas vecinas

 para los cálculos, realizando sólo sumas y restas del valor correspondiente. Las mallas

estructuradas pueden representarse en un sistema cartesiano o curvilíneo. En el primer

caso, las líneas que configuran las celdas son siempre paralelas al sistema de ejes

coordenados, por el contrario, en los sistemas curvilíneos las líneas son deformadas

 para adaptarse a la geometría en estudio.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 192/194

 

  Malla no estructurada

Las celdas y los nodos en la malla generada no tiene un orden en particular, este tipo

de malla habitualmente es utilizada en geometrías complejas. Los elementos creados se

conforman en una mezcla de cuadriláteros y triángulos para los casos en dos

dimensiones y de tetraedros y hexaedros en tres dimensiones. Además ofrecen gran

flexibilidad, siendo posible ser generadas automáticamente, independientemente de la

complejidad del dominio. El tiempo requerido para un ordenador para generar una

malla no estructurada es menor del que se requiere para una malla estructurada, sin

embargo, es necesario mantener unos parámetros para obtener una buena calidad de la

malla. Otra ventaja es que cuando se elige este tipo de metodología se conoce que la

solución obtenida depende del grado de refinamiento en el mallado. Por otra parte, el

aspecto negativo de las mallas no estructuradas, es el espacio que la malla ocupa en lacomputadora, donde requieren más memoria que las mallas estructuradas.

El tipo de discretización espacial a emplear, depende del tipo de discretización de las

ecuaciones empleadas, así como también de la estructura interna de los datos empleados para

resolver el flujo. En el método de volúmenes finitos, es necesario definir puntos de control en

cada volumen generado. Es precisamente en estos puntos donde se guardan las variables,

donde su localización dependerá del método a emplear, puede ser en el centro o en los vértices

de las celdas, como se aprecia en la figura B.2.

Figura B.2. Malla con nodos centrados y malla con nodos ubicados en los vértices.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 193/194

 

B.5 DISCRETIZACIÓN TEMPORAL

El proceso físico del flujo bifásico, la interfase móvil se encuentra cambiando de

 posición espacialmente, mientras el tiempo avanza, lo que significa que no sólo debe ser

discretizado espacialmente un problema, sino que además debe ser discretizado

temporalmente, ya que el proceso es dependiente del tiempo.

En problemas dependientemente temporales, donde las variables cambian a lo largo del

tiempo, existen diferentes formulaciones para la discretización de las ecuaciones. Aquellos

métodos se discretizan para diferentes instantes de tiempo, por lo que la solución será resuelta

 para un número finito de puntos, donde para el resto es posible utilizar la interpolación para

obtener dichos valores. La diferencia entre el instante de tiempo en el cual se calcula la

solución y el siguiente, se denomina, paso de tiempo  . Los principales métodos son lossiguientes: Formulación implícita, en la cual se requiere resolver en cada paso de tiempo un

sistema de acuaciones y está dada por la ecuación (B.1), Formulación explícita, donde no es

necesario resolver un sistema de ecuaciones en cada paso de tiempo, pero debido a su

convergencia, es adecuado escoger pasos de tiempo más pequeños y está dado por la ecuación

(B.2), por último, la formulación dada por Crank-Nicolson presentada en la siguiente ecuación

(B.3).

  (B.1)

  (B.2)

  (B.3)

donde  es una función discretizada espacialmente para la variable ϕ.

7/25/2019 Tesis 'Simulación de tsunamis y rompimiento de represas' Daniel Garrido

http://slidepdf.com/reader/full/tesis-simulacion-de-tsunamis-y-rompimiento-de-represas-daniel-garrido 194/194

B.6 CONDICIONES DE CONTORNO E INICIALES

Para resolver las ecuaciones que gobiernan un determinado problema, es necesario

especificar condiciones de borde e iniciales, estas condiciones se realizan independientemente

de la metodología empleada.

Las condiciones iniciales imponen el estado de las variables del fluido en el instante . Mientras más cercano esté la solución del problema a los establecidos por las

condiciones iniciales, menor será el tiempo para lograr la convergencia de la solución.

Las condiciones de contorno están presentes en toda simulación numérica y consideran

una región del dominio en el cual se encuentra presente el fluido, en donde las variables en tal

región deben ser especificadas. En general las condiciones de contorno pueden ser clasificadas

en: