teyarijma17-20-2009

Upload: armin-suljic

Post on 04-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 teyarIJMA17-20-2009

    1/7

    Int. Journal of Math. Analysis, Vol. 3, 2009, no. 18, 871 - 877

    A Class of Third Order Parabolic Equations

    with Integral Conditions

    M. Bouzit and N. Teyar

    Université Mentouri ConstantineInstitut de Mathématiques25000 Constantine, Algeria

    bouzit [email protected], [email protected]

    Abstract

    In this paper, we study a mixed problem for a third order parabolicequation with non classical boundary condition. We prove the existence

    and uniqueness of the solution. The proof of the uniqueness is based on

    a priori estimate and the existence is established by Fourier’s method.

    Mathematics Subject Classification:  35B45, 35K35

    Keywords:   Integral Boundary Condition, Energy Inequalities, Parabolicequation of mixed type

    1. INTRODUCTION

    In the set Ω = (0, T ) × (0, 1), we consider the equation∂ 2u∂t2 −   1

    xr

      ∂ ∂x

    xr+1   ∂ 

    2u∂x∂t

    + k ∂u

    ∂t  = F (t, x), r 0 and   k ≥ 0, (1.1)

    To equation (1.1) we attach the initial conditionu(0, x) =  ϕ(x)   x ∈ (0, 1) (1.2)

    ∂u∂t

    (0, x) =  ψ(x)   x ∈ (0, 1) (1.3)and the integral condition 1

    0  u(t, x)dx = 0,

     10

      xru(t, x)dx = 0 for   t ∈ (0, T ) (1.4)Where   ϕ(x), ψ(x)  ∈   L2(0, 1) are known functions which satisfy the com-

    patibility conditions given in (1.4).The boundary value problems with integrals conditions are mainly moti-

    vated by the work of Samarskii [3]. Regular case of this problem for secondorder equations is studied in [4]. The problem where the equation of mixedtype contains an operator of the form   a(t) ∂ 

    2α+1u∂x2α∂t

      is treated in [17], the oper-ator of the form   ∂ 

    ∂x

    a(t, x) ∂u

    ∂x

     and   ∂ 

    α

    ∂xα

    a(t, x) ∂ 

    αu∂xα

     is treated in [4] and [14].

  • 8/13/2019 teyarIJMA17-20-2009

    2/7

    872   M. Bouzit and N. Teyar 

    Two-point boundary value problems for parabolic equations, with an integralcondition, are investigated using the energy inequalities method in [8, 9, 10, 11]and the Fourier’s method [12]. Three-point boundary value problem with anintegral condition for parabolic equations with the Bessel operator is studied in[12]. And recently parabolic and hyperbolic equations with integral boundary

    condition are treated by Fourier’s method in [1, 5].The presence of nonlocal conditions raises complications in applying stan-

    dard methods to solve (1.1)-(1.4). Therefore to over come this difficulty wewill transfer this problem to another which we can handle more effectly. Forthat, we have the following lemma.

    Lemma 1. Problem (1.1)-(1.4) is equivalent to the following problem

    (Pr)1

    ∂ 2u∂t2 −   1

    xr

      ∂ ∂x

    xr+1   ∂ 

    2u∂x∂t

    + k ∂u

    ∂t  = F (t, x)

    u(0, x) =  ϕ(x)∂u∂t

    (0, x) = ψ(x)∂u

    ∂t

    (t, 1) −   ∂u∂t

    (t, 0) =   1r 

    1

    0

      xrF (t, x)dx −  1

    0

      F (t, x)dx∂ 2u

    ∂x∂t(t, 1) = −

     10

      xrF (t, x)dx

    Proof. Let  u(t, x) be a solution of (1.1)-(1.4). Integrating equation (1.1)with respect to  x over (0, 1), and taking into account of (1.4), we obtain

    x  ∂ 2u

    ∂x∂t

    10− r

     10

    ∂ 2u∂x∂t

    dx = 10

      F (t, x)dx

    And so∂ 2u

    ∂x∂t(t, 1) + r( ∂u

    ∂t(t, 1) −   ∂u

    ∂t(t, 0)) = −

     10

      F (t, x)dx

    To eliminate the second nonlocal condition 10

      xru(t, ξ )dξ  = 0 multiplying

    both sides of (1.1) by   xr

    and integrating the resulting over (0,1), and takingin account of (1.4), we obtain

    ∂ 2u∂x∂t

    (t, 1) = − 10

      xrF (t, x)dxThese may also be written

    ∂u∂t

    (t, 1)−   ∂u∂t

    (t, 0) =   1r

     10

      xrF (t, x)dx− 10

      F (t, x)dx

    And∂ 2u

    ∂x∂t(t, 1) = −

     10

      xrF (t, x)dxLet u(t, x) now be a solution of (Pr)1, it remains to prove that 1

    0  u(t, x)dx = 0,

    And 10   x

    r

    u(t, x)dx = 0We integrate Eq.(1.1) with respect to  x  , we obtain

    d2

    dt2

     10   u(t, x)dx + k

      ddt

     10   u(t, x)dx = 0, t ∈ (0, T )

    And it also follows thatd2

    dt2

     10

      xru(t, x)dx + k   ddt

     10

      xru(t, x)dx = 0, t ∈ (0, T )Introduce now the new function  v(t, x) = u(t, x) − u0(t, x),  where

  • 8/13/2019 teyarIJMA17-20-2009

    3/7

    Third order parabolic equations    873

    u0(t, x) =  α(x) t0

     m1(τ )dτ  + β (x) t0

     m2(τ )dτ,α(x) = −x + x2

    , β (x) = 2x − x2, m1(t) = − 10

      xrF (t, x)dx,

    m2(t) =  1

    r

    −m1(t)−

     10

      F (t, x)dx

    Then (Pr)1  is transformed into the following problem

    (Pr)2

    v ≡   ∂ 2v∂t2  −  1xr

      ∂ ∂x

    xr+1   ∂ 2v

    ∂x∂t

    + k ∂v∂t   = f (t, x)

    lv  =   v(0, x) = ϕ(x)qv  =   ∂v

    ∂t(0, x) = Ψ(x)

    ∂v∂t

    (t, 1) =   ∂v∂t

    (t, 0)∂ 2v

    ∂x∂t(t, 1) = 0

    Wheref (t, x) = F (t, x) + (α(x)− β (x)

    r  ) 10

      xrF t(t, x)dx + β (x)

    r

     10

      F t(t, x)dx + γ (t, x),γ (t, x) = (−(r  + 1) + 2(r  + 2)x)m1(t) + (2(r  + 1)  −  2(r  + 2)x)m2(t)  −

    kα(x)m1(t) − kβ (x)m2(t)

    Ψ(x) = ψ(x) + α(x)  1

    0  xrF (0, x)dx +  β (x)

    r  (−  

    1

    0  xrF (0, x)dx +  

    1

    0  F (0, x)dx)

    2. A PRIORI ESTIMATE

    we consider (P r)2  as a solution of the operator equationLv = F ,

    where   L   = (,l ,q  ) ,  F   = (f,ϕ, Ψ). The operator   L   is acting from theBanach space  D(L) = E    to  F    where

    E  =

    v :  xr+1

    2   v, xr+1

    2  ∂v

    ∂t, x

    r+1

    2  ∂ 2v

    ∂x∂t ∈ L2(0, 1) and

    xr+1

    2  ∂v

    ∂t, x

    r+1

    2  ∂ 2v

    ∂x∂t, x

    r+1

    2  ∂ 2v

    ∂t2, xr+1   ∂ 

    3v∂x2∂t

    , xr   ∂ 2v

    ∂x∂t ∈ L2(Ωr)

    With respect to the normx

    2E  =

     Ωr

     xr+1

    ( ∂v∂t

    )2 + (   ∂ 2v

    ∂x∂t)2 + ( ∂ 

    2v∂t2

    )2

    + Ωr

      ∂ ∂x

    xr+1   ∂ 

    2v∂x∂t

    2+ sup

    0≤t≤T 

     10

      xr+1

    v2 + ( ∂v∂t

    )2 + (   ∂ 2v

    ∂x∂t)2

    Here  F   is the Hilbert space with the normF2F   = ((f,ϕ, Ψ)

    2F   =

     Ωr

     f   2 + 10 (Ψ2 + (Ψ)2 + ϕ2)

    Lemma 2. For any function  u ∈ E , we haveexp(−cT )

    8

     10   x

    r(v(τ, x))2 ≤   18 10   x

    rϕ2 +  18 10

     τ 0   x

    r( ∂v∂t

    )2 (2.1)with the constant c satisfying  c ≥ 1 .Proof. Integrating by parts (exp(−ct)xrv,   ∂v

    ∂t) and using elementary in-

    equalities yields (2.1).Theorem 1. For (P r)2  We have

    vE  ≤ C LvF  ,Where C   0 is independent on  v   .Proof. Let

    Mv = 2xr ∂ v∂t

     + xr ∂ 2v

    ∂t2

  • 8/13/2019 teyarIJMA17-20-2009

    4/7

    874   M. Bouzit and N. Teyar 

    Consider the scalar product (v,Mv),  and integrating overΩτ  = (0, τ ) × (0, 1),  we get

    (v,Mv)L2(Ωτ )  = (1+k2

    ) 10

      xr( ∂v∂t

    (τ, x))2−(1+ k2

    ) 10

      xrΨ2+2k Ωτ 

     xr( ∂v∂t

    )2+

    2 Ωτ  x

    r+1(   ∂ 2v

    ∂x∂t)2 +

     Ωτ  x

    r( ∂ 2v

    ∂t2)2 +   12

     10   x

    r+1(   ∂ 2v

    ∂x∂t(τ, x))2 −   12

     10   x

    r+1(Ψ)2 ≥

    (1 +  k

    2) 10   x

    r

    (∂v

    ∂t (τ, x))2

    − (1 +  k

    2) 10   x

    r

    Ψ2

    + 2k Ωτ  x

    r

    (∂v

    ∂t )2

    +2 Ωτ 

     xr+1(   ∂ 2v

    ∂x∂t)2+

     Ωτ 

     xr( ∂ 2v

    ∂t2 )2+ 12

     10

      xr+1(   ∂ 2v

    ∂x∂t(τ, x))2− 12

     10

      xr(Ψ)2 (2.2)

    We now apply an  ε-inequality to the term (v, 2xr ∂v∂t

     + xr ∂ 2v

    ∂t2 ) we obtain

    (v, 2xr ∂v∂t

     + xr ∂ 2v

    ∂t2 ) =   1

    ε1

     Ωτ 

     xrf   2 + ε1 Ωτ 

     xr( ∂v∂t

    )2 +   12ε2

     Ωτ 

     xrf   2+22

     Ωτ  x

    r( ∂ 2v

    ∂t2)2 (2.3)

    From equation  v ≡   ∂ 2v

    ∂t2 −   1

    xr

      ∂ ∂x

    xr+1   ∂ 

    2v∂x∂t

    + k ∂v

    ∂t  = f (t, x) we have

    18

     Ωτ 

      ∂ ∂x

    xr+1   ∂ 

    2v∂x∂t

    ≤   14

     Ωτ 

     xrf   2+14

     Ωτ 

     xr( ∂ 2v

    ∂t2)2 +1

    4k Ωτ 

     xr( ∂ 2v

    ∂t2 )2 (2.4)

    Combining inequalities (2.1), (2.2), (2.3) and (2.4) and since (x  ≤  1) weobtain

    42+21+12412

     Ωτ  f   2 + (1 +   k2 )

     10  Ψ2 +   12

     10 (Ψ)2 +   18

     10   ϕ2 ≥

    (1 +   k2) 10

      xr+1( ∂v∂t

    (τ, x))2 + ( 7k4   − 1 −  18) Ωτ 

     xr( ∂v∂t

    )2 + 2 Ωτ 

     xr+1(   ∂ 2v

    ∂x∂t)2

    +(34 −   2

    2 ) Ωτ 

     xr( ∂ 2v

    ∂t2)2 +   1

    2

     10

      xr+1(   ∂ 2v

    ∂x∂t(τ, x))2 +   1

    8

     Ωτ 

      ∂ ∂x

    xr+1   ∂ 

    2v∂x∂t

    +

    exp(−cT )8

     10   x

    r+1(v(τ, x))2 (2.5)Next choosing as and  i, i = 1, 2 as

      7k4  −1−

    18  = k1   0 and

      34−

    22   = k2  0.

    The left-hand side of (2.5) is independent of  τ  , hence replacing the right-hand side by its upper bound with respect to  τ , in the interval [0, 1], we obtainthe desired inequality.

    This completes the proof.

    3. EXISTENCE AND UNIQUENESS OF SOLUTION

    We shall establish the existence of solution of (P r)2. For this we make useof the Fourier’s method.

    Consider the function  vn(t, x) = T n(t)X n(x) where  X n(x) is an eigenfunc-tion of the BVP  

    1

    xr

      ddx

    xr+1 dX n

    dx

    − kX n =  λnX n

    X n(1) = X n(0)d X n

    dx (1) = 0

    λn, n = 1, 2.......  is called the eigenvalue corresponding to the eigenfunction

    X n(1),  and  T n(t) is satisfying the initial problem

    d2T ndt2  − λn

    dT ndt

      = f n(t)T n(0) = ϕn

    d T ndt

     (0) = Ψn

    ϕ(x) =∞

    n=1

    ϕnX n(x)

  • 8/13/2019 teyarIJMA17-20-2009

    5/7

    Third order parabolic equations    875

    Ψ(x) =∞

    n=1

    ΨnX n(x)

    Ψ(x) =∞

    n=1Ψ∗nX n(x)

    f (t, x) =∞

    n=1

    f n(t)X n(x)

    And by the Parseval-Steklov equality

    ϕ2L2(0,1)  =∞

    n=1

    ϕ2n,

    Ψ2L2(0,1)  =∞

    n=1

    Ψ2n,

    Ψ2L2(0,1)  =∞

    n=1

    (Ψ∗n )2,

    And 10

      f (t, x)dx =∞

    n=1

    f 2n(t).

    Hence  Ω

    f   2(t, x)dxdt =∞

    n=1

     T 0

      f   2

    n

     (t).

    Then direct computation yieldsT n(t) = ϕn +

     t0

     Ψn exp(λnτ )dτ  + t0

     s0

      f n(τ ) exp(λns − λnτ )dτds 10

      xrX n(x)X m(x)dx = 0, n = mAnd

    ϕn =  1

    0  xrϕ(x)X n(x)dx

      1

    0  xrX 

    2n (x)dx

    Ψn =  1

    0  xrΨ(x)X 

    n(x)dx

      1

    0  xrX 

    2n (x)dx

    By principle of superposition, the solution of (P r)2  is given by the series

    v(t, x) =∞

    n=1T n(t)X n(x).   (3.1)

    Then we haveTheorem 2. Let  f, ϕ ∈ L2(Ω),  and Ψ ∈ H 

    1(0, 1).  Then the solution  v(t, x)of (P r)2  exists and is represented by series (3.1) wich converges in  E .

    Proof. Consider the partial sum   S N (t, x) =N 

    n=1T n(t)X n(x) of the series

    (3.1) then by theorem 1N 

    n=1

    T n(t)X n(x)

    2

    ≤ C 1N 

    n=1

     T 0

      f   2n   (t)dt + ϕ 2n   + Ψ

     2n   + (Ψ

    n)

    2

      (3.2)

    The seriesN 

    n=1

     T 0

      f   2n   (t)dt,N 

    n=1

    ϕ  2n   ,N 

    n=1

    Ψ  2n   ,andN 

    n=1

    (Ψn)2 converge. There-

    fore it follows from (3.2) that the series (3.1) converges in E and accordinglyits sum  v ∈ E.

  • 8/13/2019 teyarIJMA17-20-2009

    6/7

    876   M. Bouzit and N. Teyar 

    REFERENCES

    [1] M.A.Al-kadhi, A class of hyperbolic equations with nonlocal conditions,Int. J. Math. Analysis, 2 (10) (2008), 491-498.

    [2] Batten, Jr., G.W., Second-order correct boundary conditions for the

    numerical solution of the mixed boundary problem for parabolic equations,Math. Comp. 17 (1963), 405-413.

    [3] N. E. Benouar and N. I. Yurchuk, Mixed problem with an integralcondition for parabolic equations with the Bessel operator, Differ. Equ. 27(12) (1991), 1177-1487.

    [4] Bouziani, A. and Benouar, N.E., Mixed problem with integral conditionsfor a third order parabolic equation, Kobe J. Math. 15 (1998), 47-58.

    [5] L.Bougoffa, Parabolic equations with nonlocal conditions, Appl. Math.Sciences 1 (21) (2007), 1041-1048.

    [6] A. Bouziani and N. E. Benouar, Problème mixte avec conditions intégrales

    pour une classe d’équations paraboliques, C. R. Acad. Sci. Paris, Série 1 321(1995), 1182.

    [7] Choi, Y.S. and Chan, K.Y., A parabolic equation with nonlocal bound-ary conditions arising from electrochemistry, Nonl. Anal. 18 (1992), 317-331.

    [8] M. Denche and A. L. Marhoune, A three-point boundary value problemwith an integral condition for parabolic equations with the Bessel operator,Appl. Math. Lett. 13 (2000), 85-89.

    [9] M. Denche and A. L. Marhoune, High-order mixed-type differentialequations with weighted integral boundary conditions, Electron. J. DifferentialEquations 60 (2000), 1-10.

    [10] M. Denche and A. L. Marhoune, Mixed problem with integral boundarycondition for a high order mixed type partial differential equation, J. Appl.Math. Stochastic Anal. 16 (1) (2003), 69-79.

    [11] M. Denche and A. L. Marhoune, Mixed problem with non local bound-ary conditions for a third-order. partial differential equation of mixed type,Int. J. Math. Sci. 26 (7) (2001), 417-426..

    [12] N. I. Ionkin, A problem for the heat-condition equation with a two-point boundary Condition, Differ. Uravn. 15 (7) (1979), 1284-1295.

    [13] A. V. Kartynnik, Three-point boundary-value problem with an integralspace-variable condition for a second-order parabolic equation, Differ. Equ. 26(9) (1990),1160-1166.

    [14] N. I. Kamynin, A boundary value problem in the theory of the con-dition with non classical boundary condition, Th. Vychist. Mat. Fiz. 43 (6)(1964), 1006-1024.

    [15] A.L.Marhoune and M.Bouzit, High order differential equations withintegral boundary condition, FJMS, 2006.

    [16] A. A. Samarski, Some problems in differential equations theory, differ.

  • 8/13/2019 teyarIJMA17-20-2009

    7/7

    Third order parabolic equations    877

    Uravn, 16(11) (1980), 1221-1228[17] N. I. Yurchuk, Mixed problem with an integral condition for certain

    parabolic equations, Differ. Equ. 22 (12), (1986),1457-1463.

    Received: November, 2008